
A STORE OF JAVA OBJECTS ON A MULTICOMPUTER

Mariusz Bedla
Department of Computer Science, Kielce University of Technology

al. 1000-lecia Państwa Polskiego 7, 25 - 314 Kielce, Poland

Krzysztof Sapiecha
Department of Computer Science, Cracow University of Technology

ul. Warszawska 24, 31 - 155 Kraków, Poland

Keywords: Object store, Java, Scalable distributed Data structures.

Abstract: The research deals with Object Oriented versions of Scalable Distributed Data Structures (OOSDDS) to store
Java objects in serialized form. OOSDDS can be used as a part of distributed object store. In the paper an
architecture for object version of RP* is introduced and its implementation for Java objects is given. Finally
performance of the new architecture is evaluated.

1 INTRODUCTION

Object-Oriented Database Management System
(OODBMS) relies on Object Store (OS) which
implements system and transaction related functions,
particularly manages physical objects (Lobry et al.,
1997). Future OS should allow for storing and
maintaining huge number of objects. As such the OS
requires powerful and scalable computer platform.
To this end a multicomputer could be used as it
may connect many PCs through fast network. It
implements parallel architecture shared-nothing
(Stonebraker, 1986) in not expensive way. Parallel
architecture shared-nothing is the most scalable
for very large databases (Lo et al., 2001). In such
architecture every computer owns memory and disk,
and acts as a server for data (DeWitt and Gray, 1992).
Communication is based on message passing.

Scalable Distributed Data Structure (SDDS)
(Litwin et al., 1996) is one of the most promising
ideas for implementation of distributed and scalable
data storage. SDDS is a file of records, a file which
expands to computers of a multicomputer. Data are
stored in so called buckets localized in main memo-
ries of the computers called servers.

The research concerns the development of Object-
Oriented versions of SDDS (OOSDDS) to store Java
objects in serialized form. OOSDDS can be used as
a part of distributed OS. A brief description of SDDS
is given in the next section. In section 3 main ob-

jectives of the research are stated. An architecture of
object version of RP* (OORP*) is introduced in sec-
tion 4. In section 5 its implementation for Java objects
is given. In section 6 a performance of the new archi-
tecture is evaluated. The paper ends with conclusions
and directions of further research.

2 SCALABLE DISTRIBUTED
DATA STRUCTURES

A record is the least of components of SDDS. Each
record is equipped with a uniquekey. Records with
keys are stored inbuckets. Each bucket’s capacity is
limited. If a bucket’s load reaches some critical level,
it performs asplit. A new bucket is created and a half
of data from the splitting bucket is moved into a new
one.

A client is another component of SDDS file. It
is a front-end for accessing data stored in SDDS file.
The client may be a part of an application. There may
be one or more clients operating on the file simulta-
neously. The client may be equipped with so called
file image(index) used for addressing data. Such file
image not always reflects actual file state, so client
may commitaddressing error. Incorrectly addressed
bucket forwards such message to the correct one, and
sendsImage Adjustment Message(IAM) to the client,
updating his file image, so he will never commit the

374
Bedla M. and Sapiecha K. (2008).
A STORE OF JAVA OBJECTS ON A MULTICOMPUTER.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 374-379
DOI: 10.5220/0001726003740379
Copyright c© SciTePress



same addressing error again.
All components of SDDS file are connected

through anetwork. Usually, one node of the multi-
computer maintains single bucket or a client, but there
may be more components maintained by single node,
too. If all the buckets are stored in RAM memory then
SDDS highly improves data access efficiency.

There are numerous architectures of SDDS
(Litwin et al., 1996; Litwin et al., 1994; Devine,
1993). In general they fall into two categories: RP*
and LH*. In RP* data are partitioned according to
their ranges (Litwin et al., 1994). In LH* modi-
fied linear hashing is used for addressing data in dis-
tributed file (Litwin et al., 1996).

3 PROBLEM STATEMENT

SDDS has many advantages like scalability, high
speed of operation and fault tolerance (Litwin et al.,
1996; Litwin et al., 1994; Litwin and Neimat, 1997;
Sapiecha and Łukawski, 2006). Using OOSDDS as a
part of distributed OS should increase performance of
OODBMS. Developing an architecture preserving all
advantages of SDDS but applicable to object-oriented
model would be very useful.

