
GRAPH STRUCTURE LEARNING FOR TASK ORDERING

Yiming Yang, Abhimanyu Lad, Henry Shu, Bryan Kisiel
Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, U.S.A.

Chad Cumby, Rayid Ghani, Katharina Probst
Accenture Technology Labs, Chicago, IL, U.S.A.

Keywords: Task-order optimization, Graph structure learning, Link analysis.

Abstract: In many practical applications, multiple interrelated tasks must be accomplished sequentially through user
interaction with retrieval, classification and recommendation systems. The ordering of the tasks may have a
significant impact on the overall utility (or performance) of the systems; hence optimal ordering of tasks is
desirable. However, manual specification of optimal ordering is often difficult when task dependencies are
complex, and exhaustive search for the optimal order is computationally intractable when the number of
tasks is large. We propose a novel approach to this problem by using a directed graph to represent partial-
order preferences among task pairs, and using link analysis (HITS and PageRank) over the graph as a
heuristic to order tasks based on how important they are in reinforcing and propagating the ordering
preference. These strategies allow us to find near-optimal solutions with efficient computation, scalable to
large applications. We conducted a comparative evaluation of the proposed approach on a form-filling
application involving a large collection of business proposals from the Accenture Consulting & Technology
Company, using SVM classifiers to recommend keywords, collaborators, customers, technical categories
and other related fillers for multiple fields in each proposal. With the proposed approach we obtained near-
optimal task orders that improved the utility of the recommendation system by 27% in macro-averaged F1,
and 13% in micro-averaged F1, compared to the results obtained using arbitrarily chosen orders, and that
were competitive against the best order suggested by domain experts.

1 INTRODUCTION

Search, classification and recommendation
techniques have been intensively studied and
successfully applied as sub-domains of Information
Retrieval (IR). An open research challenge is to
make the best use of these techniques in a global
context, to accomplish a higher level goal through a
multiple-step process where task-specific search
engines, classifiers and recommendation systems are
needed in different steps. User relevance judgments
in early steps are automatically propagated to later
steps to enrich the context for later tasks. While
research on “IR in context” has recently gained
prominence 0, how to define and leverage context
remains an important and challenging problem.

Consider the process of creating a project
proposal in a large consulting organization. The
principal investigators would rely on past
information to make several key decisions about the
new project, e.g., retrieving past proposals that are

similar to the current one, finding companies that
have been targeted (successfully or unsuccessfully)
with this kind of project, choosing experts who
should be included, engagements and achievements
from the past that are relevant to the current
proposal, and so on.

That is, in order to attain a complex goal, the
users need to go through a multi-step process, and
interact with different systems for retrieval,
classification, expert finding, customer selection,
etc., which provide useful suggestions to the user at
each decision-making step, and receive feedback
from the user. The performance of the system at
each step is “context-sensitive”, i.e., it depends on
the previously accomplished tasks because the user
feedback at any of the earlier steps can be used as
additional input to the system in each later step. The
over-all performance, or the “utility”, of the system
in the multi-step process depends on the order of the
tasks being carried out. Hence, finding the optimal
order of tasks is important. However, manual

164 Yang Y., Lad A., Shu H., Kisiel B., Cumby C., Ghani R. and Probst K. (2009).
GRAPH STRUCTURE LEARNING FOR TASK ORDERING.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Artificial Intelligence and Decision Support Systems, pages
164-169
DOI: 10.5220/0001989001640169
Copyright c© SciTePress

specification of the near-optimal ordering may be
non-trivial when the high-level goal is sufficiently
complex or the dependencies among a large number
of tasks are subtle.

We present a formulation of the task ordering
problem as utility optimization for systems in a
multi-step process and propose a relaxation of the
objective function in terms of pair-wise order task
order preferences. We show that the problem of
finding the optimal order from partial orders is
equivalent to a known NP-Hard problem. We
propose an approximation in the form of a novel
application of link analysis (HITS and PageRank)
that is effective as well as computationally efficient.

