ACCEPTING NETWORKSOF EVOLUTIONARY PROCESSORS:
COMPLEXITY ASPECTS
Recent Results and New Challenges

Florin Manea and Victor Mitrana
Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14, 010014, Bucharest, Romania

Keywords: Theory of computation, Computational Complexity, Complexity classes, Evolutionary processor.

Abstract: In this paper we survey some results reported so far, for the new computational model of Accepting Networks
of Evolutionary Processors (ANEPSs), in the area of computational and descriptional complexity. First we
give the definitions of the computational model, and its variants, then we define several ANEP complexity
classes, and, further, we show how some classical complexity classes, defined for Turing Machines, can be
characterized in this framework. After this, we briefly show how ANEPs can be used to solve efficiently
NP-complete problems. Finally, we discuss a list of open problems and further directions of research which
appear interesting to us.

1 INTRODUCTION represents one cell. Cells belong to species and their
community evolves according to mutations and divi-
The origin of the networks of evolutionary proces- Ssion which are defined by operations on strings. Only
sors (NEPs for short) is twofold. A basic architecture those cells are accepted as surviving (correct) ones
for parallel and distributed symbolic processing, re- which are represented by a string in a given set of
lated to the Connection Machine (Hillis, 1985) as well strings, called the genotype space of the species. This
as the Logic Flow paradigm (Errico and Jesshope, feature parallels with the natural process of evolu-
1994), consists of several processors, each of themtion. Similar ideas may be met in other bio-inspired
being placed in a node of a virtual complete graph, models likemembrane systenfPaun, 2000)evolu-
which are able to handle data associated with the re-tionary system§Csuhaj-Varji and Mitrana, 2000), or
spective node. Each node processor acts on the locamodels from Distributed Computing area liker-
data in accordance with some predefined rules, andallel communicating grammar systenfBaun and
then local data becomes a mobile agent which canSantean, 1989networks of parallel language pro-
navigate in the network following a given protocol. cessor§Csuhaj-Varji and Salomaa, 1997).
Only that data which is able to pass a filtering process In (Castellanos et al., 2001) we modify this con-
can be communicated. This filtering process may re- cept (considered from a formal language theory point
quire to satisfy some conditions imposed by the send- of view in (Csuhaj-Varju and Salomaa, 1997)) in the
ing processor, by the receiving processor or by both following way inspired from cell biology. Each pro-
of them. All the nodes send simultaneously their data cessor placed in a node is a very simple processor, an
and the receiving nodes handle also simultaneouslyevolutionary processor. By an evolutionary processor
all the arriving messages, according to some strate-we mean a processor which is able to perform very
gies, see (Fahlman et al., 1983; Hillis, 1985). simple operations, namely point mutations in a DNA
On the other hand, in (Csuhaj-Varju and Mitrana, sequence (insertion, deletion or substitution of a pair
2000) we consider a computing model inspired by of nucleotides). More generally, each node may be
the evolution of cell populations, which might model viewed as a cell having genetic information encoded
some properties of evolving cell communities at the in DNA sequences which may evolve by local evo-
syntactical level. Cells are represented by strings lutionary events, that is point mutations. Each node
which describe their DNA sequences. Informally, at is specialized just for one of these evolutionary oper-
any moment of time, the evolutionary system is de- ations. Furthermore, the data in each node is orga-
scribed by a collection of strings, where each string nized in the form of multisets of strings (each string

597

Manea F. and Mitrana V. (2009).

ACCEPTING NETWORKS OF EVOLUTIONARY PROCESSORS: COMPLEXITY ASPECTS - Recent Results and New Challenges.
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 597-604

DOI: 10.5220/0001796305970604

Copyright © SciTePress

ICAART 2009 - International Conference on Agents and Artificial Intelligence

appears in an arbitrarily large number of copies), and a € {x,l,r} expresses the way of applying a deletion

all copies are processed in parallel such that all the or insertion rule to a string, namely at any position

possible events that can take place do actually take(a = «), in the left @ = 1), or in the right & =r)

place. The work (Martin-Vide and Mitrana, 2005) is end of the string, respectively. The note for the sub-

an early survey. stitution operation mentioned above remains valid for
insertion and deletion at any position. For every rule
o, actiona € {x,l,r}, andL C V*, we define thex-

