
Towards a Norm-Driven Design of Context-Aware  
e-Health Applications 

Boris Shishkov1, Hailiang Mei2, Marten van Sinderen2 and Thijs Tonis3 

1Delft University of Technology, Department of Systems Engineering, Delft, The Netherlands 

2University of Twente, Department of Computer Science, Enschede, The Netherlands 

3Roessingh Research and Development, Enschede, The Netherlands 

Abstract. In this paper, we explore the usefulness of elaborating process 
models with norms, especially focusing on the Norm Analysis Method (NAM) 
as an elaboration tool that can be combined with a process modeling tool, such 
as Petri Net (PN). The PN-NAM combination has been particularly considered 
in the paper in relation to a challenge that concerns the design of context-aware 
applications, namely the challenge of specifying and elaborating complex 
behaviors that may include alternative (context-driven) processes (we assume 
that a user context space can be defined and that each context state within this 
space corresponds to an alternative application service behavior). Hence, the 
main contribution of our paper comprises an adaptability-driven methodological 
and modeling support to the design of context-aware applications; modeling 
guidelines are proposed, considered together with corresponding modeling tools 
(in particular PN and NAM), and partially illustrated by means of an e-Health-
related example. Given the multi-disciplinary nature of the e-Health domain, it 
is expected that the current research will be useful for it. In particular, e-Health 
system developers might benefit from the relevant methodological and 
modeling support, proposed in the paper. 

1 Introduction 

Context-Aware (CA) applications are characterized by adaptability which is the 
capability of adequate derivation of user context states (this involves sensing the user 
environment and transforming the sensed raw data into context information) and 
appropriate reaction to user context state changes [11]. Such a reaction should include 
‘switching’ from one desirable behavior to another. Even though the application 
would be supposed to realize such a ‘switching’ at real time, it must be foreseen at 
design time. CA features are of relevance to the e-Health domain since they can 
enhance the dependability and user-friendliness of healthcare services [6].  

The designer of CA applications should not only specify each desirable behavior 
but also determine the rule patterns governing the ‘switchings’ between behaviors. 
Thus, the issues to be addressed in this work are: (i) how to define each alternative 
behavior not only at high level of abstraction but possibly also at lower levels; (ii) 
how to relate these alternative behaviors in an overall behavior (including the 

Shishkov B., Mei H., van Sinderen M. and Tonis T. (2008).
Towards a Norm-Driven Design of Context-Aware e-Health Applications.
In Proceedings of the 2nd International Workshop on e-Health Services and Technologies, pages 36-50
DOI: 10.5220/0001898200360050
Copyright c© SciTePress



‘switching’ between alternative behaviors); (iii) how to analyze these behaviors and 
apply appropriate (rule-driven) ‘switching’ patterns (where correctness is determined 
by the fact that exhibited behavior matches the desirable behavior for a given context 
situation). We nevertheless claim that these challenges are interrelated since we 
consider the ‘switching’ rule patterns as naturally complementing the corresponding 
behavior flow patterns. 

Hence, our particular focus is the flow-rule combination and we approach this 
issue, taking as a basis previous results on designing CA applications, driven by 
corresponding business modeling [9,11]. We take as a starting point in this paper a 
behavior model (that is to be derived based on corresponding static model) of a CA 
application and we consider the model’s normative (rule) elaboration. 

Realizing this, it is not only studied how to conduct conceptually and 
methodologically such an elaboration but this is also complemented by suggestions 
that concern a possible realization in terms of modeling tools/techniques. These 
suggestions are not trivial however. It might be that one modeling formalism is 
suitable for defining each of the alternative behaviors and for relating these alternative 
behaviors in an overall behavior, while another modeling formalism is suitable for 
analyzing these behaviors, and still another formalism is suitable for defining the 
‘switching’, and so on. Maybe a language which is close to the architectural domain 
would be suitable for high level behavior specification, whereas for the aim of 
analysis, a language that allows automated evaluation of the properties of concern 
should be chosen. Hence, the design process would comprise transformations between 
design models and analysis models, in addition to transformations between levels of 
abstraction. In such complex modeling, it is essential to know which exactly are the 
challenges and which techniques are suitable for approaching them. We take in this 
work only the perspective of norm (rule) elaboration to high-level behavior models 
including such ones that reflect context-driven behavior (characterized by alternative 
processes). 