2 A CONCRETE EXAMPLE

Consulting organizations generate documents as part
of every project they undertake. Consider the task of
assigning meta-data to these documents so that they
can be searched and browsed more effectively in
future.

Each document has multiple fields (Table 1),
some containing free text, and others filled with
categorical or nominal values. We consider filling
each meta-data field by the authors or curators as a
task. The tasks in each document are carried out step
by step by the authors, using multiple prediction
systems like enterprise-internal search engines,
classifiers and recommendation systems to find
relevant contents or items for each field. From the
prediction systems’ point of view, the input of the
first task is a “bag of features” obtained from the
text in the document. The input of the second task is
the merged bag of features, including both the input
and output of the previous task. Similarly, the input
of any later task contains the initial input and all the
outputs of the tasks prior the current one. Since the
task orders are not fixed, any subset of the tasks can
be possibly carried out before some task. Note that
the output of each task is examined and corrected by
the user, which corresponds to the user feedback that
is propagated to subsequent prediction tasks.

Given a large collection of archived documents,
we want to learn an ordering of the tasks so that the
overall utility of the system is maximized through
efficient propagation of user feedback. However, the
order in which the fields in these documents were
filled by the authors was not recorded. Therefore,
from such a data collection, we cannot directly
ascertain which task orders are more preferred, in
terms of a given utility function. We must develop a
new way for learning the optimal task order, as
described below.

3 LEARNING TO ORDER

We want to formulate the problem in a way that
good ordering of tasks can be automatically learned
from the data. For this, we split the dataset into three
subsets, and call them the task-training set, the
order-training set and the test set, respectively. We
use the task-training set to learn task-specific
models for each task. We use the order-training set
to empirically find the best ordering of the
prediction tasks. We use the test set to evaluate the
utility of the system in performing multiple tasks in
the optimal order, as determined by each of the
ordering methods, for cross-method comparison. We
restrict our attention to classification tasks in the rest
of the paper. However, the proposed task ordering
method, which is the main focus of this paper,
applies to any type of prediction tasks in general.

In the next section, we consider a naïve
approach, which gives the exact solution to the
problem but is computationally intractable. In
Section 3.2, we propose a relaxation of the objective
function in terms of partial order preferences among
prediction tasks. In Section 3.3, we demonstrate a
novel application of link analysis algorithms to find
an approximately optimal task order based on a
graph-theoretic representation of pair-wise
preferences.

3.1 A Naïve Approach

Let n be the number of training instances (e.g., IT
proposals), and m be the number of tasks per
instance. Assume that all the task-specific models,
i.e. classifiers, are already pre-trained, and the utility
metric is pre-specified as well.

Given a specific order, i.e., a sequence of m
tasks, its expected utility on all possible instances
can be empirically estimated by running the task-
specific models in the specified order on each of the
training instances, and using human-assigned labels
to evaluate the utility of the system-made
predictions. Comparing the average utility scores of
all possible orders, we can find the best order.
However, this approach is computationally
intractable because the number of possible
permutations of tasks is m!, leading to a time
complexity of O(m!n).

3.2 Partial-order Preferences

A natural choice is to relax the objective as follows:
find the sequence that best satisfies pair-wise partial-
order preferences among the tasks. In other words,
we want the sequence that maximizes the sum of the

GRAPH STRUCTURE LEARNING FOR TASK ORDERING

165

partial-order preference scores for all the pairs in
the sequence. By “partial order preference” we mean
that task i should be carried out before task j but the
two tasks do not need to be adjacent in the sequence.
We can empirically estimate the expected benefit, or
the “preference score”, for each task pair by
calculating the utility scores for a large number of
randomized orders of M tasks conditioned on “i
before j” and “i after j”, respectively. We define the
preference score of pair),(ji as the difference
between the mean utility under the first condition
and the mean utility under the second condition.
Since the number of task pairs is 2m , the partial-
order utility estimation is computationally tractable
for a moderate m.

