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Abstract: In this paper we survey some results reported so far, for the new computational model of Accepting Networks
of Evolutionary Processors (ANEPs), in the area of computational and descriptional complexity. First we
give the definitions of the computational model, and its variants, then we define several ANEP complexity
classes, and, further, we show how some classical complexity classes, defined for Turing Machines, can be
characterized in this framework. After this, we briefly show how ANEPs can be used to solve efficiently
NP-complete problems. Finally, we discuss a list of open problems and further directions of research which
appear interesting to us.

1 INTRODUCTION

The origin of the networks of evolutionary proces-
sors (NEPs for short) is twofold. A basic architecture
for parallel and distributed symbolic processing, re-
lated to the Connection Machine (Hillis, 1985) as well
as the Logic Flow paradigm (Errico and Jesshope,
1994), consists of several processors, each of them
being placed in a node of a virtual complete graph,
which are able to handle data associated with the re-
spective node. Each node processor acts on the local
data in accordance with some predefined rules, and
then local data becomes a mobile agent which can
navigate in the network following a given protocol.
Only that data which is able to pass a filtering process
can be communicated. This filtering process may re-
quire to satisfy some conditions imposed by the send-
ing processor, by the receiving processor or by both
of them. All the nodes send simultaneously their data
and the receiving nodes handle also simultaneously
all the arriving messages, according to some strate-
gies, see (Fahlman et al., 1983; Hillis, 1985).

On the other hand, in (Csuhaj-Varjú and Mitrana,
2000) we consider a computing model inspired by
the evolution of cell populations, which might model
some properties of evolving cell communities at the
syntactical level. Cells are represented by strings
which describe their DNA sequences. Informally, at
any moment of time, the evolutionary system is de-
scribed by a collection of strings, where each string

represents one cell. Cells belong to species and their
community evolves according to mutations and divi-
sion which are defined by operations on strings. Only
those cells are accepted as surviving (correct) ones
which are represented by a string in a given set of
strings, called the genotype space of the species. This
feature parallels with the natural process of evolu-
tion. Similar ideas may be met in other bio-inspired
models likemembrane systems(Păun, 2000),evolu-
tionary systems(Csuhaj-Varjú and Mitrana, 2000), or
models from Distributed Computing area likepar-
allel communicating grammar systems(Păun and
Sântean, 1989),networks of parallel language pro-
cessors(Csuhaj-Varjú and Salomaa, 1997).

In (Castellanos et al., 2001) we modify this con-
cept (considered from a formal language theory point
of view in (Csuhaj-Varjú and Salomaa, 1997)) in the
following way inspired from cell biology. Each pro-
cessor placed in a node is a very simple processor, an
evolutionary processor. By an evolutionary processor
we mean a processor which is able to perform very
simple operations, namely point mutations in a DNA
sequence (insertion, deletion or substitution of a pair
of nucleotides). More generally, each node may be
viewed as a cell having genetic information encoded
in DNA sequences which may evolve by local evo-
lutionary events, that is point mutations. Each node
is specialized just for one of these evolutionary oper-
ations. Furthermore, the data in each node is orga-
nized in the form of multisets of strings (each string
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appears in an arbitrarily large number of copies), and
all copies are processed in parallel such that all the
possible events that can take place do actually take
place. The work (Martı́n-Vide and Mitrana, 2005) is
an early survey.

2 BASIC DEFINITIONS

We start by summarizing the notions used throughout
the paper. Analphabetis a finite and nonempty set
of symbols. The cardinality of a finite setA is written
card(A). Any sequence of symbols from an alphabet
V is calledstring (word)overV. The set of all strings
overV is denoted byV∗ and the empty string is de-
noted byε. The length of a stringx is denoted by|x|
while alph(x) denotes the minimal alphabetW such
that x ∈ W∗. For the basic details regarding Turing
machines and complexity classes we refer to (Garey
and Johnson, 1979).

In the course of its evolution, the genome of an or-
ganism mutates by different processes. At the level of
individual genes the evolution proceeds by local op-
erations (point mutations) which substitute, insert and
delete nucleotides of the DNA sequence. In what fol-
lows, we define some rewriting operations that will be
referred asevolutionary operationssince they may be
viewed as linguistic formulations of local gene muta-
tions. We say that a rulea → b, with a,b ∈ V ∪{ε}
is asubstitution ruleif both a andb are notε; it is a
deletion ruleif a 6= ε andb = ε; it is an insertion rule
if a= ε andb 6= ε. The set of all substitution, deletion,
and insertion rules over an alphabetV are denoted by
SubV , DelV , andInsV , respectively.

