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Abstract. Model-based reconstruction of human bones for surgical purposes is 
an upcoming field of research in informatics and kinematics. Tools for planning 
surgeries and real-time support require appropriate mathematical models for 
rendering, interacting and reconfiguration. It is our conviction that superquad-
rics offer this powerful mathematical modeling capability. Image-based data 
from MRI and X-ray examinations have to be extracted and gathered to 3D-
point sets, which are afterwards fitted by superquadric-based models. The fit-
ting process is complex and time-consuming. To solve this problem and to pro-
vide real-time simulation for surgical support, it is necessary to apply the 
knowledge of the expert user. This paper presents the concept and a prototypi-
cal implementation of an interactive system that involves the user in the fitting 
process to accelerate the calculation and enhance the resulting model. 

1 Introduction 

Recently, computer-based pre-operative planning has come to be considered a very 
important practice for giving the surgeon a detailed understanding of the complex 
interior body structure and the effects of possible treatment approaches. For this rea-
son, methods and models for manipulating and processing components of the human 
skeletal system in an intuitive and efficient manner have become a topic of practical 
importance in the development of appropriate computer-based skeletal crafting and 
simulation tools.  

One of the drawbacks of existing tools is the fact that most of them are still 
closely oriented towards traditional generic computer-aided construction applications 
that allow only simple navigation and surface manipulation using primitive geometric 
shapes. The resulting modeling reflects neither the topology of the bone nor the inten-
tions of the surgeon sufficiently. 

This paper presents a task-oriented, computationally efficient and flexible geo-
metric modeling approach for a skeletal component classification, reconstruction and 
manipulation tool together with an effective interface that exposes the capabilities of 
the model to the user in an intuitive manner. 
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2 Prior Research 

The generation of customized geometric models from 3D point cloud data has been 
the subject of extensive research. In medical applications, the geometrical models 
were mainly selected due to their capability of giving an exact reproduction of the 
bone surface. Popular models are triangle meshes [8], [18] or octrees [14]. Martin et 
al. [12] use B-spline surfaces to model a femur’s cortical and trabecular part. Kura-
zume et al. [9] use a statistical shape model whose parameters can be extracted from 
two 2D fluoroscopic images. However, feature-extraction algorithms that make use of 
these models receive very little beforehand-information about the global features of 
the bone that help them with their tasks. Furthermore, overall handling of the recon-
structed models by the user is difficult due to their high number of parameters. 

Of special interest are implicit superquadric (sq) models, which, due to their high 
modeling power and their well-behaved mathematical nature, proved a powerful tool 
for modeling even complex surface topologies. Originally invented by Barr in 1981, 
the usage and capabilities were greatly improved in papers by Solina and Metaxas by 
providing advanced deformation [6] and blending [16]. Zhou et al. [19] further ex-
tended the sq-model by replacing the exponents of the inside/outside function with 
Bezier curve functions, thus making it possible to increase surface complexity to an 
arbitrary level. Others tried to enhance accuracy by raising the number of components 
within the model.   

There are several approaches that target a fully automatic generation of sq-models 
from scattered 3D point data. Chevalier et al. [3] introduce a split-and-merge ap-
proach to generate a composite model of several SQs. All these approaches are ge-
neric in nature and do not make use of any a priori knowledge that could improve the 
result leading to an optimal approximation of the actual bone surface. A sophisticated 
fitting approach that considers the specific bone geometries and allows basic user 
interaction has been studied in the context of the ongoing PROREOP project and is 
proposed in [4]. 

The special and complex geometric nature of the human bone requires a model-
generating process to gather as much information as possible about the object of 
interest in order to generate an optimal result. This can best be achieved by providing 
the user with the ability to influence the fitting process and the parameter flow. Since 
the final application should be suitable for clinical environments, a comfortable user 
interface is mandatory. Therefore, this paper introduces a sophisticated sq-based 
selection tool that allows the user to intuitively steer the fitting process by helping the 
system identify and classify the relevant data and parameters whenever necessary. 

3 Bone Modeling 

The aim of our research on human skeletal modeling was to produce a geometric 
model of a given set of lower-limb bones that could later be used for kinematical 
simulation. The model should be able to reproduce the bone surface as exactly as 
possible while keeping the processing time short enough for real-time use. SQs offer 
the power to model a great variety of shapes from only a few parameters, which 
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makes the search for appropriate parameter sets very efficient. Their dual implicit-
parametric nature also allows straight-forward rendering approaches using widely 
available 3D programming interfaces like OpenGL. 