2 BASIC DEFINITIONS action ofo on L by 0%(L) = Uy 0%(w). Given a

finite set of ruledM, we define thax-action of Mon
We start by summarizing the notions used throughout the stringw and the language by:
the paper. Aralphabetis a finite and nonempty set o) a any a
of symbols. The cardinality of a finite satis written MEw) = | o%(w) and M*(L) = U M*(w),
card(A). Any sequence of symbols from an alphabet
V is calledstring (word)overV. The set of all strings
overV is denoted by* and the empty string is de- k)
noted bye. The length of a string is denoted byx| an alphabeV and a stringw overV, we define the
while alph(x) denotes the minimal alphabat such ~ following two predicates
thatx € W*. For the basic details regarding Turing rcs(w; P F) =P Calph(w) A FNnalph(w) =0
machines and complexity classes we refer to (Garey rcw(w; P,F) = alph(w) NP # 0 A Fnalph(w) = 0.

and Johnson, 1979.)' . The construction of these predicates is based on
In the course of its evolution, the genome of an or- ~ontext conditionsdefined by the two set® (per-
gar)igm mutates by differenfcprocesses. At the level of mitting contexts/symbglsand F (forbidding con-
individual genes the evolution proceeds by local op- texis/symbols Informally, both conditions requires
erations (point mutations) which substitute, insertand hat no forbidding symbol is presentin furthermore
delete nucleotides of the DNA sequence. In what fol- e first condition requires all permitting symbols to
lows, we define some rewriting operations that will be appear inw, while the second one requires at least
rgferred aae.volu.tlo_nary operationsince theymaybe gne permitting symbol to appearm It is plain that
viewed as linguistic formulations of local gene muta- e first condition is stronger than the second one.

oeM welL

respectively.
For two disjoint and nonempty subs@&sndF of

tions. We say that a rula — b, with a,b € V U {&} For every language C V* andp € {s,w}, we de-
is asubstitution ruleif both a andb are note; it is a fine:

deletion ruleif a # € andb = €; it is aninsertion rule reg(L,P,F) = {we L |rcg(w;P,F)}.

if a= ¢ andb # €. The set of all substitution, deletion, An evolutionary processor over V& a 5-tuple

and insertion rules over an alphahkare denoted by (M,PI,FI,PO,FO), where:
Suly, Dely, andinsy, respectively.]

Given a rulec as above and a string € V*, we — Either (M C Suly) or (M C Dely) or (M C
define the followingactionsof o onw: Insy). The setM represents the set of evolutionary
rules of the processor. As one can see, a processor is
“specialized” in one evolutionary operation, only.

o (w) = { {w}, otherwise — PI,FI CV are theinput permitting/forbidding
' contexts of the processor, whiRO,FO C V are the

hote thatf ahrUI? as apmagﬁis Applied o a”fOﬁCUt‘- outputpermitting/forbidding contexts of the proces-
rences of the lettea in different copies of the . (WithPI NFl = 0 andPONFO = 0).

word w. An implicit assumption is that arbitrar-
ily many copies ofv are available. We denote the set of evolutionary processors over
o If 6=a— &€ Del, then \% by ER/. Clgarly, the evolu_tionary processor de-
{uv: Ju,veV* (w=uay)} scribed here is a mathematical concept similar to
o* (W) = { {w} otherwise ’ that of an evolutionary algorithm, both being inspired
’ from the Darwinian evolution. As we mentioned
above, the rewriting operations we have considered
might be interpreted as mutations and the filtering

e If c=a— be Suly, then
{ubv: Ju,veV* (w=uav)},

o'(wW) = { }\I/Jv:},vgt:h:r?/ii’se

o (w) = { {viw= av}z process described above might be viewed as a selec-
{w}, otherwise tion process. Recombination is missing but it was as-
e Ifo=¢— aclnsy, then serted that evolutionary and functional relationships
o*(w) = {uav: Ju,veV* (wW=uv)}, between genes can be captured by taking only local
o' (w) = {wa}, a'(w) = {aw}. mutations into consideration (Sankoff et al., 1992).