With respect to this, and inspired by previous research results [8], we turn 
particularly to Petri Net (PN) and the Norm Analysis Method (NAM), as a possible 
combination of techniques that is relevant and suitable to the above-mentioned 
challenge. PN is a well-established and widely popular modeling technique that 
depicts the structure of a distributed system as a directed bipartite graph [18]. As 
such, PN has place nodes, transition nodes, and directed arcs connecting places with 
transitions, with whose support, the modeling technique can be useful to the modeling 
and analysis of (business) processes. Using PN, one could: (i) represent a process in a 
straightforward way; (ii) conduct process analysis; (iii) make adequate pre-simulation 
models - helpful with regard to discrete-event simulation [16]. Addressing such 
challenges with PN, one usually takes a PN as a triple (P,T,F) that consists of two 
node types called ‘places’ and ‘transitions’, and a flow relation between them. Places 
are used to model milestones reached within a business process and transitions - as 
the individual tasks within the business process to execute. Having the possibility to 
model (using these modeling primitives) all widely used process patterns, we expect 
that PN would be adequate, suitable and useful with regard to the challenge of 
modeling alternative behaviors and relating them in an overall behavior. As for 
analyzing these behaviors, PN could also be useful (as it has been mentioned already); 
however, this goes beyond the scope of the current paper. Further, concerning the 
related ‘switching’ specification, we would consider NAM as a possible complement 

37



to PN [15]. NAM is a semiotic method to identify norms in an explicit and articulate 
manner [5]. Norms, which include formal and informal rules and regulations, define 
the dynamic conditions of the pattern of behavior existing in a community and govern 
how its members (agents) behave, think, make judgements and perceive the world. 
Their presence enables agents to exhibit normative patterns to be more or less 
‘predictable’ [3]. Therefore, NAM is useful for studying an organisation from the 
perspective of agents’ behavior which is governed by norms [17]. There are four 
types of norms existing. In business process modeling, most rules and regulations fall 
into the category of behavioral norms. These norms prescribe what agents must, may, 
and must not do, which are equivalent to three deontic operators: ‘is-obliged’, ‘is-
permitted’ and ‘is-prohibited’. With the introduction of the deontic operators, norms 
are broader than the normally recognised business rules and therefore provide more 
expressiveness. For those actions that are ‘permitted’, whether the agent will take an 
action or not is seldom deterministic. This elasticity characterises the business 
processes, and therefore is of particularly value to understand the organizations [3]. 
Moreover, a complete NAM can be performed in precise steps and results of the 
NAM can be written in a natural language and further in a programming language for 
automatic execution [5]. 

Thus, main contribution of the current paper comprises an adaptability-driven 
methodological and modeling support to the design of CA applications; modeling 
guidelines are proposed, considered together with corresponding modeling tools (in 
particular PN and NAM), and partially illustrated by means of an e-Health-related 
example. Given the multi-disciplinary nature of the e-Health domain, it is expected 
that the reported research will be useful for it. In particular, e-Health system 
developers might benefit from the relevant methodological and modeling support, 
proposed in this paper. 

The paper’s outline is as follows. Section 2 motivates further our proposed design 
views, by introducing CA applications and presenting a vision on their design, 
relating this to PN and NAM. Section 3 introduces briefly PN and NAM, discussing 
their strengths (and the adequacy of combining them), especially related to the 
challenge of realizing the proposed design vision. Section 4 presents a small example 
which is used in Section 5 to partially illustrate some of the proposed design steps. 
Section 6 contains the conclusions. 

2 Context-Aware Applications 

Taking into consideration the social/economical, methodological, and technical 
concerns related to the design, implementation, deployment, and operation of CA 
applications (as already introduced in previous (related) work [9]), and focusing 
particularly on part of the methodological concerns (especially those concerns that are 
relevant to the design of CA applications), we find it fundamental that CA 
applications acquire knowledge/information on the situation of the user (referred to as 
‘user context information’) and exploit this knowledge to provide the best possible 
service [11]. Hence, this concerns the user context (this is, for example, the location 
of the user, the user’s activity, the user’s access to particular devices, and so on) and 
the assumption that the user is in different context over time, and as a consequence – 

38



(s)he has changing preferences or needs with respect to services. A schematic set-up 
for a CA application is depicted in Figure 1. 

context delivery 

user within 
context 

sensor 

service delivery 
context-
aware 

application 

context 
provider 

 
Fig. 1. Schematic representation of a context-aware application. 