In principle SDDS architectures assume constant
size of records and constant number of records in a
bucket (though some of the architectures could be
adopted for records of various sizes). Objects of the
same class can contain tables of different sizes what
makes their sizes different. Hence, the buckets should
store various numbers of objects. Split algorithms for
all OOSDDS are the first objective of the research.
Next is what architectures of OOSDDS should be.
There are at least two feasible solutions:

1. An architecture for regular objects. It could be
based on remote invocation of methods and could
be similar to RMI (Remote Method Invocation).
Objects are stored in buckets on servers. All meth-
ods of an object are invoked remotely. Arguments
are transmitted to the object and a method is in-
voked. An result of an execution of the method is
transmitted back to the client. An access to fields
of remote objects could be done by invocation of
auto-generated methods.

2. Objects in serialized form are stored in buckets.
When a client adds or updates an object in OOS-
DDS the object is serialized and then transmitted
and stored in a bucket. The bucket splits using the
same algorithm as during insertion of an object if
there is not enough free space in the bucket. When
a client invokes a method of the object the bucket

finds a serialized form of the object and transmits
it to the client. Next the object is deserialized and
the method is invoked.

Finally, SDDS stores all data in main memory, which
is not durable. Persistence of objects in a store is re-
quired. Hence, in OOSDDS a backup of the store on
hard drive should be available.

4 RP* FOR OBJECTS

In OORP* addressing algorithm is same as in RP*.
The address of a bucket where a record should be
stored is calculated on the basis of ranges of the buck-
ets (Litwin et al., 1994). However, the buckets should
store various numbers of objects as the objects differ
in sizes. In original RP* architecture every record has
the same size and bucket’s load factor is calculated on
the basis of the number of records. During a split half
of records are moved to a new bucket. In OOPR* ev-
ery object may have different size and bucket’s load
factor is calculated on the basis of total size of all
objects stored in the bucket. During a split objects
which total size is approximately equal to half size of
the bucket are moved to a new bucket. To calculate a
load factor a bucket should know total size of all ob-
jects stored in the bucket. The total size of all objects
must be updated when an object is added, updated or
deleted.

OORP* split algorithm is like original RP* one.
However, in OORP* middle key is calculated in dif-
ferent way (see Algorithm 1).

Algorithm 1 Middle key calculation algorithm for
OORP*.

size← 0;
hal f BucketSize← bucketSize/2;
while size< hal f BucketSizedo

ob ject← nextOb ject(B);
cm← c(ob ject);

end while
where:

- bucketSizedenotes sum of all objects in the
bucketB,

- c and cm denote key and middle key respec-
tively.

In SDDS used for storing records a size of the record
can be chosen to place a record in a single data-
gram. A client sends a request in one datagram and
the bucket answers in one datagram. If the bucket is
overloaded it splits. During the split the record may

A STORE OF JAVA OBJECTS ON A MULTICOMPUTER

375



be moved to another bucket. One record is stored in
one bucket.

In OOSDDS an object may be bigger than a size
of the datagram. Hence, an overflow of a bucket may
occur when n-th slice of the object is transmitted. It
complicates a control of the bucket and the split algo-
rithm. There are at least two feasible solutions of this
problem. These are as follows:

1. To allow for storing slices of an object in many
buckets. Object ID must be supplemented by slice
ID. A bucket should control a pair of slice ID’s
identifying the first and to the last slice of stored
objects. The objects might be placed at the top
and the bottom of the bucket. Client image and a
kernel must be modified: for every bucket maxi-
mal value of slice ID must be added to maximal
value of object ID. This solution can be applied
only when objects are stored in buckets in serial-
ized form.

2. To allow for storing all slices of an object only
in one bucket. Overloading of the bucket might
be checked after transmission of the first or of
the last slice of the object. However, when more
(than one) clients add objects concurrently and
the checking is done after transmission of the last
slice of the object then the bucket can be over-
loaded too much. This does not happen when
the checking is done after transmission of the first
slice of the object. If the bucket would be over-
loaded after addition of the whole object this is
postponed. The bucket splits and then the object
is added to the proper bucket.

