
GENERALIZATION AND BLENDING IN THE GENERATION OF
ENTITY-RELATIONSHIP SCHEMAS BY ANALOGY

Marco A. Casanova, Simone D.J. Barbosa, Karin K. Breitman and Antonio L. Furtado
Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro

Rua Marquês de S. Vicente, 225 – Rio de Janeiro – CEP 22451-900, Brasil

Keywords: Schema Generation, Analogy, Blending, Lattices, Entity-Relationship Model, Logic Programming.

Abstract: To support the generation of database schemas of information systems, a five-step design process is pro-
posed that explores the notions of generic and blended spaces and favours the reuse of predefined schemas.
The use of generic and blended spaces is essential to achieve the passage from the source space into the tar-
get space in such a way that differences and conflicts can be detected and, whenever possible, conciliated.

1 INTRODUCTION

Designers of information systems soon learn that
reusing their previous experience, and also that of
other designers, is a rewarding strategy. Motivated
by this remark, we have been working (Breitman et
al., 2007; Barbosa et al., 2007) on methods and tools
to abstract a pattern that captures the structure of a
database schema regarded as a source schema,
which is then repeatedly used to generate one or
more target schemas. What makes this strategy
viable is the perception of an analogy between
source and target, expressed by “target is like
source”. Additionally, the source schema should be
a typical example among those that are analogously
structured, and the terminology of its underlying
domain should be familiar even to the less expe-
rienced designers. If these requirements are satisfied,
it will be possible to instantiate the positions occu-
pied by variables in the pattern by prompting the
designer to indicate which name in the target schema
being generated correspond to which name in the
example source schema.

In the present paper, we expand our earlier me-
thod and introduce a five-step process that takes four
spaces into consideration – the source, target, ge-
neric and blended spaces, as proposed in (Faucon-
nier & Turner, 1994) for widely different areas. We
adopt the familiar Entity-Relationship (ER) model
(Batini, Ceri & Navathe, 1992) and use the weak
entity concept to illustrate the process.

The diagram in figure 1 represents the four
spaces and shows how they are articulated in view of

the process, whereby, starting from the source, the
target is gradually constructed.

source target

generic

blend
Figure 1: The four-space approach.

Informally, the generic space originates from the
source by importing, in a generalized format, the
elements for which corresponding elements in the
target will eventually be characterized. In practice,
both the source and the target will contain other non-
corresponding elements, since analogy is rarely
bijective. Viewing the diagram as a lattice (MacLane
& Birkhoff, 1967), the generic constitutes the meet
of the source and the target spaces and denotes the
elements that correspond to each other in these two
spaces. By contrast, the blended space reflects the
join of source and target and inherits all their ele-
ments, corresponding or not. The blend is the space
wherein one can detect whatever is incomparable or
conflicting when putting together source and target,
often calling for some form of adaptation (Turner,
1996; Fauconnier & Turner, 2002). Goguen (1999)
formalized blending in category theory.

The text is organized as follows. Section 2 de-
tails the process we propose, section 3 extends it to
operations, and section 4 contains the conclusions.

43
A. Casanova M., D. J. Barbosa S., K. Breitman K. and L. Furtado A. (2008).
GENERALIZATION AND BLENDING IN THE GENERATION OF ENTITY-RELATIONSHIP SCHEMAS BY ANALOGY.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 43-48
DOI: 10.5220/0001672800430048
Copyright c© SciTePress

2 THE FIVE-STEP SCHEMA-
GENERATION PROCESS

2.1 Example

We adopt a simple example to illustrate the pro-
posed schema generation process. We start with a
schema fragment, specifying employees and their
dependents, which is probably the most frequently
mentioned illustration of the weak entity concept in
ER modeling. As a fragment, it only needs the ele-
ments relevant to characterize weak entities.