Given a ruleσ as above and a stringw ∈ V∗, we
define the followingactionsof σ onw:
• If σ ≡ a→ b∈ SubV , then

σ∗(w) =

{

{ubv: ∃u,v∈V∗ (w = uav)},
{w}, otherwise

Note that a rule as above is applied to all occur-
rences of the lettera in different copies of the
word w. An implicit assumption is that arbitrar-
ily many copies ofw are available.

• If σ ≡ a→ ε ∈ DelV , then

σ∗(w) =

{

{uv : ∃u,v∈V∗ (w = uav)},
{w}, otherwise

σr(w) =

{

{u : w = ua},
{w}, otherwise

σl (w) =

{

{v : w = av},
{w}, otherwise

• If σ ≡ ε → a∈ InsV , then
σ∗(w) = {uav: ∃u,v∈V∗ (w = uv)},
σr(w) = {wa}, σl (w) = {aw}.

α ∈ {∗, l , r} expresses the way of applying a deletion
or insertion rule to a string, namely at any position
(α = ∗), in the left (α = l ), or in the right (α = r)
end of the string, respectively. The note for the sub-
stitution operation mentioned above remains valid for
insertion and deletion at any position. For every rule
σ, actionα ∈ {∗, l , r}, andL ⊆ V∗, we define theα-
action ofσ on L by σα(L) =

⋃

w∈L σα(w). Given a
finite set of rulesM, we define theα-action of Mon
the stringw and the languageL by:

Mα(w) =
⋃

σ∈M

σα(w) and Mα(L) =
⋃

w∈L

Mα(w),

respectively.
For two disjoint and nonempty subsetsP andF of

an alphabetV and a stringw overV, we define the
following two predicates

rcs(w;P,F) ≡ P⊆ alph(w) ∧ F ∩alph(w) = /0
rcw(w;P,F) ≡ alph(w)∩P 6= /0 ∧ F ∩alph(w) = /0.

The construction of these predicates is based on
context conditionsdefined by the two setsP (per-
mitting contexts/symbols) and F (forbidding con-
texts/symbols). Informally, both conditions requires
that no forbidding symbol is present inw; furthermore
the first condition requires all permitting symbols to
appear inw, while the second one requires at least
one permitting symbol to appear inw. It is plain that
the first condition is stronger than the second one.

For every languageL ⊆V∗ andβ ∈ {s,w}, we de-
fine:

rcβ(L,P,F) = {w∈ L | rcβ(w;P,F)}.
An evolutionary processor over Vis a 5-tuple

(M,PI,FI ,PO,FO), where:

– Either (M ⊆ SubV) or (M ⊆ DelV) or (M ⊆
InsV). The setM represents the set of evolutionary
rules of the processor. As one can see, a processor is
“specialized” in one evolutionary operation, only.

– PI,FI ⊆ V are theinput permitting/forbidding
contexts of the processor, whilePO,FO ⊆ V are the
outputpermitting/forbidding contexts of the proces-
sor (withPI∩FI = /0 andPO∩FO = /0).

We denote the set of evolutionary processors over
V by EPV . Clearly, the evolutionary processor de-
scribed here is a mathematical concept similar to
that of an evolutionary algorithm, both being inspired
from the Darwinian evolution. As we mentioned
above, the rewriting operations we have considered
might be interpreted as mutations and the filtering
process described above might be viewed as a selec-
tion process. Recombination is missing but it was as-
serted that evolutionary and functional relationships
between genes can be captured by taking only local
mutations into consideration (Sankoff et al., 1992).
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However, another type of processor based on recom-
bination only, called splicing processor has been con-
sidered as well in a series of works (Manea et al.,
2007a; Loos et al., 2008) and the references thereof.

An accepting network of evolutionary pro-
cessors (ANEP for short) is a 8-tupleΓ =
(V,U,G,N,α,β,xI ,xO), where:

• V andU are the input and network alphabet, re-
spectively,V ⊆U .

• G=(XG,EG) is an undirected graph without loops
with the set of verticesXG and the set of edgesEG.
G is called theunderlying graphof the network.