OOSDDS should be transparent for users. It should
work properly no respect whether an object moves
from one server to another or not. Therefore, the
architecture for serialized objects is chosen in OOS-
DDS. For the other architecture a transparency is un-
feasible because the results might rely on a server. Se-
rialization can also be used to ensure persistence.

5 IMPLEMENTATION OF RP*
FOR JAVA OBJECTS

An implementation of OOSDDSRP architecture for
Java objects should allow for storing, updating, re-
trieving and deleting individual objects of a class de-
fined by a user, with such restrictions on classes which
might be easy accepted (i.e. classes must be serializ-
able).

Objects stored in OOSDDS are distributed among
many servers. Hence, they should have some ex-

tra features. This can be achieved in different ways.
These are as follows:

- modification of a source code of a class, what re-
quires an access to this source code,

- modification of Java Virtual Machine (JVM), but
not all licenses allow to do that, additionally per-
manent modification of JVM affects other appli-
cations,

- modification of compiled byte code to gain re-
quired features, what means that the source code
is not necessary and is left unchanged.

To store objects of some class in OOSDDS the class
must contain its own mandatory methods and at-
tributes. A solution based on inheritance can not
be applied here as Java class can only extend one
base class. A programmer could probably add these
method and attributes manually but it excludes trans-
parency. For these reasons the last from the above
options that is modification of a byte code is chosen.

The program called SDDSModifier modifies com-
piled class and adds all required features. Objects are
stored in serialized form. They are converted into ta-
bles of bytes, transmitted and then stored in the buck-
ets on servers. Because of its popularity and univer-
sality Java collection is chosen as a method of ac-
cessing objects. The collections, besides tables, are
probably the second primary method of arranging ob-
jects. All collections implement one of two inter-
faces: Collection which is basis for lists and sets, and
Map which is used to map keys to values. Interface
SDDSCollection, which extends Collection, and class
SDDSFile, which implements it are then developed.

Summarizing, the development of scalable, dis-
tributed store of Java objects consists of two steps.
First a programmer develops an application which
uses SDDSFile to store objects. The application may
use classes which are stored in OOSDDS and other
classes not related with OOSDDS. Next, the classes
are compiled using a standard Java compiler and then
modified by SDDSModifier. SDDSModifier does
what follows:

- add an implementation of required interface,

- add or modify an implementation of required
methods,

- add an implementation of required attributes,

- modify the way of accessing specific attributes
(access by references is replaced by invocation of
auto-generated static methods).

Finally, after starting servers the application may be
launched. Every server may work in textual or graph-
ical mode.

ICEIS 2008 - International Conference on Enterprise Information Systems

376



A kernel in RP*S architecture is deployed on the
first server of a multicomputer, where the bucket 0
is placed.

6 PERFORMANCE EVALUATION

In the experiment three OOSDDS architectures:
RP*N, RP*C and RP*S were evaluated. OOSDDS
file was stored on eight servers. The only one client
of OOSDDS file was assumed. Objects were added
(A in the Figures) and retrieved (R in the Figures).

Performances of these operations were measured
and compared. During the experiment a class contain-
ing tables of bytes (512 kB) was used. The number of
stored objects was from 1000 up to 6000 (from about
512MB up to about 3GB). Every test was repeated
three times on the same servers (Athlon 3.0GHz,
1,5GB RAM and hard disk - ST380211AS) connected
through gigabit Ethernet network. Then an average
value was calculated.

For the first part of the experiment a distinguished
segment of the network was used (the multicomputer
was separated from remaining part of the network - S
in the Figures). Results of the experiment are shown
on Figures 1 and 2.

Figure 1: Total time of adding and retrieving all objects in
separated segment of the network.

When the servers and the client operated in distin-
guished segment of the network then times of adding
and retrieving of single objects for RP*N, RP*C and
RP*S were almost equal. Only RP*N had longer time
of adding (about 2.6%) and shorter time of retrieving
(about 4.3%). Performances of RP*C and RP*S were
very similar.