We express schemas with the help of clauses
such as those below that introduce two entity
classes, employee and dependent:

Schema: Emp_Dep
Clauses --

entity(employee, empno)
attribute(employee, empno)
entity(dependent,

[empno/depno-isdepof-empno,depno])
attribute(dependent, depno)
relationship(isdepof,

dependent/0/n, employee/1/1)
 attribute(isdepof, family_tie)

The identifying attribute of employee is empno, whe-
reas dependent, being a weak entity, relies on the
identifying relationship isdepof, combined with the
discriminating attribute depno. The identifying rela-
tionship is 1 to n, being total with respect to depen-
dent and partial with respect to employee; these
properties are indicated by associating pairs of
minimum and maximum values for the participation
of instances of each entity in relationship instances:
at least 0 and at most n dependents can be related
with exactly one employee. The relationship
isdepof has attribute family_tie, whose values are
spouse and child. Note that the fragment does not
include, as unessential to the characterization of
weak entities, certain basic properties of employee,
such as those referring to the employment itself.

This schema will be used as the source schema,
wherefrom target schemas based on the weak entity
concept can be derived, through five consecutive
steps, to be described in the sequel. As will be no-
ticed, the process takes into due consideration some
domain-independent consistency rules inherent in
the ER model, such as the following:

1) all entity classes must have identifying

properties;
2) relationships can only be defined between

defined entity classes;
3) the deletion of an entity instance implies

the deletion of all its properties;

4) if a relationship R is total with respect to
one of its participating entity classes E, an
instance of R cannot be deleted if it is the
only one involving a given instance of E.

2.2 Step 1 - Generating the Pattern

From the source schema Emp_Dep, the Weak Entity
pattern is obtained (Fig. 2) by substituting variables
for the names of entities, relationships and attributes.

source target

generic

blend
Figure 2: Generating the pattern.

The pattern contains mappings that associate the
introduced variables with the corresponding source
schema names. For example, variable A refers to
employee wherever it occurs in the pattern.

Pattern: Weak Entity
Example schema: Emp_Dep
Clauses --
 entity(A, B)
 attribute(A, B)
 entity(C, [B/D-E-B, D])
 attribute(C, D)
 relationship(E, C/0/n, A/1/1)
 attribute(E, F)
Mappings --
 A:employee
 B:empno
 C:dependent
 D:depno
 E:isdepof
 F:family_tie

2.3 Step 2 - Generating the Target
Schema

Suppose the designer wants to specify a Bk_Ed
schema, about book editions, and realizes that this
too involves the weak entity concept: the editions
of a book are comparable to the dependents of an
employee. The generation (Fig. 3) is basically done
by specializing the clauses of the pattern (in the ge-
neric space), but also referring to the originating
source space, to stress that the names figuring in the
pattern mappings were extracted from it.

Each pattern variable is replaced by an
appropriate name belonging to the underlying
domain of Bk_Ed.

source target

generic

blend
Figure 3: Generating the target schema.

ICEIS 2008 - International Conference on Enterprise Information Systems

44

Relying on the assumption of an intuitive
understanding of the analogy between the two do-
mains, the designer is prompted to supply the target
schema names through queries of the form:

- What corresponds to <name in source>?

In our example, this would instantiate the pattern
mappings as follows:

employee → book
empno → isbn
dependent → edition
depno → edno
isdepof → isedof
family_tie → nil

We note that the designer may, with limitations,
deny one or more correspondences by replying nil
as with the attribute family_tie. This is indeed the
only element in this case that can be absent. Having
informed book as corresponding to entity employee,
the designer should be aware that the indication of
what corresponds to empno is mandatory, since no
entity can lack an identifier (cf. ER rule 1, section
2.1). Likewise, if nothing corresponds to dependent,
the indication of isedof as corresponding to
isdepof would be an error, because a binary
relationship requires the presence of two par-
ticipating entities (cf. ER rule 2). The absence of
isedof, on the other hand, would defeat the purpose
of the entire process – the weak entity concept
makes no sense without an identifying relationship.