As seen from the figure, in considering the design of a CA application, one should 
not only address the service delivery, from the application to the user, but also the 
delivery of context information that is needed by the application for adaptation of its 
service delivery. Sensors sample the user's environment and produce (primitive) 
context information, which is an approximation of the actual context, suitable for 
computer interpretation and processing. Higher level context information may be 
derived through a process of inference and aggregation (using input from multiple 
sensors) before it is presented to the application, which in turn can decide on the 
current context of the user and the corresponding service that must be delivered. 

Furthermore, we follow an application design lifecycle inspired by previous work 
[9] and extending the design process of an existing approach [13]. Hence, our design 
lifecycle comprises a number of phases, the most important among which are: 

 

 Business Modeling: during this phase, the end-user is considered in relation 
to processes that either support him/her directly or the goal(s) of related 
business(es). These processes have to be identified, modeled and analyzed with 
respect to their ability to (collectively) achieve the stated goals. A model of these 
processes and their relationships is called a business model. 
 Application Modeling: during this phase, the attention is shifted from the 

business to the IT domain. The purpose is to derive a model of the application, 
which can be used as a blueprint for the software implementation based on a target 
technological platform. A model of the application, whether as an integrated whole 
or as a composition of application components, is called an application model. 
Business models and application models should certainly be aligned, in order to 
achieve that the application properly contributes to the realization of the 
business/user goals. As a starting point for achieving proper alignment, one could 
delineate in the final business model which (parts of) processes are subject to 
automation (i.e., are considered for replacement by software applications). The 
most abstract representation of the delineated behavior would be a service 
specification of the application (as an integrated whole), which can be considered 
as the initial application model. 

39



 Requirements Elicitation: both the business model and the application 
model have to meet certain requirements, which are captured and made explicit 
during the phase called requirements elicitation. Application requirements can be 
seen as a refinement of part of the business requirements, as a consequence of the 
proposition that the initial application model can be derived considering (parts of) 
the business processes (within the final business model), especially those processes 
selected for automation. 
 Context Elicitation: an important part of the design of a context-aware 

application is the process of finding out the relevant end-user context from the 
application point of view; we will refer to this phase as context elicitation. End-
user context is relevant to the application if a context change would also change the 
preferences or needs of the end-user, regarding the service of the application. 
Context elicitation can therefore be seen also as the process of determining an end-
user context state space, where each context state corresponds to an alternative 
desirable service behavior. Since relevant end-user context potentially has many 
attributes (location, activity, availability, and so on), a context state can relate to a 
complex end-user situation, composed of (statements on) several context attributes. 
Moreover, context elicitation relates to requirements elicitation in the sense that 
each context state is associated with requirements (i.e., preferences and needs of 
the end-user) on desirable user behavior. Context elicitation can best be done in the 
final phase of business modeling and the initial phase of application modeling, 
when the role and responsibility of the end-user and the role and responsibility of 
the application in their respective environments are considered. 
 

Fig. 2 depicts these different phases and activities. 

Business  
modeling 

Application 
modeling 

refine 

Business 
requirements 

Application 
requirements 

refine 

Context 
requirements 

constrain constrain 

 
Fig. 2. Application design life cycle [9]. 

Following [11], we assume that a user context space can be defined and that each 
context state within this space corresponds to an alternative application service 
behavior. In other words, the application service consists of several sub-behaviors or 
variations of some basic behavior, each corresponding to a different context state. 
Any service behavior model would have to express the context state dependent 
transitions from one sub-behavior (or behavior variation) to another one. 

Focusing especially on the context-driven application behavior adaptation, and 
inspired by the related background information considered above, we propose design 
guidelines according to which: (i) it is assumed that there are several main states in 
which the user might be (we take into account that for example, hundreds of states 

40



might be possible, only several of which are of high probability to occur, however) 
and that each of these states requires a particular application behavior; (ii) design 
preparations are necessary in order to specify each of these behaviors as well as the 
way in which their related context states are to be ‘sensed’ by the application; (iii) 
each change in the state of the user is to trigger a change in the application behavior. 
This is depicted on Figure 3: 

u s e r a p p l i c a t i o n 

Statei Behaviori 

sensed by 
delivered to 

 
Fig. 3. Towards a context-driven application behaviour adaptation. 