• N : XG −→ EPU is a mapping which associates
with each nodex∈ XG the evolutionary processor
N(x) = (Mx,PIx,FIx,POx,FOx).

• α : XG −→{∗, l , r}; α(x) gives the action mode of
the rules of nodex on the strings existing in that
node.

• β : XG −→ {s,w} defines the type of thein-
put/output filtersof a node. More precisely, for
every node,x ∈ XG, the following filters are
defined:

input filter: ρx(·) = rcβ(x)(·;PIx,FIx),
output filter:τx(·) = rcβ(x)(·;POx,FOx).

That is,ρx(w) (resp.τx) indicates whether or not
the stringw can pass the input (resp. output) filter
of x. Moreover,ρx(L) (resp. τx(L)) is the set of
strings ofL that can pass the input (resp. output)
filter of x.

• xI ,xO ∈ XG are theinputand theoutputnode ofΓ,
respectively.

We say thatcard(XG) is the size ofΓ. If α and β
are constant functions, then the network is said to be
homogeneous. In the theory of networks some types
of underlying graphs are common likerings, stars,
grids, etc. We focus here oncompleteANEPs i.e.,
ANEPs having a complete underlying graph.

A model closely related to that of ANEPs, in-
troduced in (Drăgoi et al., 2007) and further studied
in (Drăgoi and Manea, 2008), is that of Accepting
Networks of Evolutionary Processors with Filttering
Connections (ANEPFCs for short). An ANEPFC may
be viewed as an ANEP where the filters are shifted
from the nodes on the edges. Therefore, instead of
having a filter at both ends of an edge on each direc-
tion, there is only one filter disregarding the direction.

Note that every ANEPFC can be immediately
transformed into an equivalent ANEPFC with a com-
plete underlying graph by adding the edges that are
missing and associate with them filters that do not
allow any string to pass. Therefore, for the sake of
simplicity, the ANEPFCs we discuss in this paper

have underlying graphs with useful edges only (note
that such a simplification is not always possible for
ANEPs).

A configurationof an ANEP/ANEPFCΓ as above
is a mappingC : XG −→ 2V∗

which associates a set of
strings with every node of the graph. A configuration
may be understood as the sets of strings which are
present in any node at a given moment. Given a string
w∈ V∗, the initial configuration ofΓ on w is defined

by C(w)
0 (xI ) = {w} andC(w)

0 (x) = /0 for all x ∈ XG−
{xI}.

When changing by an evolutionary step, for both
ANEPs and ANEPFCs, each componentC(x) of the
configurationC is changed in accordance with the set
of evolutionary rulesMx associated with the nodex
and the way of applying these rulesα(x). Formally,
we say that the configurationC′ is obtained inone
evolutionary stepfrom the configurationC, written as

C =⇒C′, iff C′(x) = Mα(x)
x (C(x)) for all x∈ XG.

When changing by a communication step, in the
case of ANEPs, each node processorx∈XG sends one
copy of each word it has, which is able to pass the out-
put filter ofx, to all the node processors connected tox
and receives all the words sent by any node processor
connected withx providing that they can pass its input
filter. Formally, we say that the configurationC′ is ob-
tained inone communication stepfrom configuration
C, written asC ⊢C′, iff C′(x) = (C(x)− τx(C(x))) ∪

⋃

{x,y}∈EG

(τy(C(y))∩ρx(C(y))) for all x∈XG. Note that

words which leave a node are eliminated from that
node. If they cannot pass the input filter of any node,
they are lost.

Differently, when changing by a communication
step, in an ANEPFC, each node-processorx ∈ XG
sends one copy of each word it contains to every node-
processory connected tox, provided they can pass the
filter of the edge betweenx andy. It keeps no copy
of these words but receives all the words sent by any
node processorzconnected withx providing that they
can pass the filter of the edge betweenx andz. In this
case, no string is lost.