After inspecting the resulting target schema, the
designer's knowledge of the target domain must be
used to check its clauses, with a special attention to:

a) additions to the target schema, that have no

correspondence in the source schema;
b) modifications to be done in the generated

clauses in the target schema.

Suppose that the designer judged that the addition
and the modification below are necessary:

addition: attribute(book,subject)
modification: isedof – min-1:1

Then, the Bk_Ed target schema becomes:

Schema: Bk_Ed
Clauses --

entity(book, isbn)
attribute(book, isbn)
attribute(book, subject)
entity(edition,

[isbn/edno-isedof-isbn, edno])
attribute(edition, edno)
relationship(isedof,

edition/1/n, book/1/1)

2.4 Step 3 - Blending the Source and
Target Schemas

The blended space is pictured as a confluence of the
source and target spaces, taking into consideration
the correspondences in the generic space (Fig.4).

source target

generic

blend
Figure 4: Blending the source and target schemas.

In the database schema-generation process, elements
are obtained by joining each entity and relationship
of the source schema with its counterpart in the tar-
get schema. To begin with, all information about
each entity and relationship, contained in the various
clauses of the two schemas, is collected in separate
frames, structured as lists of property:value pairs.

Each property of an entity E is represented either
by an attribute name, or by a binary relationship
name tagged with 1 or 2 to indicate, respectively,
whether E is the first or the second participant in the
relationship. Since in the present example no re-
strictions are being imposed on the values, all value
positions are filled with an underscore, a usual con-
vention for an anonymous variable. The properties
of a relationship R are similarly represented. They
include the identifying attributes of the two
participating entities, the minimum and maximum
occurrences for the first and for the second
participant, and other relationship attributes if any.

The frames extracted from Emp_Dep are:

frame of employee =
[empno:_, isdepof/2:_]

frame of dependent =
[depno:_, isdepof/1:_]

frame of isdepof =
[depno:_, empno:_,
min-1:0, max-1:n, min-2:1, max-2:1, fam-
ily_tie:_]

and those taken from the Bk_Ed schema are:

frame of book =
[isbn:_, subject:_, isedof/2:_]

frame of edition =
[edno:_, isedof/1:_]

frame of isedof =
[edno:_, isbn:_,
min-1:1, max-1:n, min-2:1, max-2:1]

We now introduce a join operation on frames,
specifying that, when applied to entity or relation-
ship frames F1 and F2, it results in a frame J, whose
property-value pairs comprise:

a) pairs p1:v1 from F1, for each property p1 not
corresponding to any property in F2;

b) pairs p2:v2 from F2, for each property p2 not
corresponding to any property in F1;

GENERALIZATION AND BLENDING IN THE GENERATION OF ENTITY-RELATIONSHIP SCHEMAS BY
ANALOGY

45

c) pairs p1-p2:v1-2, for each two corresponding
properties p1 and p2 in F1 and F2, respectively.

Value v1-2 in item c is obtained by joining the two
values v1 and v2, according to the following
criterion: if the values are identical constants, or at
least one of them is a variable, v1-2 is the result of
their unification (Knight, 1989); otherwise the result
is a term formed by the two values prefixed by an
asterisk to indicate that they are in conflict.

The frames characterizing the blended space are
shown below. Non-corresponding properties and
conflicting values are stressed (in italic, boldface;
the symbol “∨” denotes the join of two frames):

Femployee ∨ Fbook =
[empno-isbn:_,

 isdepof/2-isedof/2:_,
 subject:_]

Fdependent ∨ Fedition =
 [depno-edno:_,
 isdepof/1-isedof/1:_]
Fisdepof ∨ Fisedof =

[depno-edno:_,
 empno-isbn:_,
 min-1:*(0,1),
 max-1:n,
 min-2:1,
 max-2:1,
 family_tie:_]

A disclaimer is in order here. We considered only
one simple type of conflict. If the designer is
allowed to perform arbitrary modifications to the
target schema initially obtained by instantiating the
pattern variables (cf. step 2), other types of conflict
may occur, calling for the specification of appropri-
ate criteria to handle them. As noted in (Fauconnier
& Turner, 2002), blending is, in general, a particu-
larly complex task, requiring a great deal of creativ-
ity from the part of the designer, who may have to
devise ad hoc ways to achieve consistency.