As it is seen from the figure, we assume that the context state relates to the user of 
the application (as indicated by a dashed line), taking nevertheless into account that 
other (non-user) entities and their situations could also (indirectly) affect the desirable 
application behavior; we as well assume that, in delivering a service to its user, the 
application performs a particular behavior (indicated by a dashed line). Moreover, it is 
essential that the user context states are sensed by the application and that the (user-
context-driven) application behavior is delivered to the user. 

Inspired by previous relevant work concerning PN and NAM [13,15,16], we claim 
that by applying these tools in combination, it is possible to realize the design vision 
introduced above. We thus especially focus on the combined use of NAM and PN, 
where PN is used to specify and analyze the dynamic aspects of the services, and 
NAM to specify and analyze the constraints that govern the enabling of transitions. 
By introducing and briefly discussing these tools in the following section, and by 
offering exemplification of their combined use directed towards the design of CA 
applications, we will further justify the above-stated claim. 

3 Design and Analysis Tools 

Considering the CA application design vision presented in Section 2, we briefly 
introduce PN and NAM, especially discussing their related strengths and the 
usefulness of combining them. We show further how by combining these tools, one 
could acquire benefits especially relevant to the design of CA applications. 

3.1 Petri Net 

To allow adequate dynamic business/application modeling that corresponds to the 
above-mentioned design vision, we claim important that some modeling-related 
aspects are incorporated, especially aspects that corresponds to the following 
requirements, as formulated by Van Hee and Reijers [18]: 

41



 

 possibility to adequately grasp business process structures (sets of tasks that 
have to be completed in some kind of order); 
 possibility to apply choice, parallel, cycle, and other constructions typical for 

most current business processes; 
 possibility to apply qualitative/quantitative simulation to the (dynamic) 

models, as an appropriate way of achieving validation. 
 

Being a well-known and widely used formalism and a graphical language for the 
design, specification, and verification of systems, PN has been used in a number of 
cases demonstrating strengths related not only to process structures and typical 
constructions (such as choice and parallelism) but also to the derivation of simulation 
models [16]. We hence claim that PN is a suitable modeling tool for realizing some of 
the demands concerning the design vision presented in Section 2. 

PN has been introduced already in Section 1, as a triple (P,T,F) that consists of 
two node types (places and transitions), and a flow relation between them. Places are 
to model milestones reached within a business process and transitions should 
correspond to the individual tasks to execute; places are represented by circles, 
transitions are represented by rectangles. The process constructions which are applied 
to build a business process, are called blocks. The blocks that express some typical 
constructs (sequence, choice, parallelism, iteration) are depicted as PN in Figure 4. 

a 1-a

b

1-b

b) d) c) a)  
Fig. 4. Typical process constructs expressed with PN. 

Sequence block (a)) considers tasks that are in sequential order (the first task has to 
be completed before the second task can be started). The Choice block (b)) represents 
a construction in which exactly one of two alternatives is carried out. The Parallelism 
block (c)) shows how two tasks can be modeled such that they can be executed 
simultaneously. Finally, the Iteration block (d)) represents a construction in which the 
execution of a task can be repeated. 

Arc labels occur in the Choice and Iteration blocks, representing the values of a 
Bernoulli-distributed random variable that is associated with these blocks; an 
independent draw from such a random variable determines the route of the flow 
[16,18]. Each new application of such a block is accompanied by the introduction of a 
new, independent random variable. 

PN is hence not only a proper formalism with regard to the demands formulated in 
the previous section but it is also capable of representing most typical process 
constructs, having at the same time sound theoretical background. For this reason, we 

42



consider realizing via PN the dynamic modeling activities concerning the design 
vision introduced in Section 2. 

Moreover, the strengths of PN concerning the modeling of decision points and 
parallel processes is especially relevant to the challenge of modeling alternative 
behaviors. Using the same notations for modeling this all gives the precious 
possibility to grasp the big picture and go consistently in details, and also to map to 
other notations and simulate. These are all strengths that concern in particular the 
design of CA applications. 

A further challenge nevertheless that concerns not only PN but also other process 
modeling formalisms is the insufficient elaboration facilities with regard to ‘decision’ 
points (whether it should be decided which arc to follow, for example). Inspired by 
our earlier experience, we claim that combining PN and NAM could be a good 
solution [15]. We hence introduce NAM in the following sub-section, putting stress 
not only on its relevance to the problems outlined in Section 2 but also on its 
suitability as a combination with PN is concerned. 