598

ACCEPTING NETWORKS OF EVOLUTIONARY PROCESSORS: COMPLEXITY ASPECTS - Recent Results and New

Challenges

However, another type of processor based on recom-have underlying graphs with useful edges only (note

bination only, called splicing processor has been con-
sidered as well in a series of works (Manea et al.,

2007a; Loos et al., 2008) and the references thereof.
An accepting network of evolutionary pro-

cessors (ANEP for short) is a 8-tuplel =

(V,U,G,N,a,B,x,Xo0), where:

e V andU are the input and network alphabet, re-
spectivelyV C U.

e G=(Xg,Eg) is an undirected graph withoutloops
with the set of verticeXg and the set of edgéss.
G is called theunderlying graptof the network.

e N: Xg — ERy is a mapping which associates
with each nodex € Xg the evolutionary processor
N(X) == ('\/l)(7 F)I)(7 F Ix, P())(7 FOX>.

e O :Xg — {*,l,r}; a(x) gives the action mode of
the rules of node on the strings existing in that
node.

e B: Xg — {s,w} defines the type of thén-
put/output filtersof a node. More precisely, for
every node,x € Xg, the following filters are
defined:

input filter: px(-) = regey (-5 Plx, Flx),
output filter:tx(-) = rcgy (+; POk, FOx).
That is,px(w) (resp.Tx) mdlcates whether or not
the stringw can pass the input (resp. output) filter
of x. Moreover,py(L) (resp. tx(L)) is the set of
strings ofL that can pass the input (resp. output)
filter of x.

e X|,Xo € Xg are theinputand theoutputnode off",
respectively.

We say thatcard(Xg) is the size off. If a andf3

that such a simplification is not always possible for
ANEPS).

A configurationof an ANEP/ANEPFQ as above
is a mapping : Xc — 2¥" which associates a set of
strings with every node of the graph. A configuration
may be understood as the sets of strings which are
presentin any node at a given moment. Given a string
w € V*, the initial configuration of onw is defined
by C0”(x) = {w} andC" (x) = 0 for all x € X —
{xi}.

When changing by an evolutionary step, for both
ANEPs and ANEPFCs, each compon€fk) of the
configuratiorC is changed in accordance with the set
of evolutionary rulesMy associated with the node
and the way of applying these rulegx). Formally,
we say that the configuratiod is obtained inone
evolutionary stefrom the configuratiol€, written as
C = C/, iff C'(x) = MZ™(C(x)) for all x € X.

When changing by a communication step, in the
case of ANEPs, each node processarXs sends one
copy of each word it has, which is able to pass the out-
put filter ofx, to all the node processors connectex to
and receives all the words sent by any node processor
connected withx providing that they can pass its input
filter. Formally, we say that the configuratiGhis ob-
tained inone communication stefpom configuration
C, written asC I- C/, iff C'(x) = (C(x) — 1x(C(x))) U

U (1y(C(y))npx(C(y))) for all x € Xs. Note that

{xy}eEg
words which leave a node are eliminated from that
node. If they cannot pass the input filter of any node,
they are lost.

Differently, when changing by a communication

are constant functions, then the network is said to be step, in an ANEPFC, each node-processar Xg

homogeneousin the theory of networks some types
of underlying graphs are common likings, stars,
grids, etc. We focus here ooompleteANEPs i.e.,
ANEPs having a complete underlying graph.

A model closely related to that of ANEPs, in-
troduced in (Dragoi et al., 2007) and further studied
in (Dragoi and Manea, 2008), is that of Accepting
Networks of Evolutionary Processors with Filttering
Connections (ANEPFCs for short). An ANEPFC may

be viewed as an ANEP where the filters are shifted
from the nodes on the edges. Therefore, instead of

having a filter at both ends of an edge on each direc-

tion, there is only one filter disregarding the direction.
Note that every ANEPFC can be immediately

transformed into an equivalent ANEPFC with a com-

plete underlying graph by adding the edges that are
missing and associate with them filters that do not
allow any string to pass. Therefore, for the sake of ©ach configuratiog;

simplicity, the ANEPFCs we discuss in this paper

sends one copy of each word it contains to every node-
processoy connected ta, provided they can pass the
filter of the edge betweexandy. It keeps no copy
of these words but receives all the words sent by any
node processarconnected withx providing that they
can pass the filter of the edge betweeandz. In this
case, no string is lost.