2.5 Step 4 - Revising the Target (and
Source) Schemas

The resulting blended space can be reinjected into
the derived target space, and even into the originat-
ing source space, if the designer admits the possibil-
ity of also reconsidering it (Figure 5).

source target

generic

blend
Figure 5: Revising the target (and source) schemas.

A convenient way to call the designer's attention to
what was not used from the source schema is to
display together, in frame format, the entire list of
current properties of each entity and relationship in

the target schema, expanded as the result of
blending. Such frames are directly obtained from the
blend frames by reducing the paired names assigned
to corresponding properties to their original names
in the target space, while, naturally, keeping the
names of the source space properties until now
disregarded:

frame of bookemployee =
[isbn:_, isedof/2:_, subject:_]

frame of editiondependent =
[edno:_, isedof/1:_]

frame of isedofisdepof =
[edno:_, isbn:_, min-1:1, max-1:n, min-2:1,
max-2:1, family_tie:_]

Surely, the designer may or may not judge appropri-
ate to reconsider what was initially left out, in this
case the relationship attribute family_tie. Would
there be different "ties" between edition and book?
With respect to its "parent" book, an edition may be
classified as revised, corrected, expanded,
abridged, and also simply as regular, which are
some of the possible values for a new ed_type
attribute for the isedof relationship.

The reconsideration of a source schema for
expansion is more rarely desirable, especially if one
wishes to keep it as a fragment containing only the
features necessary to characterize weak entities. But
in the event that the designer wants to examine the
possibility, the blend frames can be alternatively
renamed as follows:

frame of employeebook =
[empno:_, isdepof/2, subject:_]

frame of dependentedition =
[depno:_, isdepof/1:_]

frame of isdepofisedof =
[depno:_, empno:_, min-1:0, max-1:n, min-
2:1,max-2:1, family_tie:_]

What can be the "subject" of an employee? The sub-
ject of a book can be some fictional genre, but it
can also be a professional field, such as engineer-
ing, or accounting, which may suggest a new
attribute profession for the employee entity, with
possible values including engineer and accountant.
A further reduction of Emp_Dep to suppress the
family_tie attribute is more likely to happen. This
would become advisable if the attribute is systemati-
cally disregarded in a long series of target schema
generations. Reconsidering a source schema, and
consequently the pattern abstracted from it (as
covered in step 5) is a case of double-loop learning
(Argyris & Schön, 1995): the continuing use of a
model providing clues for its correction and
refinement.

ICEIS 2008 - International Conference on Enterprise Information Systems

46

2.6 Step 5 - Revising the Pattern

Since the generic space is often intended as a help to
generate a plurality of target spaces, conflicts lo-
cated at the blended space, as well as changes made
at the source space from suggestions motivated by
observing the blend, may entail the reconsideration
of the generic space (Figure 6).

source target

generic

blend
Figure 6: Revising the generic space.

In our example, the blend mirrors the fact that an
identifying relationship must be total with respect to
the weak entity, but no such requirement is imposed
with respect to the entity on which it relies for iden-
tification. So the conflict registered in the prop-
erty:value pair min-1:*(0,1) of the frame resulting
from the join of Fisdepof with Fisedof should motivate
the insertion of a hotspot (Pree, 1995) in the Weak
Entity pattern, i.e., a place where the specification
becomes flexible. The adopted notation, using a
question mark as prefix, will signal that the designer
should be queried about the min-1 property of the
relationship denoted by variable E, and that the value
supplied must be chosen as 0 or 1.