3.2 Norm Analysis Method 

Norms, which include formal and informal rules and regulations, define the dynamic 
conditions of the pattern of behavior existing in a community and govern how its 
members (agents) behave, think, make judgments and perceive the world [3]. As Von 
Wright explains: “‘norm’ has several partial synonyms which are good English, 
‘pattern’, ‘standard’, ‘type’ are such words. So are ‘regulation’, ‘rule’, ‘law’” [19]. 

Norms are developed through practical experiences of agents in a community, and 
in turn have functions of directing, coordinating and controlling their actions within 
the community. When modeling agents and their actions, which may reveal the 
repertoire of available behaviors of agents, norms will supply rationale for actions. 
Norms will also provide guidance for members to determine whether certain patterns 
of behavior are legal or acceptable within a given context. An individual member in 
the community, having learned the norms, will be able to use the knowledge to guide 
his or her actions, though he or she may decide to take either a norm-conforming or a 
norm-breaking action. When the norms of an organization are learned, it will be 
possible for one to expect and predict behavior and to collaborate with others in 
performing coordinated actions. Once the norms are understood, captured and 
represented in, for example, the form of deontic logic, it will serve as a basis for 
programming intelligent agents to perform many regular activities [5,13]. 

The long established classification of norms is probably that drawn from social 
psychology, partitioning them into perceptual, evaluative, cognitive and behavioral 
norms; each governing human behavior from different aspects. However, in business 
process modeling, most rules and regulations fall into the category of behavioral 
norms. These norms prescribe what people must, may, and must not do, which are 
equivalent to three deontic operators “of obligation”, “of permission”, and “of 
prohibition”. Hence, the following format is considered suitable for specification of 
behavioral norms. 

 

whenever <condition> 
if <state> 
then <agent> 

43



is <deontic operator> 
to <action> 
 
The condition describes a matching situation where the norm is to be applied, and 

sometimes further specified with a state-clause (this clause is optional). The actor-
clause specifies the responsible actor for the action. The actor can be a staff member, 
or a customer, or a computer system if the right of decision-making is delegated to it. 
As for the next clause, it quantifies a deontic state and usually expresses in one of the 
three operators - permitted, forbidden and obliged. For the next clause, it defines the 
consequence of the norm. The consequence possibly leads to an action or to the 
generation of information for others to act [5]. 

With the introduction of deontic operators, norms are broader than the normally 
recognised business rules; therefore provide more expressiveness. For those actions 
that are “permitted”, whether the agent will take an action or not is seldom 
deterministic. This elasticity characterises the business processes, and therefore is of 
particularly value to understand the organisations [3]. 

NAM, as a semiotics method, can be carried out to identify norms in an explicit 
and articulate manner and a complete norm analysis can be performed in four steps, 
which are responsibility analysis, proto-norm analysis, trigger analysis and detailed 
norm specification [5]. 

The responsibility analysis enables one to identify and assign responsible agents to 
each action. The analysis focuses on the types of agents and types of actions. In other 
words, it would answer the question as to which agent is responsible for what type of 
actions. 

The proto-norm analysis helps one to identify relevant types of information for 
making decisions concerning a certain type of behavior. After the relevant types of 
information are identified, they can be used as a checklist by the responsible agent to 
take necessary factors into account when a decision is to be made. The objective of 
this analysis is to facilitate the human decisions without overlooking any necessary 
factors or types of information. 

The trigger analysis is to consider the actions to be taken in relation to the absolute 
and relative time. The absolute time means the calendar time, while the relative time 
makes use of references to other events. The results of trigger analysis are 
specifications of the schedule of the actions. All the actions can be organised in 
dynamic sequences. By setting up and managing triggers for the actions, the 
automated system can prompt human agents to respond to the situation in time. 

In the detailed norm specification step, the contents of norms will be fully 
specified in both a natural language and a formal language. The purposes for this are 
(1) to capture the norms as references for human decision, and (2) to perform actions 
in the automated system by executing the norms in the formal language. For example, 
adopting the format given above for specification of behavioral norms, a credit card 
company may state norms governing interest charges as follows [4]. 

 

whenever an amount of outstanding credit 
if more than 25 days after posting 
then the card holder 
is obliged 
to pay the interest. 