Let Γ be an ANEP (ANEPFC), the computation
of Γ on the input wordw∈ V∗ is a sequence of con-

figurationsC(w)
0 ,C(w)

1 ,C(w)
2 , . . . , whereC(w)

0 is the ini-

tial configuration ofΓ defined byC(w)
0 (xI ) = w and

C(w)
0 (x) = /0 for all x∈ XG, x 6= xI , C(w)

2i =⇒C(w)
2i+1 and

C(w)
2i+1 ⊢ C(w)

2i+2, for all i ≥ 0. Note that the configu-
rations are changed by alternative evolutionary and
communication steps. By the previous definitions,

each configurationC(w)
i is uniquely determined by the

configurationC(w)
i−1. A computationhalts(and it is said
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to behalting) if one of the following two conditions
holds:
(i) There exists a configuration in which the set of
strings existing in the output nodexO is non-empty.
In this case, the computation is said to be anaccept-
ing computation.
(ii) There exist two identical configurations obtained
either in consecutive evolutionary steps or in consec-
utive communication steps.

The language acceptedby the ANEP/ANEPFCΓ
is La(Γ) = {w ∈ V∗ | the computation ofΓ on w is
an accepting one}. We say that an ANEP/ANEPFCΓ
decides the languageL ⊆ V∗, and writeL(Γ) = L iff
La(Γ) = L and the computation ofΓ on everyx∈V∗

halts.
The ANEP computing model was modified in

(Manea, 2005) to obtain Timed Accepting Networks
of Evolutionary Processors (TANEP for short). Such
a TANEP is a triple T = (Γ, f ,b), where Γ =
(V,U,G,N, α,β,xI ,xO) is an ANEP,f : V∗ → N is a
Turing computable function, calledclock, andb∈ 0,1
is a bit called theaccepting-mode bit.

In this setting, the computation of a TANEP
T = (Γ, f ,b) on the input word w is the (fi-
nite) sequence of configurations of the ANEPΓ:

C(w)
0 ,C(w)

1 , . . . ,C(w)
f (w). The language accepted byT is

defined as:

• if b = 1 then:L(T ) = {w∈V∗ |C(w)
f (w)(xO) 6= /0}

• if b = 0 then:L(T ) = {w∈V∗ |C(w)
f (w)

(xO) = /0}

Intuitively we may think that a TANEPT =
(Γ, f ,b) is a triple that consists in an ANEP, a Tur-
ing Machine and a bit. For an input stringw we first
computef (w) on the tape of the Turing Machine (by
this we mean that on the tape there will existf (w) el-
ements of 1, while the rest are blanks). Then we begin
to use the ANEPΓ, and at each evolutionary or com-
munication step of the network we delete an 1 from
the tape of the Turing Machine. We stop when no 1
is found on the tape. Finally, we check the accepting-
mode bit, and, according to its value and the empty-

ness ofC(w)
f (w)(xO), we decide whetherw is accepted or

not.
Further, we define some computational com-

plexity measures by using ANEP/ANEPFC as the
computing model. To this aim we consider a
ANEP/ANEPFC Γ with the input alphabetV that
halts on every input. Thetime complexityof the halt-

ing computationC(x)
0 ,C(x)

1 ,C(x)
2 , . . .C(x)

m of Γ onx∈V∗

is denoted byTimeΓ(x) and equalsm. The time com-

plexity of Γ is the function fromN to N,

TimeΓ(n) = max{TimeΓ(x) | x∈V∗
, |x| = n}.

In other words,TimeΓ(n) delivers the maximal num-
ber of computational steps done byΓ on an input word
of lengthn.

For a function f : N −→ N and X ∈ {ANEP,
ANEPFC} we define:

TimeX ( f (n)) = {L | there exists an network of type
X ,Γ which decidesL, andn0 such that

∀n≥ n0(TimeΓ(n) ≤ f (n))}.

Moreover, we writePTimeX =
⋃

k≥0

TimeX (nk).

The space complexityof the halting computation

C(x)
0 , C(x)

1 , C(x)
2 , . . .C(x)

m of Γ on x ∈ V∗ is denoted by
SpaceΓ(x) and is defined by the relation::

SpaceΓ(x) = max
i∈{1,...,m}

(max
z∈XG

card(C(x)
i (z))).

The space complexity ofΓ is the function fromN to
N,

SpaceΓ(n) = max{SpaceΓ(x) | x∈V∗
, |x| = n}.

ThusSpaceΓ(n) returns the maximal number of dis-
tinct words existing in a node ofΓ during a computa-
tion on an input word of lengthn.