Let I be an ANEP (ANEPFC), the computation
of I' on the input wordv € V* is a sequence of con-

figurationsCy™,ci" ¢ .. wherecém is the ini-
w and

tial configuration ofl” defined by(:0 () =
C((x) = 0forall x € Xg, x;«réx|,C2I :>C2|+land

Céuzl F Cé,lz, for all i > 0. Note that the configu-
rations are changed by alternative evolutionary and
communication steps. By the previous definitions,

W) s uniquely determined by the
conflguratlorC(WA computatiorhalts(and it is said

599

ICAART 2009 - International Conference on Agents and Artificial Intelligence

to behalting) if one of the following two conditions
holds:

(i) There exists a configuration in which the set of
strings existing in the output node is non-empty.
In this case, the computation is said to bea&eept-
ing computation

(i) There exist two identical configurations obtained

either in consecutive evolutionary steps or in consec-

utive communication steps.

Thelanguage acceptebly the ANEP/ANEPFQ”
is La(l") = {w € V* | the computation of onw is
an accepting orje We say that an ANEP/ANEPFC
decides the languadeC V*, and writeL(I") = L iff
La(l) =L and the computation df on everyx € V*
halts.

The ANEP computing model was modified in
(Manea, 2005) to obtain Timed Accepting Networks
of Evolutionary Processors (TANEP for short). Such
a TANEP is a tripleT = (', f,b), wherel =
(V,U,G,N, a,B,x,%o0) is an ANEP,f :V* — Nis a
Turing computable function, calledock andb € 0,1
is a bit called theaccepting-mode hit

In this setting, the computation of a TANEP
T = (I',f,b) on the input wordw is the (fi-
nite) sequence of configurations of the ANEP
c.c, ... ,C]E‘?’\fv). The language accepted Hyis
defined as:

o if b=1then:L(T) = {we V*|C{y, (x0) # 0}

0}

o if b=0then:L(7) = {weV* | C[}), (Xo)

Intuitively we may think that a TANEPT =
(I, f,b) is a triple that consists in an ANEP, a Tur-
ing Machine and a bit. For an input strimgwe first
computef (w) on the tape of the Turing Machine (by
this we mean that on the tape there will exisiv) el-

ements of 1, while the rest are blanks). Then we begin

to use the ANEH", and at each evolutionary or com-
munication step of the network we delete an 1 from
the tape of the Turing Machine. We stop when no 1

is found on the tape. Finally, we check the accepting-
mode bit, and, according to its value and the empty-

netss oC?’(V\BW (xo0), we decide whethew is accepted or
not.

Further, we define some computational com-
plexity measures by using ANEP/ANEPFC as the
computing model. To this aim we consider a
ANEP/ANEPFCT with the input alphabeV that
halts on every input. Thigme complexityf the halt-
ing computatio€)’, c¥,c, ...c¥ of F onx e v
is denoted byl ime-(x) and equalsn. The time com-

600

plexity of I' is the function fromN to N,
Time-(n) = max{Timea-(x) | xe V*,|x| = n}.

In other words;Time-(n) delivers the maximal num-
ber of computational steps donelbyn an input word
of lengthn.

For a functionf : N — N and X € {ANEP,
ANEPFC} we define:

Timex (f(n)) = {L | there exists an network of type
X,T which decided., andng such that
¥n>ng(Time (n) < f(n))}.

Moreover, we writePTimey = U Timex (nk).
k>0
The space complexitpf the halting computation
c¥, e, cl, ...c¥ of I onx e V* is denoted by
Space(x) and is defined by the relation::

max (maxcard(C™ (2))).

Space (X) ie{1,...,.m} zeXe

The space complexity df is the function fromN to
N!

Space(n) = max{Space(x) | xe V*|x| = n}.

ThusSpace(n) returns the maximal number of dis-
tinct words existing in a node éf during a computa-
tion on an input word of length.

For a functionf : N — N and X € {ANEP,
ANEPFCiwe define

Space,(f(n)) = {L | there exists a network of type
X, T which decided., andng such that
vn > no(Space(n) < f(n))}.
Moreover, we writePSpacey = | Space, (n¥).

k>0
Thelength complexityf the halting computation

c¥, ¥, c, ...c¥ of I onxe L is denoted by
Length (x) and is defined by the relation:

max
WEC,(X) (2),ie{1,....m},zeXg

The length complexity ofF is the function fromN to

Length (n) = max{Length (x) | x e V*,|x| = n}.

Length (x) = |w].