3.1 Superquadrics 

An SQ-surface is an implicit surface in 3D space that consists of all the points (x, y, 
z) with [1]: 
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The parameters a1, a2 and a3 specify the scale of the shape in x, y and z direction, and 
ε1 and ε2 define its roundness. This surface can be fitted to a 3D point cloud by mini-
mizing a distance function that measures the proximity of the points to the surface. 
The distance function is defined by the radial Euclidean distance between a point and 
a superellipsoid, which reads as:  

d( A, x, y, z ) = F ε1(x, y, z) - 1 . (2) 

where A is the surface, (x, y, z) are the points and F  is the inside-outside function 
from formula (1) that yields 1 for points that lie on the surface, < 1 for points that lie 
inside and > 1 for points that lie outside the shape. 

Next to the simple superellipsoidal model in Formula 1, a supertoroidal model 
supports toroidal shapes. Additionally, Solina [6] proposes an extended SQ model 
supporting tapering and bending. This allows for the modeling of a greater class of 
shapes, which benefits the design of bone representations introduced in the following 
section. 

3.2 Superquadric Fitting 

To fit an SQ to a set of 3D data points, it is necessary to determine a set of model 
parameters for which the distance between the SQ surface and the point cloud is 
minimized. The method used in this paper was introduced by Solina [15] and repre-
sents a least squares fit that minimizes the sum expression in Formula (3) which 
measures the radial euclidean distance defined according to formula (2) 
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where n is the number of input 3D points. This nonlinear optimization task is solved 
by using a sequential quadratic programming method.  
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In order to optimize the quality of the fit, three conditions must be met: 
 The initial guess for the parameter set should already be close to the actual val-

ues; the algorithm used performs a local optimization. 
 The selection of the point cloud fragment serving as input should span the tar-

get geometry as exactly as possible. 
 The selection should resemble a shape that can be closely approximated by an 

SQ. 
To achieve this goal, the semi-automatic approach introduced in this paper includes 
an extended selection tool that allows the user not only to define outlines that resem-
ble simple geometrical objects, like cubes or spheres, but also to use true sq-shapes 
for the selection. This improves the fit, firstly, by delivering an area with an optimal 
sq-shape and, secondly, by providing a parameter set that represents a close initial 
surface approximation. The complete procedure of the interactive fit together with the 
user interface is described in section 4 (below). 

3.3 Superquadric Bone Modeling 

Fig. 1 shows implemented versions of the generic femur and hip models. 

 

Fig. 1. Generic SQ models of hip and femur. 

The bones are decomposed into several SQ primitives oriented in an analytic descrip-
tion of the bone shapes supplied by Goldfinger [5]. Each bone model is therefore 
reconstructed by fitting the SQs from the generic model to the 3D point clouds repre-
senting the respective parts of the bone. To perform this task, the significant bone 
parts are labeled beforehand, either by a fully automatic approach (which several tests 
have found unreliable) or by a semi-automatic approach, which is introduced in sec-
tion 4 (below). 
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4 Interactive Fitting Process 

In order to optimize the described fitting algorithm (section 3.2), we developed an 
interactive pre-fitting process, which is introduced in this section. This interactive 
process involves the following two major aspects: 
1. The decomposition of a given 3D point cloud into fragments, which includes (a) 

the definition of point sets approximating the target geometry as exactly as possi-
ble and (b) the identification of ideal initial values for the fitting algorithm. 

2. The classification of several parts of the geometrical model, which provides in-
formation necessary for the calculation of characteristic bone features like those 
listed in Table 1. 

Table 1. A selection of characteristic features from the femur and hip bone. 

Femur Hip 
Femur axis origin ASIS position 

Femur axis direction PSIS position 
Femur head center Hip joint center (left, right) 

Femur head diameter Pelvis origin 
Greater trochanter tip  Pelvis orientation 

Fig. 2 shows how decomposition and classification are integrated in an interactive 
workflow. Beginning with a data cloud of 3D points, the user starts by defining sub-
sets of points that are close to a functional fragmentation of the bone (as shown in 
Fig. 1 for the femur: femur head as sphere, femur shaft as cylinder etc.) and a possible 
model based on sq-geometries (section 3.1). To this end, we have implemented an 
interactive selection tool based on an sq-geometry. After finishing the decomposition, 
the user classifies the subsets according to the individual functions of the bone parts. 
This classification is comparable to a tagging operation in a tagging system [11]. 

After the classification step in the workflow, the user’s task is to start the auto-
matic fitting process. The fitting algorithm first extracts information from the interac-
tive process and then calculates the sq-model for the given bone (section 3.3). From 
the geometric model, the characteristic values are automatically extracted and pre-
sented to the surgeon. 