Moreover, if at step 4 a new attribute such as
profession is added to the source schema, or if the
family_tie relationship attribute is removed from
it, the pattern must be modified accordingly, so that
it will continue to reflect the Emp_Dep schema. If all
these modifications occur, after deleting the lines

 attribute(E, F)
 F:family_tie

and adding or modifying three lines (in boldface),
the Weak Entity pattern would become:
Emp_Dep
Clauses --
 entity(A, B)
 attribute(A, B)
 attribute(A, G)
 entity(C, [B/D-E-B, D]) attribute(C, D)
 relationship(E, C/?(0,1)/n, A/1/1)
Mappings --
 A:employee
 B:empno
 G:profession
 C:dependent
 D:depno
 E:isdepof

3 TOWARDS THE DESIGN OF
OPERATIONS

In (Furtado et al., 2007) we added, both to schemas
and patterns, clauses defining operations in terms of
their pre- and post-conditions (Fikes & Nilsson,
1971). Without going into details, we now give one
example of the repercussion of conflicts detected at
the blending stage on the design of operations. Sup-
pose that an operation named end_coverage has
been defined over the source schema, allowing to
remove a child C of an employee E from the list of
dependents of E, if the birth_year of C (an addi-
tional attribute of dependent) precedes a currently
determined limit. Note that the deletion of the literal
dependent([E,C]) should cause the deletion of all
properties of the entity instance C, in view of ER
rule 3. On the other hand, note that the repeated
execution of end_coverage is allowed, legitimately,
to leave an employee with no dependents.

end_coverage(C,E)
 pre-cond: dependent([E,C]),
 family_tie([E,C],child),
 birth_year([E,C],Y),
 Y < b_ylimit.
 post-cond: ¬dependent([E,C]).

Also suppose that, when prompted to determine an
operation corresponding to end_coverage, the
designer responded with weed, to represent a practice
known as weeding library collections (Slote, 1997).
Analogously to end_coverage, weed discards
editions whose year of publication, ed_year (from
birth_year), came before a designated year. A
conservative librarian would very likely demand that
systematic discarding be restricted to regular
editions, expressed by an attribute ed_type (from
family_tie), as considered earlier.

However, straightforward renaming and the re-
placement of child by regular is not sufficient here
to avoid a conflict of the generated weed operation
when blending, namely, the totality property of
isedof with respect to book, combined here with ER
rule 4. One solution to the conflict is to ensure that
the book itself remains, by keeping its newest
edition, as illustrated below:

weed(E,B)
 pre-cond: edition([B,E]),
 ed_type([B,E],regular),
 ed_year([B,E],Y),
 edition([B,En]),
 ed_year([B,En],Yn),
 Yn > Y,
 Y < ed_ylimit.
 post-cond: ¬edition([B,E]).

Further refined versions may specify different values
of ed_ylimit for different subjects, in view of con-

GENERALIZATION AND BLENDING IN THE GENERATION OF ENTITY-RELATIONSHIP SCHEMAS BY
ANALOGY

47

stantly updated studies to determine the period of
obsolescence for publications belonging to each so-
called Dewey class (Kramer, 2002).

4 CONCLUDING REMARKS

We have run experiments with the current version of
the schema-generating process, using an interactive
logic programming tool. Also, although simple, the
weak entity example helped us gain a better
understanding of design by analogy and blending.

Much work remains to be done, especially to
extend the process as described in section 2, in order
to cope with an ampler variety of conflicts, and to
develop semi-automatic algorithms or heuristics to
recommend adequate strategies for handling the dif-
ferent situations that may arise in practice.

A more comprehensive treatment of the schema
generation problem calls for the study of additional
topics. Patterns to model the same concept can be
obtained from different source schemas, perhaps
resulting in distinct versions with permissible
variations, which in turn could be classified and
selected by the designer according to the case on
hand. Moreover, generating additional versions of
the pattern provides a means to check the resulting
patterns for conflicts and integrity constraints.