However, no efficient algorithm is known for
deriving the optimal order based on the partial-order
preference scores. In fact, this problem is exactly
equivalent to the Linear Ordering Problem (LOP) 0,
which is known to be NP-hard. Nevertheless, this
problem formulation opens an opportunity for us to
solve the problem heuristically with link structure
analysis over the task dependence network.

3.3 A Novel Application of Link
Structure Analysis

The pair-wise partial-order preferences over tasks
can be represented using a fully connected directed
graph that we call the partial-order-preference
network, or POPNET for short. The nodes represent
tasks. A directed edge from node i to node j
represents the preference (in terms of difference in
utility scores) for ordering task j before task i. If it is
more preferable to order task j before task i, then the
directed edge from node i to node j will have a
positive weight, and the edge from node j to node i
will have a corresponding negative weight of equal
magnitude. We do this for every pair of nodes to
derive a fully connected graph, which can be
interpreted as a dependence network – a positive
edge from node i to node j means that task i depends
on task j, in the sense that we expect higher utility
by ordering task j before task i. Intuitively, this
means that our goal is to place those tasks earlier in
the global order, that many other tasks depend on.

This intuition enables us to leverage standard
link analysis algorithms for heuristically ordering
the tasks. Recall that in conventional link structure
methods like HITS, a good “authority” is defined as
a node with in-links from many good hubs, and a
good “hub” is defined as a node with out-links
pointing to many good authorities 0. Applying this
concept to our problem, a good authority
corresponds to a task that meets the partial-order

preferences simultaneously for multiple task pairs if
it is carried out earlier. Intuitively, the authority
scores computed from POPNET are good heuristics
for task ordering. Moreover, the authority scores
also imply the transitivity of partial-order
preferences, i.e., if task A is more preferable than
task B for earlier placement, and if task B is more
preferable than task C, then task A is more
preferable than task C.

Similarly, we can also apply the PageRank
algorithm 0 to the POPNET matrix, so that
“popular” nodes (i.e., nodes with high PageRank)
will correspond to those nodes that many other
nodes in the graph link to, and hence correspond to
tasks that many other tasks depend on. On the other
hand, nodes that are not dependencies of other nodes
will receive a low PageRank and end up towards the
later part of the total order. This makes intuitive
sense since these nodes correspond to tasks that are
less crucial towards successfully solving other tasks.

Note that due to the special semantics of the
ordering problem, the adjacency matrix (say, P) of
the POPNET graph is skew symmetric i.e. PT = –P.
This special structure is different from the structure
of Web graph, where link analysis algorithms are
conventionally applied 00. It is easy to show that for
a skew symmetric adjacency matrix, the hub score
and authority score of each node are identical (since

PPPPPP TT ×−==).

Table 1: Meta data fields of documents.

Keywords,
ItemType,
IndustryKeywords,
TechnologyKeywords,
VendorProductKeywords, BusinessFunctionKeywords,
TopicTags,
Creator,
Submitter,
Modifier,
Alliances,
Offerings,
Client,
PertinentToOrgUnit,
PertinentToServiceLine, PertinentToDomainSpecialty,
PertinentToWorkgroup,
PertinentToCountry

To summarize, our solution for task ordering
consists of two steps: first, use a training set to
estimate the pair-wise partial-order preferences
(Section 3), and second, apply link analysis to
POPNET for task ordering. In the second step, we
can use either HITS or PageRank as two alternative
algorithms. We name these variants of our approach
as POP.HITS and POP.PAGERANK, respectively.

ICEIS 2009 - International Conference on Enterprise Information Systems

166

The time complexity of the first step is
)(2kmO where k is the number of randomized

sequences of size m for each task pair in the
calculation of partial-order preferences. The time
complexity of the second step is)(2mO with a
conventional Subspace Iteration algorithm to
compute the first eigenvectors in the HITS or
PageRank method.

