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Abstract: In many practical applications, multiple interrelated tasks must be accomplished sequentially through user 
interaction with retrieval, classification and recommendation systems. The ordering of the tasks may have a 
significant impact on the overall utility (or performance) of the systems; hence optimal ordering of tasks is 
desirable. However, manual specification of optimal ordering is often difficult when task dependencies are 
complex, and exhaustive search for the optimal order is computationally intractable when the number of 
tasks is large. We propose a novel approach to this problem by using a directed graph to represent partial-
order preferences among task pairs, and using link analysis (HITS and PageRank) over the graph as a 
heuristic to order tasks based on how important they are in reinforcing and propagating the ordering 
preference. These strategies allow us to find near-optimal solutions with efficient computation, scalable to 
large applications. We conducted a comparative evaluation of the proposed approach on a form-filling 
application involving a large collection of business proposals from the Accenture Consulting & Technology 
Company, using SVM classifiers to recommend keywords, collaborators, customers, technical categories 
and other related fillers for multiple fields in each proposal. With the proposed approach we obtained near-
optimal task orders that improved the utility of the recommendation system by 27% in macro-averaged F1, 
and 13% in micro-averaged F1, compared to the results obtained using arbitrarily chosen orders, and that 
were competitive against the best order suggested by domain experts. 

1 INTRODUCTION 

Search, classification and recommendation 
techniques have been intensively studied and 
successfully applied as sub-domains of Information 
Retrieval (IR). An open research challenge is to 
make the best use of these techniques in a global 
context, to accomplish a higher level goal through a 
multiple-step process where task-specific search 
engines, classifiers and recommendation systems are 
needed in different steps. User relevance judgments 
in early steps are automatically propagated to later 
steps to enrich the context for later tasks. While 
research on “IR in context” has recently gained 
prominence 0, how to define and leverage context 
remains an important and challenging problem.  

Consider the process of creating a project 
proposal in a large consulting organization. The 
principal investigators would rely on past 
information to make several key decisions about the 
new project, e.g., retrieving past proposals that are 

similar to the current one, finding companies that 
have been targeted (successfully or unsuccessfully) 
with this kind of project, choosing experts who 
should be included, engagements and achievements 
from the past that are relevant to the current 
proposal, and so on. 

That is, in order to attain a complex goal, the 
users need to go through a multi-step process, and 
interact with different systems for retrieval, 
classification, expert finding, customer selection, 
etc., which provide useful suggestions to the user at 
each decision-making step, and receive feedback 
from the user. The performance of the system at 
each step is “context-sensitive”, i.e., it depends on 
the previously accomplished tasks because the user 
feedback at any of the earlier steps can be used as 
additional input to the system in each later step. The 
over-all performance, or the “utility”, of the system 
in the multi-step process depends on the order of the 
tasks being carried out. Hence, finding the optimal 
order of tasks is important. However, manual 
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specification of the near-optimal ordering may be 
non-trivial when the high-level goal is sufficiently 
complex or the dependencies among a large number 
of tasks are subtle.  

We present a formulation of the task ordering 
problem as utility optimization for systems in a 
multi-step process and propose a relaxation of the 
objective function in terms of pair-wise order task 
order preferences. We show that the problem of 
finding the optimal order from partial orders is 
equivalent to a known NP-Hard problem. We 
propose an approximation in the form of a novel 
application of link analysis (HITS and PageRank) 
that is effective as well as computationally efficient. 

2 A CONCRETE EXAMPLE 

Consulting organizations generate documents as part 
of every project they undertake. Consider the task of 
assigning meta-data to these documents so that they 
can be searched and browsed more effectively in 
future. 

Each document has multiple fields (Table 1), 
some containing free text, and others filled with 
categorical or nominal values. We consider filling 
each meta-data field by the authors or curators as a 
task. The tasks in each document are carried out step 
by step by the authors, using multiple prediction 
systems like enterprise-internal search engines, 
classifiers and recommendation systems to find 
relevant contents or items for each field. From the 
prediction systems’ point of view, the input of the 
first task is a “bag of features” obtained from the 
text in the document. The input of the second task is 
the merged bag of features, including both the input 
and output of the previous task. Similarly, the input 
of any later task contains the initial input and all the 
outputs of the tasks prior the current one. Since the 
task orders are not fixed, any subset of the tasks can 
be possibly carried out before some task. Note that 
the output of each task is examined and corrected by 
the user, which corresponds to the user feedback that 
is propagated to subsequent prediction tasks. 