For a function f : N −→ N and X ∈ {ANEP,
ANEPFC}we define

SpaceX ( f (n)) = {L | there exists a network of type
X ,Γ which decidesL, andn0 such that

∀n≥ n0(SpaceΓ(n) ≤ f (n))}.

Moreover, we writePSpaceX =
⋃

k≥0

SpaceX (nk).

The length complexityof the halting computation

C(x)
0 , C(x)

1 , C(x)
2 , . . .C(x)

m of Γ on x ∈ L is denoted by
LengthΓ(x) and is defined by the relation:

LengthΓ(x) = max
w∈C

(x)
i (z),i∈{1,...,m},z∈XG

|w|.

The length complexity ofΓ is the function fromN to
N,

LengthΓ(n) = max{LengthΓ(x) | x∈V∗
, |x| = n}.

Unlike theSpacemeasure,LengthΓ(n) computes the
length of the longest word existing in a node ofΓ dur-
ing a computation on an input word of lengthn.

For a function f : N −→ N and X ∈ {ANEP,
ANEPFC} we defineLengthX ( f (n)) ={L | there ex-
ists an network of typeX ,Γ which decidesL andn0
such that∀n≥ n0(LengthΓ(n)≤ f (n))} Moreover, we
write PLengthX =

⋃

k≥0

LengthX (nk).
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In the case of a TANEPT = (Γ, f ,b) the time
complexity definitions are the following: for the word
x ∈ V∗ we define the time complexity of the compu-
tation onx as the number of steps that the TANEP
makes having the wordx as input,TimeT (x) = f (x).
Consequently, we define the time complexity ofT
as a partial function fromN to N, that verifies:
TimeT (n) = max{ f (x) | x ∈ L(T ), |x| = n}. For a
functiong : N −→ N we define:

TimeTANEP(g(n)) = {L | L = L(T )for a TANEP
T = (Γ, f ,1) with

TimeT (n) ≤ g(n) for somen≥ n0}.

Moreover, we write PTimeTANEP =
⋃

k≥0

TimeTANEP(n
k).

Note that the above definitions were given for
TANEPs with the accepting-mode bit set to 1. Similar
definitions are given for the case when the accepting-
mode bit set to 0. For a functionf : N −→ N we de-
fine, as in the former case:

CoTimeTANEP(g(n)) = {L | L = L(T )for a TANEP
T = (Γ, f ,0) with

TimeT (n) ≤ g(n) for somen≥ n0}.

We defineCoPTimeTANEP=
⋃

k≥0

CoTimeTANEP(n
k).

3 COMPLEXITY RESULTS

The main result obtained so far states the fact that
non-deterministic Turing machines can be simulated
efficiently by ANEPs:

Theorem 1.
1. (Manea et al., 2008; Manea et al., 2007b) For ev-
ery nondeterministic single-tape Turing machine M,
with working alphabet U, deciding a language L,
there exists an ANEPΓ, of size5|U |+8, deciding the
same language L. Moreover, if M works within f(n)
time, then TimeΓ(n)∈O( f (n)), and if M works within
f (n) space, then SpaceΓ(n) ∈ O(max{n, f (n)})..
2. (Drăgoi and Manea, 2008) For every nondeter-
ministic single-tape Turing machine M, with work-
ing alphabet U, deciding a language L, there exists
an ANEPFCΓ, of size2|U |+ 12, deciding the same
language L. Moreover, if M works within f(n) time,
then TimeΓ(n)∈O( f (n)), and if M works within f(n)
space, then LengthΓ(n) ∈ O(max{n, f (n)}).

Basically the both results stated in this Theorem
are based on the following approach: we construct
an ANEP/ANEPFCΓ that simulates the computa-
tion of the Turing machineM on an input wordw
such that each move made by the Turing machine

M is simulated byΓ in a constant number of steps
of the ANEP/ANEPFC; moreover,Γ halts and ac-
ceptsw if and only if M does this. More precisely,
Γ obtains in parallel all the IDs thatM may reach
in one step from its previous ID in a constant num-
ber evolutionary and communication steps. OnceM
reaches a final ID, a word enters the output node of
Γ. In the case when all computations ofM on w stop
but M does not accept,Γ passes through two identi-
cal consecutive configurations, hence it halts without
accepting. Otherwise, bothM and Γ continue their
computations forever. Thus, ifL ∈ NTIME( f (n)),
thenTimeΓ(n) ∈ O( f (n)). Since all the strings pro-
cessed by the network have their length bounded by
the length of an ID ofM plus a constant number of
symbols, it also results that ifL ∈ NSPACE( f (n)),
thenLengthΓ(n) ∈ O( f (n)). Note that in the case of
Turing machines, the complexity classe are those de-
fined for single tapes machines.