4 DATASETS

We collected a set of 33,000 business proposals
(“documents”) from Accenture, a large consulting
organization. Each of the documents is associated
with a list of 18 metadata fields, as shown in Table
1.

The number of tasks for our dataset is 18, which
is relatively small compared to the number of tasks
that might arise in some other potential applications,
e.g. diagnostic tests in the medical domain, or
potentially hundreds of tests for troubleshooting
complex aircraft failures. Solving the NP-hard LOP
problem has an exponential time complexity, which
may not be tractable for the large number of tasks;
heuristic approaches using HITS or PageRank
provide alternative solutions for scalability.
Nevertheless, the relatively small number of tasks in
the Accenture dataset enables us to compute the
LOP optimal solution, and to compare its
performance with that of using HITS, PageRank and
other baseline methods in a controlled setting.
Evaluations using datasets with larger numbers of
tasks requires substantial development of those
benchmark datasets, which is beyond the scope of
this paper.

5 EXPERIMENTS

We conducted a comparative evaluation of the two
approaches proposed in this paper – namely
POP.HITS, and POP.PAGERANK. We further
compare these approaches against three baselines –
(i) RANDOM: The average performance of using
arbitrary orders, (ii) EXPERT: A task order
proposed by a team of domain experts, and (iii)
LOP: An exact solution to the LOP problem. We use
an off-the-shelf state of the art exact solver as
described in 0, that uses a branch and bound search
with several heuristics to speed up the search for the
best order. Nevertheless, while matrices up to 20x20
take less than 5 seconds to solve, a 35x35 matrix

takes more than 10 minutes, due to a time
complexity that depends on the factorial of the size
of the matrix. The output of each of these methods is
an order in which the task of filling each field should
be performed, aiming to maximize the utility of all
systems in the process and hence minimizing human
effort. Therefore, comparing these methods amounts
to comparing the overall accuracy of the predictions
made by the classifiers used in the corresponding
filling order.

5.1 Experimental Setting

We used 33,000 structured documents which is a
subset of the Accenture data (cf. Section 4), and
divided them into three non-overlapping parts as
described in Section 3 – task-training set (12,000
documents), order-training set (3,000 documents),
and test set (18,000 documents).

Using the task-training set, we trained an SVM
classifier for each of the meta-data fields – i.e., one
field at a time was chosen as the target for
prediction, and the rest of the fields were used as the
source or predictor variables. We pick SVM
classifiers for each task, which have been reported as
competitive performers on a variety of domains 0.
Next, the fields of the documents in the order-
training set were randomly permuted and the
classifiers trained in the previous step were used to
make predictions on the fields in these random
orders. Note that we can use multiple permutations
of fields for each document to derive a better
estimate of the pair-wise preferences, limited only
by computational resources. In this paper, we limit
ourselves to one permutation per document. The
performance statistics of the classifiers were then
used to populate the POPNET matrix. Finally, the
optimal order derived in the previous step was used
to determine the order in which predictions would be
made for the fields of all documents in the test set.
The overall performance of the classifiers was then
measured on the Test set.

5.2 Performance Measures

We evaluated the performance of the proposed and
the baseline methods using the F1 metric, which is
the harmonic mean of recall (fraction of relevant
items retrieved) and precision (fraction of retrieved
items that are relevant) 0. Higher F1 values signify
better performance, and are attained only when both
recall and precision are high, thus providing a
reliable summary of classification performance.

To measure effectiveness across a wide range of
categories that may appear with different

GRAPH STRUCTURE LEARNING FOR TASK ORDERING

167

frequencies in the dataset, we report micro-averaged
F1 as well as macro-averaged F1. Micro-averaging
gives equal weight to each individual prediction, and
hence, is dominated by categories with a large
number of documents. On the other hand, macro-
averaging gives equal weight to each category, and
hence, may be useful in highlighting the
performance on rare categories 0.