 

Fig. 2. Selection tool, based on the basic sq-model. 
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4.1 Data Decomposition 

The main aim of data decomposition in the context of surgical support and modeling 
of bones from patient data (CRT or X-ray images) is the identification and fragmenta-
tion of the bone into its functional parts. A fully automatic approach to the identifica-
tion resulted in a less precise and unsatisfying fitting result (see section 5, below). 
Therefore, the data decomposition in the process is a candidate for user intervention 
(shown in Fig. 2), resulting in a more efficient and precise fitting result. 

For the manual decomposition of the initial point cloud (Fig. 2, [a]), which results 
from a prior segmentation process, the user interface has to offer an interactive selec-
tion tool feasible for a 3D environment. Like a spoon, the tool should separate a sub-
set of the initial point cloud using basic drag-and-drop operations combined with 
transformation operations, like scaling and deforming the shape of the tool. Based on 
the 3D engine for mechanical multi-body modeling and simulation called MOBILE 
[7], we have developed selection tools that consist of an SQ paired with the complex 
dragger component of the Inventor [17] library shown in Fig. 3. This implementation 
combines several operations, including translation, rotation and scaling, on an sq-
model that result in a tool for precise positioning and selection in a 3D point cloud. 
There are several reasons for using an sq-geometry in the tool. First, the geometry is 
closely connected to the fitting process because the result of the fitting is a bone, 
modeled as a set of SQs. By using SQs for selection, the fitting algorithm is initial-
ized with an adequate SQ (see section 3, above). Second, it is easy to test whether a 
point in the point cloud belongs to the selected subset or not using the SQ’s inside-
outside function (see equation 1). Evaluating the inside/outside function which re-
quires only few parameters is much more efficient than testing a point’s position 
against complex surfaces like B-spline or free-form surfaces, making this tool spe-
cially suited for achieving real-time processing. 

 

Fig. 3. Selection tool, based on the basic superquadric model. 
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Depending on their definition, SQs have additional parameters that influence their 
shapes. For the basic sq-model introduced in section 3 (see above), the parameters 

1ε and 2ε define the roundness. Therefore, our selection tool shown in Fig. 3 offers 
two 3D-dragger widgets for manipulation. 

For each of the two above-mentioned models, the basic one and the deformable 
one, an adequate selection tool has been implemented that grants access to all of the 
model’s parameters. Each change to a parameter immediately updates the tool’s 
shape. Due to the low complexity of the mathematical model, this update can be 
achieved in real-time on state-of-the-art, especially with a high-end GPU-
implementation. 
After selecting an area of the point cloud by having the SQ surround it, the user 
presses a button to create the input-subset for the fitting algorithm. The resulting 
information from this selection process is (a) the point-subset on which one SQ 
should be fitted and (b) a set of initial sq-parameters directly given by the tool itself.  

This approach supersedes the automatic fragmentation of the original point cloud 
because of the expert knowledge of the user. It results in a faster and more precisely 
fitted sq-model. Fig. 2 and 3 provide a comparison of a manual measurement ap-
proach with the semi-automatic approach using the additional data described.  

 

Fig. 4. Example of finished data decomposition. 

4.2 Component Classification 

Classification of the defined point subsets in the sq-model is closely related to the 
data decomposition step. After creating the subset, the user can classify the selected 
part of the bone by choosing an identifier out of a list (see Figure 2 [c]). This step is 
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similar to the one used in a tagging system when the user connects data content with 
computer-readable semantic information (tags). Classification is mainly used (a) as 
additional information for the fitting algorithm and (b) to provide a subordinated 
calculation of the characteristic features of the bone being examined. Table 1 shows a 
selection of the characteristic features of a bone that can be extracted using the fitted 
sq-model. To do this, component classification is necessary. In the context of surgical 
support, it is of paramount importance that the system to be able to calculate those 
values automatically in order to eliminate the time overhead otherwise required for 
user interaction and to use mathematical models to verify accuracy. The quality of the 
result depends on the correct classification of every part of a given bone in the model, 
so that the system selects the appropriate parameter set to determine the features of 
the bone at hand. 

4.3 Combination of Data Decomposition and Classification 

Fig. 5 shows the combination of the manual data decomposition and classification 
operation by offering a basic bone model to the user. If the point cloud is segmented 
from MRI images of a leg, for example, the user has to choose the standard model of 
a leg. The same is true for every other bone in the human body (see Fig. 1). The clas-
sifications of all parts of the bone, like the femur head (Fig. 5), are previously con-
nected to the single SQ in the standard model.  