The reversal of Theorem 1 holds as well:

Theorem 2. (Manea et al., 2008; Dr̆agoi et al., 2007)
For any ANEP/ANEPFCΓ accepting the language L,
there exists a single-tape Turing machine M accepting
L. Moreover, M can be constructed such that either it
accepts inO((TimeΓ(n))2) computational time or in
O(LengthΓ(n)) space.

The proof of this Theorem is quite straightfor-
ward: the Turing Machine chooses and simulates
(non-deterministically) a possible succession of pro-
cessing and communication steps ofΓ on the input
word. If this succession of steps leads to a string that
enters in the output node, then the input word is ac-
cepted.

A consequence of Theorems 1 and 2 is the follow-
ing:

Theorem 3. (Manea et al., 2008; Dr̆agoi et al., 2007)
1. NP = PTimeANEP= PTimeANEPFC.
2. PSPACE = PLengthANEP= PLengthANEPFC.

These results were improved from the size com-
plexity point of view: NP equals the class of lan-
guages accepted in polynomial time by ANEPs with
24 nodes and with the class of languages accepted
in polynomial time by ANEPFCs with 26 nodes
(see (Manea and Mitrana, 2007; Drăgoi and Manea,
2008)).

Finally one can obtain a characterization ofP, also
based on the result of Theorem 1:

Theorem 4. (Manea et al., 2008) A language L∈P iff
L is decided by an ANEP/ANEPFCΓ such that there
exist two polynomials P,Q with SpaceΓ(n)≤P(n) and
TimeΓ(n) ≤ Q(n).

It is worth mentioning that the last theorem does
not say that the inclusionPSpaceX ∩ PTimeX ⊆ P
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holds, for someX ∈ {ANEP,ANEPFC}. The fol-
lowing facts are not hard to follow: we proved in
Theorem 3 that every NP language, hence the NP-
complete language 3-CNF-SAT, is inPTimeX ; but,
it is easy to see that 3-CNF-SAT can be decided
also by a deterministic Turing Machine, working in
exponential time and polynomial space. By Propo-
sition 1, such a machine can be simulated by an
ANEP/ANEPFC that uses polynomial space (but ex-
ponential time as well). This shows that 3-CNF-SAT
is in PTimeX ∩PSpaceX , but it is not inP, unless
P = NP.

TANEPs offer us the possibility to characterize
uniformly bothNP andCoNP:

Theorem 5. (Manea, 2005)PTimeTANEP = NP and
CoPTimeTANEP= CoNP.

As explained already, we can choose and simulate
non-deterministically with a Turing MachineM each
one of the possible succesion of processing and com-
munication steps applied on the input string by the
ANEP component of a TANEPT = (Γ, f ,1). Just
that in this case we are interested only in the first
f (x) steps of the ANEP, and there exist a polyno-
mialg such thatf (x)≤ g(|x|), for every possible input
stringx. From these follows thatM works in polyno-
mial time, andPTimeTAHNEP⊆ NP. To prove that
NP ⊆ PTimeTAHNEP we also make use of Theorem
1: for a languageL ∈ NP there exists an ANEPΓ and
a polynomialg such thatx∈ L if and only if x∈ L(Γ)
andTimeΓ(x) ≤ g(|x|). From this it follows that the
TANEPT = (Γ, f ,1), wheref (x) = g(|x|), acceptsL.
A similar proves the second part of the theorem, for
TANEPs with accepting bit 0.

Theorems 5 provides a common framework for
solving both problems fromNP and fromCoNP. For
example, suppose that we want to solve the member-
ship problem for a languageL.

• If L ∈ NP, using the proof of Theorems 1, we can
construct a polynomial TANEPT = (Γ, f ,1) that
acceptsL.

• If L ∈ CoNP, it results thatCoL ∈ NP, and us-
ing the proofs of Theorems 1, we can construct
a polynomial TANEPT = (Γ, f ,1) that accepts
CoL. We obtain that(Γ, f ,0) acceptsL.