Unlike theSpacemeasurel.ength(n) computes the
length of the longest word existing in a nodd odlur-
ing a computation on an input word of length

For a functionf : N — N and X € {ANEP,
ANEPFC} we definelength,(f(n)) ={L | there ex-
ists an network of typeX,I" which decided. andng
such that/n > ng(Length-(n)<f(n))} Moreover, we
write PLength, = | J Length,(n).

k>0

ACCEPTING NETWORKS OF EVOLUTIONARY PROCESSORS: COMPLEXITY ASPECTS - Recent Results and New

In the case of a TANEPI = (I, f,b) the time
complexity definitions are the following: for the word
x € V* we define the time complexity of the compu-

Challenges

M is simulated byl in a constant number of steps
of the ANEP/ANEPFC; moreovel, halts and ac-
ceptsw if and only if M does this. More precisely,

tation onx as the number of steps that the TANEP I obtains in parallel all the IDs tha¥l may reach

makes having the wordas input,Timey (x) = f(x).
Consequently, we define the time complexity ‘Bf
as a partial function fromN to N, that verifies:
Timer(n) = max{f(x) | x € L(7),|x = n}. For a
functiong: N — N we define:
Timeranep(g(n)) = {L | L = L(7)for a TANEP
T = (T, f,1) with
Timer(n) < g(n) for somen > np}.

write PTimeranep =

Moreover, we
U Ti merANEp(nk).
k>0

in one step from its previous ID in a constant num-
ber evolutionary and communication steps. Ohte
reaches a final ID, a word enters the output node of
I". In the case when all computationsifonw stop

but M does not accepf; passes through two identi-
cal consecutive configurations, hence it halts without
accepting. Otherwise, botil andl™ continue their
computations forever. Thus, if € NTIME(f(n)),
thenTime (n) € O(f(n)). Since all the strings pro-
cessed by the network have their length bounded by
the length of an ID oM plus a constant number of
symbols, it also results that If € NSPACEf(n)),

Note th_at the above_ definition:; were give_n _for thenLengtlt (n) € O(f(n)). Note that in the case of
TANEPs with the accepting-mode bit setto 1. Similar y1ing machines, the complexity classe are those de-
definitions are given for the case when the accepting- fined for single tapes machines.

mode bit set to 0. For a functioh: N — N we de-
fine, as in the former case:
CoTimeraner(g(n)) = {L | L = L(T)for a TANEP
T = (T, f,0) with
Timer(n) < g(n) for somen > np}.
We defineCoPTimeranep= | J CoTimeranep(n¥).
k>0

3 COMPLEXITY RESULTS

The reversal of Theorem 1 holds as well:

Theorem 2. (Manea et al., 2008; Dagoi et al., 2007)
For any ANEP/ANEPFC accepting the language L,
there exists a single-tape Turing machine M accepting
L. Moreover, M can be constructed such that either it
accepts inO((Time-(n))?) computational time or in
O(Lengtht(n)) space.

The proof of this Theorem is quite straightfor-
ward: the Turing Machine chooses and simulates
(non-deterministically) a possible succession of pro-
cessing and communication stepsfobn the input

The main result obtained so far states the fact that Word. If this succession of steps leads to a string that
non-deterministic Turing machines can be simulated €Nters in the output node, then the input word is ac-

efficiently by ANEPs:
Theorem 1.

1. (Manea et al., 2008; Manea et al., 2007b) For ev-
ery nondeterministic single-tape Turing machine M,

with working alphabet U, deciding a language L,
there exists an ANEP, of size5|U | + 8, deciding the
same language L. Moreover, if M works withiiinj
time, then Time(n) € O(f(n)), and if M works within
f(n) space, then Spagf) € O(max{n, f(n)})..

2. (Dragoi and Manea, 2008) For every nondeter-

ministic single-tape Turing machine M, with work-

ing alphabet U, deciding a language L, there exists

an ANEPFCT, of size2|U| + 12, deciding the same
language L. Moreover, if M works within(fi) time,
then Time (n) € O(f(n)), and if M works within fn)
space, then Lengtlin) € O(max{n, f(n)}).

cepted.
A consequence of Theorems 1 and 2 is the follow-
ing:
Theorem 3. (Manea et al., 2008; Dagoi et al., 2007)
1. NP = PTimeanep= PTimeanepEc
2. PSPACE = PLengthyyep = PLengthanepec

These results were improved from the size com-
plexity point of view: NP equals the class of lan-
guages accepted in polynomial time by ANEPs with
24 nodes and with the class of languages accepted
in polynomial time by ANEPFCs with 26 nodes
(see (Manea and Mitrana, 2007; Dragoi and Manea,
2008)).