After loading the standard model, the user matches each SQ of the standard model 
to the point cloud by adjusting the parameters using the described tool (see section 
4.1). In this way, data decomposition as well as component classification is combined 
in a unique step without changing interaction tools or paradigms. 

 
Fig. 5. One-step solution: an example of the data decomposition step for the femur. 
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5 Results 

For testing the implementation, the decomposition and fitting procedures have been 
performed on five sets of intact lower-limb bone data, each taken from a human pro-
band using MRI imaging. Each set consists of a hip bone and its two attached femoral 
bones. Additional validation has been performed using two sets of pig bones of the 
same type. Both selection tool models have been implemented and tested with the 
patient data as input. Due to space constrains we only list the results of two exem-
plary components, although the remaining result does not significantly differ. The 
first represents a human pelvis bone, the second an attached femoral bone. As can be 
seen, the absolute error between the manual and semi-automatic approaches is only a 
few millimeters or even less, meaning that the result comes close to established clini-
cal standards while saving time that might otherwise be spent on user-interaction. 
Errors are mainly caused by ambiguities resulting from certain extreme-points lying 
in comparatively flat surface areas where the SQ model’s approach would choose 
differently from the intuitive approach, yet quantitatively correctly. A fully automated 
test was also conducted; however, the results included components that were far from 
their actual position. 

Table 2. Results from semi-automatic sq-fitting (femur, left, positions / lengths in m, directions 
as vector). 

Feature Manual method SQ-Method 
Axis 

 (org / dir) 
(-0,143, -0.358, -0,312) 
(0.1395 -0.9901 0.0068) 

(-0.1494, -0.3614, -0.3112) 
0.1495, -0.988, 0.0364 

Head center (-0,158 -0.12 -0.295) (-0.1584, -0.1226, -0.2985) 
Head diameter 0.044 0.0422 

G.Trochanter tip 
position 

(-0.184, -0.133 -0.347) (-0.1812, -0.13 -0.341) 

Knee axis  
(org / dir) 

(-0.14, -0.565, -0.298) 
(0.1013, 0.9948, 0.0001) 

(-0.138, -0.57, -0.301) 
(0.08, 0.9967, 0.0006) 

Table 3. Results from semi-automatic sq-fitting (pelvis, positions and lengths in m, directions 
as vector). 

Feature Manual method SQ-Method 
HJC 

(left, right) 
(-0.158 -0.12, -0.295) 

(-0.168, -0.131, -0.113) 
(-0.158, -0.123, -0.298 
(-0.167, -0.132, -0.110 

ASIS pos.  
(left, right) 

(-0.094, -0.06, -0.31) 
(-0.104, -0.066, -0.088) 

(-0.096, -0.054, -0.306 
(-0.106, -0.051, -0.082 

PSIS pos. 
(left, right) 

(-0.221, -0.051, -0.279) 
(-0.229, -0.052, -0.132) 

(-0.22, -0.051, -0.268 
(-0.222 -0.055 -0.133 

Pelvis origin (-0.168, -0.131, -0.113) (-0.167, -0.132, -0.110 
Pelvis 

 orientation 
),,( zyx vvv

 

(0.999, 0.004, 0.0445) 
(0.0034, 0.9999, -0.013) 
(0.0445, 0.0134, 0.9989) 

(0.9989, 0.004, 0.0445) 
(-0.0034, 0.9999, -0.013) 
(-0.0445, 0.0133, 0.9989) 
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6 Conclusions 

In this paper, we have presented a prototype for an interactive system that supports 
the surgeon in the sophisticated task of reconstructing a realistic model of the human 
skeletal system from 3D point data. Our technique was based on presenting the user 
with a powerful and efficient model to steer the reconstruction, classification and 
manipulation process of the algorithms. It embeds the model into an easily accessible 
tool that provides important information as desired to achieve an optimal result. Due 
to the efficiency of the sq-model and the vast possibilities of parallelization, which 
are discussed in [4], these techniques are suitable for real-time applications. Tables 2 
and 3 show the first results using this approach in comparison with the “analogue” or 
“by-hand” process used during surgery planning today.  

Several enhancements to the existing approach are planned. First, more analytic 
descriptions of a larger amount of limb components are needed to provide the user 
with as many templates as possible for the bone component classification task. In the 
longer term, it is planned to provide a model of the whole lower limb structure of the 
human body. Furthermore, the geometric models will be improved to allow for cap-
turing finer topological details that result in an even more exact approximation of the 
bones’ surfaces. For this, the components of the sq-formula, especially those that 
influence overall curvature, will be brought to a more abstract level and, at the same 
time, be replaced by smooth interpolating functions. Finally, the selection tool will be 
improved in compliance with the additional capabilities of the enhanced models. 
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