 

44



As long as the norms are specified, computing technologies such as active 
databases, object technology and artificial intelligence will have different approaches 
towards software realisation. 

 

Therefore, the combination of PN and NAM is of essential value for the design of 
CA applications, in which design we do not only need to properly model the 
alternative behaviors but also to exhaustively elaborate on the corresponding 
‘decision’ points. 

4 Example 

We provide an e-Health application example in this section in order to explain the 
modeling support in Section 5; the example has been considered in [1, 2]. 

John is an epileptic patient who has suffered seizure for several years. He enrolled 
in a remote monitoring system which monitors his health state and can give him a few 
seconds’ advance warning of an upcoming seizure. He wears a Body Area Network 
(BAN) consisting of a set of body-worn sensors and a Smartphone. The BAN can 
collect bio-signals of the patient or other data like location or activity and sends the 
data to the healthcare centre via GPRS or UMTS network. An automatic seizure 
detection program running at the Smartphone can keep monitoring and analyzing 
John’s bio-signals. 

 
Fig. 5. The screenshots of a seizure attack warning message and the application for healthcare 
centre to locate a nearby care-giver [2]. 

45



If an upcoming seizure is detected by the local detection program, an alarm on 
John’s Smartphone will be triggered and a warning message will be displayed with a 
“cancel” button on the screen (Figure 5). Once receives the alarm, John should stop 
his current activities and sit down. After a short period, if nothing has happened to 
John, then it was a “false alarm”. In this case, John should cancel this alarm by 
pressing the “cancel” button and he can resume his activities. 

However, in case John does not cancel the alarm within the given period, it could 
be because that John is already attacked by a seizure and lost his control. This timeout 
will trigger an alarm at the healthcare centre and doctor should examine the received 
bio-signals of John. If the doctor sees it is indeed a seizure attack based on the 
received signal, he should locate a care-giver who is nearby John and send a 
notification to this care-giver with John’s location. The notified care-giver should 
then go to John’s location and provide John the help. 

5 Combining PN and NAM 

In this section, we illustrate by means of the example (see Section 4) the combined 
application of PN and NAM, sticking to the design vision formulated in Section 2. 

We firstly build the PN model (Figure 6), and for brevity we omit all early 
analysis steps that start from the analysis of the case briefing and end up with the PN 
model – information on that can be found in [11]. 

1 

3 

2 

6 8 9

 

  
 
 labels of transitions  
 
 
 s: start 
 
 1: sample data 
 
 2: analyze data 
 
 3: send alarm 
 
 4: receive alarm 
 
 5: react to alarm 
 
 6: cancel alarm 
 
 7: resume activities 
 
 8: notify Med. Doctor 
 
 9: analyze condition 
 
 10: locate caregiver 
 
 11: notify caregiver 
 
 12: deliver help 
 
e: end 

s 

e

false alaram 

4 

5 

all normal 

risk indication 

seizure 

10

117 12

 
Fig. 6. The Health-care process expressed with PN. 

46



On Fig. 6, there are 13 places (including the ‘start’ and ‘end’) and 12 transitions. 
There is a choice construct (concerning transitions labelled with 2, 3, and 1) which 
indicates that essentially there are two user context states – the situation of the patient 
is either ‘normal’ or suggesting ‘risk’ (this cases triggering some system actions). 

There is another choice construct (concerning transitions labelled with 5, 6, and 8) 
which is about the ‘choice’ between ‘false alarm’ (when no seizure appears) and the 
case of a seizure appearing. 

As depicted on the figure, vital signs are ‘captured’ (by sensors) and sampled (by 
the device) - Transition 1. The data is analyzed by the device (Transition 2), which 
continues on and on if all seems normal. In case of risk indication nevertheless, alarm 
is triggered (Transition 3) and after it is perceived by the user (Transition 4), the user 
has to react, by stopping his or her current activities (Transition 5). If this actually 
appears to be a ‘false alarm’ (as it was discussed in the previous section), the user 
should firstly cancel the alarm (Transition 6) and secondly – resume the interrupted 
activities (Transition 7), in which the user is back to the monitoring. If seizure 
appears (that is ‘indirectly’ indicated by not receiving of alarm cancellation), then the 
system notifies the Medical Doctor (Transition 8) who should in turn analyze the 
condition of the patient on the basis of the information received (Transition 9), locate 
a caregiver (in the area of the user) and notify the caregiver (Transition 10 and 
Transition 11, respectively). The caregiver then would go for delivering help 
(Transition 12), which is marking the end of the process considered. 