Finally one can obtain a characterizatiorPphlso
based on the result of Theorem 1.:

Theorem 4. (Maneaetal., 2008) A languaged P iff

Basically the both results stated in this Theorem L iS decided by an ANEP/ANEPHCsuch that there
are based on the following approach: we construct €Xist two polynomials,R with Space(n) < P(n) and

an ANEP/ANEPFCI that simulates the computa-
tion of the Turing machinévl on an input wordw

Time (n) < Q(n).
It is worth mentioning that the last theorem does

such that each move made by the Turing machine not say that the inclusioRSpace, N PTimey C P

601

ICAART 2009 - International Conference on Agents and Artificial Intelligence

holds, for somex € {ANERANEPFC. The fo- 4 PROBLEM SOLVING

lowing facts are not hard to follow: we proved in

Theorem 3 that every NP language, hence the NP-Recall that a possible correspondence between deci-
complete language 3-CNF-SAT, is PTimey; but, sion problems and languages can be done via an en-
it is easy to see that 3-CNF-SAT can be decided coding function which transforms an instance of a
also by a deterministic Turing Machine, working in given decision problem into a word, see, e.g., (Garey
exponential time and polynomial space. By Propo- and Johnson, 1979). We say that a decision problem
sition 1, such a machine can be simulated by an P is solved in timeO(f(n)) by ANEPS/ANEPFCs if
ANEP/ANEPFC that uses polynomial space (but ex- there exists a familg of ANEPs/ANEPFCs such that
ponential time as well). This shows that 3-CNF-SAT the following conditions are satisfied:

is in PTimex N PSpacey, but it is not inP, unless 1. The encoding function of any instangeof P hav-

P:TﬁZ.EPs offer us the possibility to characterize ?ng sizen (_:an_be_computed by a defgfimjgstic Tur-
uniformly bothNP andCoNP: ing machine in ime(f ().

Theorem 5. (Manea, 2005PTimeranep = NP and 2. For each instance of size n of the problem
CoPTimeranep= CoNP. one can effectively construct, in tin@(f (n)), an

) _ ANEP/ANEPFCT (p) € G which decides, again
As explained already, we can choose and simulate ;4 time O(f(n)), the word encoding the given in-

non-deterministically with a Turing Machird each stance. This means that the word is decided if and
one of the possible succesion of processing and com- 41y if the solution to the given instance of the
munication steps applied on the input string by the ,oplem is “YES”. This effective construction is

ANEP component of a TANEF' = (I',f,1). Just called anO(f (n)) time solution to the considered
that in this case we are interested only in the first problem.

f(x) steps of the ANEP, and there exist a polyno-
mial g such thaff (x) < g(|x|), for every possible input
stringx. From these follows tha¥l works in polyno- ’ ; |
mial time, andPTimerasner C NP. To prove that of the_ same size, then the.clonstructlon (Ff is called_
NP C PTimerannep We also make use of Theorem @ unl_form solut|0n._ Intuitively, a solution is uni-
1: fora languagé € NP there exists an ANEP and form if for problem sizen, we can construct a unique
a polynomialg such thak € L if and only if x € L(I") ANEP/ANEPFC solving all instances of sindaking

andTime- (x) < g(||). From this it follows that the the (reasonable) encoding of instance as “input”.

If an ANEP/ANEPFCI € G constructed above
decides the language of words encoding all instances

TANEP T = (T, f, 1), wheref (x) = g(|x|), accepts.. In (Manea et al., 2005) we propose a linear time
A similar proves the second part of the theorem, for Solution for the 3-CNF-SAT and Hamiltonian Path
TANEPs with accepting bit 0. problems, using ANEPs; also, in (Manea et al.,

Theorems 5 provides a common framework for 2007b) we propose a linear solution for the Vertex-

solving both problems fromiP and fromCoNP. For ~ COver problem. In (Dragoi et al., 2007) we pro-
example, suppose that we want to solve the member-POSe another linear time solution for the Vertex-Cover
ship problem for a languade problem, solved this time by ANEPFCs.