Thus, Theorem 5 proves that the languages (the
decision problems) that are efficiently recognized
(solved) by the TANEPs (with both 0 and 1 as possi-
ble values for the accepting-mode bit) are those from
NP∪CoNP.

4 PROBLEM SOLVING

Recall that a possible correspondence between deci-
sion problems and languages can be done via an en-
coding function which transforms an instance of a
given decision problem into a word, see, e.g., (Garey
and Johnson, 1979). We say that a decision problem
P is solved in timeO( f (n)) by ANEPs/ANEPFCs if
there exists a familyG of ANEPs/ANEPFCs such that
the following conditions are satisfied:

1. The encoding function of any instancep of P hav-
ing sizen can be computed by a deterministic Tur-
ing machine in timeO( f (n)).

2. For each instancep of size n of the problem
one can effectively construct, in timeO( f (n)), an
ANEP/ANEPFCΓ(p) ∈ G which decides, again
in time O( f (n)), the word encoding the given in-
stance. This means that the word is decided if and
only if the solution to the given instance of the
problem is “YES”. This effective construction is
called anO( f (n)) time solution to the considered
problem.

If an ANEP/ANEPFCΓ ∈ G constructed above
decides the language of words encoding all instances
of the same sizen, then the construction ofΓ is called
a uniform solution. Intuitively, a solution is uni-
form if for problem sizen, we can construct a unique
ANEP/ANEPFC solving all instances of sizen taking
the (reasonable) encoding of instance as “input”.

In (Manea et al., 2005) we propose a linear time
solution for the 3-CNF-SAT and Hamiltonian Path
problems, using ANEPs; also, in (Manea et al.,
2007b) we propose a linear solution for the Vertex-
Cover problem. In (Drăgoi et al., 2007) we pro-
pose another linear time solution for the Vertex-Cover
problem, solved this time by ANEPFCs.

5 CHALLENGES

We presented new characterizations of some well-
known complexity classes likeP, NP, co-NP,
PSPACE based on ANEPs and ANEPFCs. We also
got upper bounds for the size of these networks.
However, we do not know how close to the optimal
size these bounds are. In our view, a comparison
with other computational models might lead to better
bounds.

Although we presented a characterization of
PSPACE in terms of a complexity measure, namely
Length, defined for ANEPs and ANEPFCs, this mea-
sure is rather artificial as it can never be smaller than
the length of the input word. We consider that another
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measure able to capture in a better way the similarity
to the space measure defined for Turing machines is
needed. Such a measure might shed a new light on
the characterizations reported here.

On the other hand, the measureSpacecounts the
maximum number of words existing in a node at a
given step of a computation. This measure might also
be useful though it seems to be less important from
a biological point of view as an exponential number
of DNA molecules can be produced by a linear num-
ber of Polymerase Chain Reaction (PCR) steps. One
may remark that a limitation on theSpacecomplexity
of a computation may be translated as a limitation of
the intrinsic power of this computing model to simu-
late by massive parallelism the nondeterminism of se-
quential machines. Another direction of research that
appears to be of interest is the exact role filters, evo-
lutionary operations, and underlaying structures play
with respect to the computational power of ANEPs
as well as their complexity. A first step was done in
(Dassow and Mitrana, 2008), where ANEPs without
insertion nodes were considered. An exhaustive study
in this direction is under way.

A very preliminary work regarding the role of fil-
ters is (Dassow et al., 2006), wheregeneratingNEPs
without filters are investigated. However, this work
which reports only partial results is devoted to an ex-
treme case for the generating model. Several variants
in between might also be considered.

All the results presented here are essentially based
on simulations of Turing machines. This is actu-
ally valid for almost all bio-inspired computational
models. Even the universal ANEPs are obtained
via simulations of Turing machines. In some sense,
these simulations are not quite natural as all the
bio-inspired models are mainly based on a possible
huge parallelism while Turing machine is a sequen-
tial model. Therefore, direct simulations of parallel
models as well as universal ANEPs derived directly
from ANEPs are of a definite interest.

Last but not least, our presentation was not con-
cern of practical matters regarding the possible bi-
ological or electronic implementation of these net-
works. There were reported some simulations on dif-
ferent computers under different softwares, see, e.g.,
(Gómez, 2008). Also some preliminary works on de-
signing electronic components that could implement
some aspects of ANEPs are under way.
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