5.3 Results

Table 2 shows the performance obtained using
different task ordering approaches. We run each
method (except EXPERT) ten times to estimate the
mean and the standard error of the performance in
terms of micro-averaged and macro-averaged F1.
For each pair of methods, we conducted a sign test
(with n = total number of binary decisions on which
the two methods in the pair differed, for each field of
each document in the test set). The differences
among the performance of EXPERT, LOP,
POP.HITS, and POP.PAGERANK are statistically
insignificant, whereas the improvement of any of
these methods over the RANDOM baseline is highly
statistically significant (p-value << 1%).

Table 2: Comparison of task ordering approaches (mean ±
s.e.).

Method Micro
averaged F1

Macro
averaged F1

RANDO
M 0.5261 ± 0.0002 0.3294 ± 0.0015

EXPERT 0.6005 ± 0.0000 0.4216 ± 0.0000

LOP 0.5991 ± 0.0009 0.4175 ± 0.0007

POP.
HITS 0.5943 ± 0.0000 0.4198 ± 0.0000

 POP.
 PAGERANK 0.5927 ± 0.0050 0.4140 ± 0.0015

POP.HITS beats RANDOM by a substantial
margin – 27% in terms of macro F1 and 13% in
terms of micro F1. Hence, our approach provides an
effective way of choosing an optimal order in the
absence of any domain knowledge as well as
understanding of the prediction systems, in which
case, the user may be forced to choose an arbitrary
(random) task order. Given that the space of possible
permutations grows at a factorial rate with respect to
the number of tasks, it is unlikely that such an
arbitrary order would perform well on average.

POP.HITS provides competitive performance
against the EXPERT order, with the difference being

statistically insignificant. Note that the EXPERT
order requires domain knowledge and sufficient
understanding of the sequence of tasks and their
dependencies. Such expertise might not be readily
available. Our proposed approach automatically
infers such task dependencies and suggests a task
order that performs close enough to the order that
would be proposed by a panel of experts.

The differences in the performance of the link
analysis based approaches (POP.HITS and
POP.PAGERANK) and the exact LOP solution are
also statistically insignificant. While LOP is known
to be an NP-hard problem, making it not scalable to
applications with a large number of tasks, the
proposed approaches provide a computationally
efficient alternative through the use of HITS and
PageRank, which have been successfully applied to
Web-scale problems.

An interesting observation is that – on the one
hand, the domain experts have sufficient knowledge
of the tasks, but they may not understand the
behavior and dynamics of various prediction
systems – i.e., how the systems combine various
features to make a sequence of predictions. This
might lead to suboptimal task orders that do not take
into account the complex interactions of system
predictions. On the other hand, our proposed
approach lacks any domain knowledge whatsoever,
but it can observe the empirical behavior of systems
(i.e., any choice of retrieval or classification
systems) on the given set of tasks, to suggest a near-
optimal order. How to combine the knowledge of
domain experts and the statistical prowess of the
proposed method is an interesting topic for future
exploration.

6 DISCUSSIONS

The importance of research on IR in context has
been realized in recent years 0. Users rarely perform
IR tasks in isolation; instead, studies show that an
overall information-seeking task often involves a
multitasking search session comprising of a
sequence of related searches, affected by various
contextual factors like time, place, and user feedback
0. However, thorough investigations in leveraging
context are relatively sparse so far. Yang et al.
investigated how to improve information distillation
tasks (retrieval, adaptive filtering and novelty
detection) by leveraging the history of user
interactions as the context 0. In this paper, we
approach the problem of IR in context from a
different angle, i.e., how to improve the total utility
of multiple systems in a multi-step process with user

ICEIS 2009 - International Conference on Enterprise Information Systems

168

interactions, specifically, by offering a novel
solution to the problem of optimally ordering a set of
interrelated prediction tasks.