Figure 2: Average time of adding and retrieving of single
objects in separated segment of the network.

For the second part of the experiment there was no
distinguished segment of the network (the multicom-
puter was embedded into the network - N in the Fig-
ures). Results of the experiment are shown on Figures
3, 4 and 5.

Figure 3: Average time of adding and retrieving of single
objects for RP*N.

When the servers and the client were embedded into
the network then RP*N differed significantly from the
others. Multicast messages were sent to other seg-
ments of the network, what took considerable amount
of time. The only average time of adding objects was
approximately twice longer. The most similar values
had RP*C and RP*S as in the first part of the exper-
iment. Any significant difference in RP*S and RP*C

A STORE OF JAVA OBJECTS ON A MULTICOMPUTER

377



Figure 4: Average time of adding and retrieving of single
objects for RP*C.

Figure 5: Average time of adding and retrieving of single
objects for RP*S.

operated on separated or not separated segment of the
network was noticed. These architectures do not use
multicast transmission at all or very rarely.

7 CONCLUSIONS

The paper presents partial results of the research con-
cerning development of object-oriented versions of
Scalable Distributed Data Structures, namely OORP*
and OOLH*. It concentrates on main aspects of
OORP*. In the research Java was chosen as a plat-
form for implementation of OORP*. Java is safe,

portable and well known programming language. It
allows for developing distributed applications easily
and rapidly. Java makes it also possible to integrate
an application with another ones and distribute it in
the Internet.

The OOSDDS can be used as a part of distributed
object store. It can store Java objects in serialized
form. In OORP* addressing algorithm is same as in
RP*. However, buckets can store various numbers
of objects. The split algorithm is then modified and
based not on the number of objects but on the size of
objects.

As far as performances is concerned all OORP*
architectures are similar when operate in separated
segments of a network. However, RP*N works signif-
icantly slower than RP*S and RP*C when all operate
in not separated segments of a network. Moreover,
not always architectures using multicast transmission
can be applied here because not all software and hard-
ware configurations support correctly multicast trans-
mission. Not separated segments of a network may
be more difficult to control what could affect a per-
formance of OOSDDS.

Evaluation of the other version of OOSDDS,
namely OOLH* which is under development now, is
the subject of further research.

REFERENCES

Devine, R. (1993). Design and Implementation of DDH:
A Distributed Dynamic Hashing Algorithm. In4th
International Conference on Foundations of Data Or-
ganization and Algorithms (FODO), pages 101–114.

DeWitt, D. and Gray, J. (1992). Parallel Database Systems:
The Future of High Performance Database Systems.
Communications of the ACM, 35(6):85–98.

Litwin, W. and Neimat, M.-A. (1997). LH*s: A high-
availability and high-security scalable distributed data
structure. In7th International Workshop on Research
Issues in Data Engineering.

Litwin, W., Neimat, M.-A., and Schneider, D. (1994). RP*:
A Family of Order Preserving Scalable Distributed
Data Structures. InTwentieth International Confer-
ence on Very Large Databases.

Litwin, W., Neimat, M.-A., and Schneider, D. (1996). LH*
- a scalable, distributed data structure.ACM Transac-
tions on Data Base Systems, 21(4):480–525.

Lo, Y.-L., Hua, K., and Young, H. (2001). GeMDA: A
multidimensional data partitioning technique for mul-
tiprocessor database systems.Distributed and Parallel
Databases, 9(3):211–236.

Lobry, O., Collet, C., and Déchamboux, P. (1997). The
VIRTUOSE Distributed Object Store. InDEXA work-
shop, pages 482–487.

ICEIS 2008 - International Conference on Enterprise Information Systems

378



Sapiecha, K. and Łukawski, G. (2006). Fault-tolerant Pro-
tocols for Scalable Distributed Data Structures. In6-th
International Conference on Parallel Processing and
Applied Mathematics PPAM, pages 1018–1025.

Stonebraker, M. (1986). The Case for Shared Nothing.
Database Engineering Bulletin, 9(1):4–9.

A STORE OF JAVA OBJECTS ON A MULTICOMPUTER

379