Furthermore, NAM can provide useful elaboration to the PN model depicted in 
Figure 6. According to the four steps of NAM introduced in Section 3, two norms 
corresponding to the second choice construct in the figure has been identified and 
specified in detail, to only illustrate partially the usefulness of a norm elaboration to a 
PN model. 

Concerning Transition 5, both norms below are associated. 
 

whenever no seizure has occurred 
then the user 
is obliged 
to send ‘cancel alarm’ signal. 
 
whenever a seizure indication has occurred 
then the system 
is obliged 
to notify the Medical Doctor (MD). 

 
Going down the ‘hierarchy’ of norms, concerning Transition 8, the norm below is 
associated: 

 

whenever seizure notification has been sent to MD  
then the MD (Medical Doctor) 
is obliged 
to analyze the condition of the user. 

 
This is only a partial illustration, with many norm-elaboration steps omitted for 

brevity. These steps mainly concern the overall norm structuring – the hierarchy in 
which all norms relate to each other. Such a hierarchy can be seen as a tree with a 
‘constitutional norm’ on top [13], the general norm that ‘governs’ the whole behavior; 
all norms should be consistent with this norm, in the same way in which the overall 

47



behavior must be consistent with the general requirement towards the (desirable) 
functionality. Those norms which are immediately ‘below’ the constitutional norm 
not only obey it but also govern in turn other norms which are below them. All these 
levels of refinement should be approached both in the process model and in the 
hierarchy of norms. 

The process model and the norms give thus two interrelated and complementing 
perspectives on the modelled behavior – for example: 

-   the PN model depicts the process patterns; 
- the norms define the dynamic conditions concerning these patterns; these 

dynamic conditions are essentially driven by (changes in) the user context states. 
This is how, combining a process modeling tool with norms, by possibly applying 

together PN and NAM, could usefully support the design of CA applications. 

6 Conclusions 

This paper proposes improvements with respect to the business-process modeling 
concerning the design of context-aware applications. A model-driven considered that 
has been enriched with relevant guidelines and demands. Moreover, their fulfilment 
has been approached through a combination of modeling tools, namely PN (Petri Net) 
and NAM (Norm Analysis Method), whose selection was motivated. Hence, 
combining PN and NAM, we have shown how a complex behavior (concerned with 
context-driven alternative processes) could be adequately specified, analyzed, and 
norm-elaborated. A NAM-driven elaboration especially applied to complex process 
constructs (such as choice, parallelism, and iteration) helps not only to define with 
precision these process chunks but also to relate the behavior choices to 
corresponding context information (a norm defines not only a rule but also the context 
in which this rule appears to operate). This all however does not concern the 
‘switching’ between desirable behaviors at real time; the focus is put instead to useful 
design preparations in cases of desired adaptability of the application to possible 
context changes. A further step in the design would be a consideration of particular 
technology platforms, such as Web services, CORBA or J2EE, which is left 
nevertheless beyond the scope of this work. 

However hence claim that this paper makes useful contributions concerning (i) the 
possibility to consider user context in support of the (application’s) design; (ii) the 
proposed extension to a (modeling) approach, expressed as guidelines+demands; (iii) 
the achievement of an appropriate fulfilment of the (mentioned) guidelines+demands, 
by the combined application of Petri Net and Norm Analysis. To justify our claim, we 
have studied related work. On the basis of the study, we have identified several 
approaches/methods which usefully address the modeling of (business) processes, 
notably SDBC [12,13], UML Activity Diagram [7], ISDL [12]. 

SDBC supports the PN-NAM combination, making however no connection to user 
context states and corresponding alternative (desirable) behaviors. The UML Activity 
Diagram does not support rule-driven elaboration. ISDL’s notations appear to be too 
complex to allow a straightforward normative elaboration. 

To further this research, we plan to work on bridging the current behavior-
modeling-related results to previous results on identifying entities and relationships, 

48



especially in the context of SOA [10,14], so that we capture the challenge of context-
aware applications design from both static and dynamic perspectives. We also intend 
to project this to NAM-related aspects, tracing them back to semantic aspects, in tune 
with the theory of Organizational Semiotics [5], which would allow us to achieve a 
more sound and coherent overall application architecture. 