e If L € NP, using the proof of Theorems 1, we can

construct a polynomial TANER = (T, f,1) that
acceptd.. 5 CHALLENGES

e If L € CoNP, it results thatCoL € NP, and us-
ing the proofs of Theorems 1, we can construct

a polynomial TANEPT = (I', f,1) that accepts pgppCE pased on ANEPs and ANEPFCs. We also
Col.. We obtain tha(T", f,0) acceptd.. got upper bounds for the size of these networks.
Thus, Theorem 5 proves that the languages (the However, we do not know how close to the optimal
decision problems) that are efficiently recognized size these bounds are. In our view, a comparison
(solved) by the TANEPs (with both 0 and 1 as possi- with other computational models might lead to better
ble values for the accepting-mode bit) are those from bounds.
NP U CoNP. Although we presented a characterization of
PSPACE in terms of a complexity measure, namely
Length defined for ANEPs and ANEPFCs, this mea-
sure is rather artificial as it can never be smaller than
the length of the input word. We consider that another

We presented new characterizations of some well-
known complexity classes likeP, NP, co-NP,

602

ACCEPTING NETWORKS OF EVOLUTIONARY PROCESSORS: COMPLEXITY ASPECTS - Recent Results and New
Challenges

measure able to capture in a better way the similarity of Evolutionary Processors, limternational Work-

to the space measure defined for Turing machines is Conference on Artificial and Natural Neural Networks
needed. Such a measure might shed a new light on ~ (IWANN 2001), LNCS 208421-628. Springer.

the characterizations reported here. Csuhaj-Varjt, E. and Salomaa, A. (1997) Networks of Par-

On the other hand, the meas@pacecounts the allel Language Processors. INew Trer_lds in Formal
maximum number of words existir?g in a node at a Languages, LNCS 121899 - 318. Springer.
given step of a computation. This measure might also Csuhaj-Varjt, E., Mitrana, V. (2000). Evolutionary Sys-
be useful though it seems to be less important from E\T)Isv:inA é—:r?]%:ﬁr%ﬁeggpggggtgﬁﬁfn;‘iig'rgg by
a biological point of view as an exponential number 913_9%6. Springer. ' '
of DNA molecules can be produced by a linear num-

ber of Polymerase Chain Reaction (PCR) steps. OneDassow, J. and Mitrana, V. (2008). Accepting Networks of

Non-Inserting Evolutionary Processors, Pnoceed-

may remark that a limitation on tt&pacecomplexity ings of NCGT 2008: Workshop on Natural Computing
of a computation may be translated as a limitation of and Graph Transformation@9—42.

the intrinsic Power of th,'s computing mOdel ,to simu- Dassow, J., Martin-Vide, C., Mitrana, V. (2006). Free Gen-
late by massive parallelism the nondeterminism of se- erating Hybrid Networks of Evolutionary Processors,
guential machines. Another direction of research that In Formal Models, Languages and Applications Series
appears to be of interest is the exact role filters, evo- in Machine Perception and Artificial Intelligence 66
lutionary operations, and underlaying structures play 65-78. World Scientific.

with respect to the computational power of ANEPs Dragoi, C. and Manea, F. (2008). On the Descriptional
as well as their complexity. A first step was done in Complexity of Accepting Networks of Evolutionary
(Dassow and Mitrana, 2008), where ANEPs without Processors with Filtered Connectionkternational

insertion nodes were considered. An exhaustive study iitirsnfl ggzowgr?é'osncsie%ifiomp”ter Science, 19:5

in this direction is under way. g o M E Mit V. (2007). A ing Net
- : - ragoi, C., Manea, F., Mitrana, V. . Accepting Net-
A very preliminary work regarding the role of il works of Evolutionary Processors With Filtered Con-

ters is (Dassow et al., 2006), whegenerating\NEPs nections. Journal of Universal Computer Science,

without filters are investigated. However, this work 13:11, 1598 — 1614. Springer.

which reports only partial rgsults is devoted to an eX- Erico, L., and Jesshope, C. (1994). Towards a New Ar-

treme case for the generating model. Several variants chitecture for Symbolic Processing, Autificial In-

in between might also be considered. telligence and Information-Control Systems of Robots
All the results presented here are essentially based ~ '94, 31-40. World Scientific.