Early studies on analogy and metaphor (Lakoff
& Johnson, 1980) argued for the use of multiple
sources to characterize a target possessing many
properties, which would naturally be grouped
according to the originating source. The computa-
tional effort of some problem-solving algorithms
could be then reduced, by considering only the
properties that have been derived from a few
designated sources (Holyoak & Thagard, 1996).

When generic and blend represent the confluence
of spaces associated with the same underlying do-
main, they can give rise to new conceptual spaces,
through a process sometimes called categorization
(Fauconnier & Turner, 1994). When different
underlying domains are involved, the resulting blend
is populated with hybrid entities. Conflating persons,
objects or events is a powerful literary practice, and,
surprisingly, offers sometimes intuitive clues to
solve problems, as in the Buddhist monk riddle
expounded in (Turner, 1996). A blend conflating
persons and books, for instance, might make sense
in a Digital Storytelling application aiming to teach
children how to use the facilities of a library. Other
Computer Science areas have drawn significantly
from the notions of analogy (Barbosa & de Souza,
2001) and blending (Imaz & Benyon, 2007).

ACKNOWLEDGEMENTS

This work is partially supported by CNPq under
grants 301497/2006-0 and 311794/2006-8.

REFERENCES

Argyris, C., & Schön, D. A. (1995). Organizational
Learning II: Theory, Method, and Practice. New
Jersey, NJ: FT Press.

Breitman, K. K., Barbosa, S. D. J., Casanova, M. A., &
Furtado, A. L. (2007). Conceptual modeling by
analogy and metaphor. Proceedings of CIKM 2007.

Barbosa, S. D. J., Breitman, K. K., Furtado, A. L.,&
Casanova, M. A. (2007). Similarity and analogy over
application domains. Proceedings of SBBD 2007.

Barbosa, S. D. J., & de Souza, C. S. (2001). Extending
software through metaphors and metonymies.
Knowledge-Based Systems, 14, 15-27.

Batini, C., Ceri, S., & Navathe, S. (1992). Conceptual
Design – an Entity-Relationship Approach. New
Jersey, NJ: Benjamin Cummings.

Fauconnier, G., & Turner, M. (1994). Conceptual
projection and middle spaces. Technical Report 9401,
University of California, San Diego.

Fauconnier, G., & Turner, M. (2002). The Way We Think.
New York, NY: Basic Books.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new
approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2 (3-4).

Furtado, A.L., Casanova, M.A., Barbosa, S.D.J., &
Breitman, K.K. (2007). Plot mining as an aid to
characterization and planning. Technical Report
MCC 07/07, PUC-Rio.

Goguen, J. (1999). An Introduction to Algebraic
Semiotics, with Application to User Interface Design.
In C. Nehaniv (Ed.) Computation and Metaphor,
Analogy and Agents. Springer-Verlag.

Holyoak, K., & Thagard, P. (1996). Mental Leaps.
Cambridge, MA: The MIT Press.

Imaz, M., & Benyon, D. (2007). Designing with Blends.
Cambridge, MA: The MIT Press.

Knight, K. (1989). Unification: "A Multidisciplinary
Survey". ACM Computing Surveys, Vol. 21, No. 1,
March.

Kramer, P. K. (2002). Weeding as Part of Collection
Development. ISLMA Report. DuPage Library
System.

Lakoff, G., & Johnson, M. (1980). Metaphors We Live By.
University of Chicago Press.

MacLane, S., & Birkhoff, G. (1967) Algebra. MacMillan.
Pree, W. (1995). Design Patterns for Object-Oriented

Software Development. Boston, MA: Addison-Wesley.
Slote, S. J. (1997). Weeding Library Collections: Library

Weeding Methods. Libraries Unlimited.
Turner, M. (1996). The Literary Mind. New York, NY:

Oxford University Press.

ICEIS 2008 - International Conference on Enterprise Information Systems

48