The partial-order preferences part of our
formulation for the task ordering problem relates our
work to Cohen et al. 0, who used a similar pair-wise
preference formulation for the problem of ranking
Web pages when user feedback is available in the
form of pair-wise preferences. However, their main
focus was on finding a good linear combination of
preference functions. The problem of finding the
optimal total order was addressed using a simple
greedy algorithm, which provides an approximate
solution within a factor of two of the optimal order.
It is noteworthy that our solution for the problem
goes beyond other approximation algorithms for
LOP. That is, the link-analysis based approach for
heuristically optimizing the task order enables us to
leverage the transitivity of partial-order preferences,
which is not a property of other algorithmic
approximations for LOP. By modelling such
transitive relations explicitly, we hope to make our
method more robust against noisy or insufficient
data by estimating all pair-wise preferences more
reliably through the use of the transitivity. It is
possible to combine the strength of our current
method with those of other approximation
algorithms for LOP, which is an interesting topic for
future research.

In our proposed approach, the pair-wise task
order preferences are empirically estimated by
directly observing the performance of the classifiers
with respect to different task orders. This has the
benefit of allowing direct optimization of arbitrary
performance metrics, for instance, domain-specific
utility metrics that assign different costs to each
prediction task. It would be interesting to experiment
with different choices of the metric used to populate
the partial order matrix and the metric used to
evaluate the system, and assessing the effect of
matching vs. mismatching the two choices.

7 CONCLUSIONS

This paper examines the task ordering problem for
prediction systems in a multi-step process. We
propose a formulation of the problem in terms of
pair-wise preferences of task orders that are learned
in a supervised fashion and represented using
directed graphs. Such a formulation naturally lends
itself to the application of link analysis approaches
like HITS and PageRank, which provide reasonable
heuristics for optimizing the overall utility of a
sequence of prediction tasks, and more importantly,

enable efficient computation of optimal sequence for
applications with a large number of tasks.
Experiments on a real collection of structured
documents provide promising empirical evidence for
the effectiveness of the proposed methods: the
performance in terms of macro and micro F1 of the
classifiers improved by 27% and 13%, respectively,
over the performance of random ordering, and was
statistically indistinguishable from the performance
obtained when using an expert-suggested ordering of
the tasks.

REFERENCES

Brin, S. and Page, L. The anatomy of a large-scale
hypertextual Web search engine. Proceedings of the
7th World-Wide Web Conference, (1998)

Caruana, R. and Niculescu-Mizil, A. An empirical
comparison of supervised learning algorithms.
Proceedings of the 23rd international conference on
Machine learning (2006)

Charon, I. and Hudry, O. A branch-and-bound algorithm
to solve the linear ordering problem for weighted
tournaments. Discrete Applied Mathematics (2006)

Cohen, W.W. and Schapire, R.E. and Singer, Y. Learning
to order things. Journal of Artificial Intelligence
Research (1999)

Ingwersen, P. and Jarvelin, K. Information retrieval in
context: IRiX. ACM SIGIR Forum (2005)

Joachims, T. Text categorization with support vector
machines: Learning with many relevant features.
Proceedings of ECML-98, 10th European Conference
on Machine Learning (1998)

Kleinberg, J. Authoritative sources in a hyperlinked
environment. ACM-SIAM Symposium on Discrete
Algorithms, (1998)

Lewis, L. Evaluating Text Categorization, Proceedings of
Speech and Natural Language Processing Workshop
(1991)

Ozmutlu, S. and Ozmutlu, H.C. and Spink, A.
Multitasking Web searching and implications for
design. Proceedings of the American Society for
Information Science and Technology (2003)

Reinelt G. The Linear Ordering Problem: Algorithms and
Applications. Research and Exposition in
Mathematics, (1985)

Rijsbergen, C.J. Information Retrieval. Butterworths
(1979)

Yang, Y. and Lad, A. and Lao, N. and Harpale, A. and
Kisiel, B. and Rogati, M. Utility-based information
distillation over temporally sequenced documents.
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval (2007)

GRAPH STRUCTURE LEARNING FOR TASK ORDERING

169