Acknowledgements 

This work has been supported by the Systems Engineering Department of Delft 
University of Technology and the Freeband A-MUSE project (http://a-
muse.freeband.nl) sponsored by the Dutch government under contract BSIK 03025. 

References 

1. A-MUSE Project, 2008: http://a-muse.freeband.nl. 
2. AWARENESS Project, 2007, http://awareness.freeband.nl. 
3. Liu, K., 2005. Requirements Reengineering from Legacy Information Systems Using 

Semiotic Techniques, Systems, Signs and Actions. Int. Journal on Communication 
Information Technology & Work, 1(1): 36-61. 

4. Liu, K., Sun, L., Dix, A., Narasipuram, M., 2001. Norm Based Agency for Designing 
Collaborative Information Systems, Information Systems Journal, 11: 229-247. 

5. Liu, K., 2000. Semiotics in information systems engineering, Cambridge University Press. 
Cambridge. 

6. Mei, H., Widya, I.A., Broens, T. H. F., Pawar, P., Van Halteren, A.T., Shishkov, B., Van 
Sinderen, M.J., 2007. A Framework for Smart Distribution of Bio-signal Processing Units 
in m-Health. In ICSOFT’07, 2nd International Conference on Software and Data 
Technologies. INSTICC Press. 

7. Rational/ OMG UML, 2007. Unified Modeling Language, Object Management Group, 
http://www.omg.org/uml. 

8. Shishkov, B., Van Sinderen, M.J., Liu, K., Du, H., 2008. Norm Analysis Supporting the 
Design of Context-Aware Applications. In ICEIS’08, 10th International Conference on 
Enterprise Information Systems. INSTICC Press. 

9. Shishkov, B. and Van Sinderen, M.J., 2008. On the Design of Context-Aware Applications. 
In I-WEST’08, 2nd International Workshop on Enterprise Systems and Technology. 
INSTICC Press. 

10. Shishkov,.B., Van Sinderen, M.J., Tekinerdogan, B., 2007. Model-Driven Specification of 
Software Services. In: IEEE International Conference on e-Business Engineering, ICEBE 
2007, 24-26 Oct 2007, Hong kong, China. pp. 13-21. IEEE Computer Society Press. 

11. Shishkov, B. and Van Sinderen, M.J., 2007. Model-Driven Design of Context-Aware 
Applications. In ICEIS’07, 9th International Conference on Enterprise Information Systems. 
INSTICC Press. 

12. Shishkov, B. and Quartel, D., 2006. Refinement of SDBC Business Process Models Using 
ISDL. In ICEIS’06, 8th International Conference on Enterprise Information Systems. 
INSTICC Press. 

13. Shishkov, B., Dietz, J.L.G., Liu, K., 2006. Bridging the Language-Action Perspective and 
Organizational Semiotics in SDBC. In ICEIS’06, 8th International Conference on Enterprise 
Information Systems. INSTICC Press. 

49



14. Shishkov, B., Van Sinderen, M.J., Quartel, D., 2006. SOA-Driven Business-Software 
Alignment. In ICEBE’06, IEEE International Conference on e-Business Engineering. IEEE 
Press. 

15. Shishkov, B. and Dietz, J.L.G., 2004. Deriving Use Cases from Business Processes, The 
Advantages of DEMO In: Enterprise Information Systems V Publisher: Kluwer Academic 
Publishers Edited by: Camp, O.; Filipe, J.B.; Hammoudi, S.; Piattini, M.G. 

16. Shishkov, B. and Barjis, J., 2002. Modeling of e-Business Brokerage Systems Using UML 
and Petri Net In: Information Systems: The e-Business Challenge Publisher: Kluwer 
Academic Publishers Edited by: Traunmuller, R. 

17. Stamper, R. K., 1992. Language and Computer in Organised Behaviour. In R. P. v. d.Riet 
(Ed.), Linguistic instruments in knowledge engineering. North-Holland: Elsevier Science. 

18. Van Hee, K. and Reijers, H.A., 2000. Using Formal Analysis Techniques in Business 
Process Re-Design. W. van der Aalst et al. (Eds.): Business Proc. Management, LNCS 
1806. 

19. Von Wright, G. H., 1963. Norms and Action - a Logical Enquiry. Routledge and Kegan 
Paul, New York. 

50