on simulations of Turing machines. This is actu- Fahlman, S. E., Hinton, G.E., Seijnowski, T.J. (1983) Mas-

ally valid for almost all bio-inspired computational sively Parallel Architectures for Al: NETL, THISTLE

models. Even the universal ANEPs are obtained and Boltzmann Machines, IRroc. of the National

via simulations of Turing machines. In some sense, Conference on Atrtificial Intelligenc&09-113. AAAI

these simulations are not quite natural as all the Press.

bio-inspired models are mainly based on a possible Garey. M., g_rll_d _JOh”SO”’_dD- (1919)-C%mp‘“ersf and

huge parallelism while Turing machine is a sequen- Lrgrrﬁgltgte'rgssgl ,Sg;]c?sctg éAe.VJ :Oge:maﬁp'

tial model. Therefore, direct simulations of parallel T)

models as well as universal ANEPs derived directly

from ANEPs are of a definite interest.

Gomez Blas, N. (2008Redes de Procesadores Evolutivos:
Autoaprendizaje de Filtros en las ConexioneBhD
Thesis Politechnical University of Madrid. (in Span-

Last but not least, our presentation was not con- ish).
Cern. of practical mgttgrs regafd'”g the possible bi- Hillis, W.D. (1979). The Connection MachinéVIT Press,
ological or electronic implementation of these net- Cambridge.
works. There were reportgd some simulations on dif- Loos, R., Manea, F., Mitrana, V. (2008) On Small, Reduced,
fer?nt computers under d'ﬁerem S{Oftware& see, e.g., and Fast Universal Accepting Networks of Splicing
(Gomez, 2008). Also some preliminary works on de- Processors, in presgheoretical Computer Science
signing electronic components that could implement doi:10.1016/j.tcs.2008.09.048. Elsevier.
some aspects of ANEPs are under way. Manea, F. (2005). Timed Accepting Hybrid Networks of

Evolutionary Processors, Kutificial Intelligence and
Knowledge Engineering Applications: A Bioinspired
Approach, LNCS 356222 — 132. Springer.

REFERENCES Manea, F., Martin-Vide, C., Mitrana, V. (2005). Solving
3CNF-SAT and HPP in Linear Time Using WWW,
Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J In Machines, Computations and Universality, LNCS
(2001) Solving NP-complete Problems with Networks 3354 269 — 280. Springer.

603

ICAART 2009 - International Conference on Agents and Artificial Intelligence

Manea, F., Martin-Vide, C., Mitrana, V. (2007) Accept-
ing Networks of Splicing Processors: Complexity Re-
sults, Theoretical Computer Science, 371:172-82.
Elsevier.

Manea, F., Martin-Vide, C., Mitrana, V. (2007). On the Size
Complexity of Universal Accepting Hybrid Networks
of Evolutionary Processordylathematical Structures
in Computer Science, 17453 — 771. Cambridge
University Press.

Manea, F., and Mitrana, V. (2007). All NP-problems Can Be
Solved in Polynomial Time by Accepting Hybrid Net-
works of Evolutionary Processors of Constant Size,
Information Processing Letters, 103:B12 — 118. El-
sevier.

Manea, F., Margenstern, M., Mitrana, V., Perez-Jimenez,
M. J. (2008). A New Characterization of NP, P, and
PSPACE With Accepting Hybrid Networks of Evo-
lutionary Processors, in pre3$ieory of Computing
Systemsdoi:10.1007/s00224-008-9124-z. Springer.

Martin-Vide, C. and Mitrana, V. (2005) Networks of Evo-
lutionary Processors: Results and Perspectives, In
Molecular Computational Models: Unconventional
Approaches78-114. Idea Group Publishing.

Paun, G. and Santean, L. (1989) Parallel Communicating
Grammar Systems: The Regular Ca&anals of Uni-
versity of Bucharest, Ser. Matematica-Informatica 38
55 - 63.

Paun, G. (2000) Computing with Membrane&Kurnal of
Computer and System Sciences 8§08 - 143. ACM
Press.

D. Sankoff et al. (1992) Gene Order Comparisons for Phy-
logenetic Inference: Evolution of the Mitochondrial
Genome, IrProceedings of the National Academy of
Sciences of the United States of America 8975—
6579.

604