Given a large collection of archived documents, 
we want to learn an ordering of the tasks so that the 
overall utility of the system is maximized through 
efficient propagation of user feedback. However, the 
order in which the fields in these documents were 
filled by the authors was not recorded. Therefore, 
from such a data collection, we cannot directly 
ascertain which task orders are more preferred, in 
terms of a given utility function. We must develop a 
new way for learning the optimal task order, as 
described below. 

3 LEARNING TO ORDER 

We want to formulate the problem in a way that 
good ordering of tasks can be automatically learned 
from the data. For this, we split the dataset into three 
subsets, and call them the task-training set, the 
order-training set and the test set, respectively. We 
use the task-training set to learn task-specific 
models for each task. We use the order-training set 
to empirically find the best ordering of the 
prediction tasks. We use the test set to evaluate the 
utility of the system in performing multiple tasks in 
the optimal order, as determined by each of the 
ordering methods, for cross-method comparison. We 
restrict our attention to classification tasks in the rest 
of the paper. However, the proposed task ordering 
method, which is the main focus of this paper, 
applies to any type of prediction tasks in general.  

In the next section, we consider a naïve 
approach, which gives the exact solution to the 
problem but is computationally intractable. In 
Section 3.2, we propose a relaxation of the objective 
function in terms of partial order preferences among 
prediction tasks. In Section 3.3, we demonstrate a 
novel application of link analysis algorithms to find 
an approximately optimal task order based on a 
graph-theoretic representation of pair-wise 
preferences. 

3.1 A Naïve Approach 

Let n be the number of training instances (e.g., IT 
proposals), and m be the number of tasks per 
instance. Assume that all the task-specific models, 
i.e. classifiers, are already pre-trained, and the utility 
metric is pre-specified as well.  

Given a specific order, i.e., a sequence of m 
tasks, its expected utility on all possible instances 
can be empirically estimated by running the task-
specific models in the specified order on each of the 
training instances, and using human-assigned labels 
to evaluate the utility of the system-made 
predictions. Comparing the average utility scores of 
all possible orders, we can find the best order. 
However, this approach is computationally 
intractable because the number of possible 
permutations of tasks is m!, leading to a time 
complexity of O(m!n). 

3.2 Partial-order Preferences 

A natural choice is to relax the objective as follows: 
find the sequence that best satisfies pair-wise partial-
order preferences among the tasks. In other words, 
we want the sequence that maximizes the sum of the 
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partial-order preference scores for all the pairs in 
the sequence. By “partial order preference” we mean 
that task i should be carried out before task j but the 
two tasks do not need to be adjacent in the sequence. 
We can empirically estimate the expected benefit, or 
the “preference score”, for each task pair by 
calculating the utility scores for a large number of 
randomized orders of M tasks conditioned on “i 
before j” and “i after j”, respectively. We define the 
preference score of pair ),( ji  as the difference 
between the mean utility under the first condition 
and the mean utility under the second condition. 
Since the number of task pairs is 2m , the partial-
order utility estimation is computationally tractable 
for a moderate m. 

However, no efficient algorithm is known for 
deriving the optimal order based on the partial-order 
preference scores. In fact, this problem is exactly 
equivalent to the Linear Ordering Problem (LOP) 0, 
which is known to be NP-hard. Nevertheless, this 
problem formulation opens an opportunity for us to 
solve the problem heuristically with link structure 
analysis over the task dependence network. 

3.3 A Novel Application of Link 
Structure Analysis 

The pair-wise partial-order preferences over tasks 
can be represented using a fully connected directed 
graph that we call the partial-order-preference 
network, or POPNET for short. The nodes represent 
tasks. A directed edge from node i to node j 
represents the preference (in terms of difference in 
utility scores) for ordering task j before task i. If it is 
more preferable to order task j before task i, then the 
directed edge from node i to node j will have a 
positive weight, and the edge from node j to node i 
will have a corresponding negative weight of equal 
magnitude. We do this for every pair of nodes to 
derive a fully connected graph, which can be 
interpreted as a dependence network – a positive 
edge from node i to node j means that task i depends 
on task j, in the sense that we expect higher utility 
by ordering task j before task i. Intuitively, this 
means that our goal is to place those tasks earlier in 
the global order, that many other tasks depend on. 

This intuition enables us to leverage standard 
link analysis algorithms for heuristically ordering 
the tasks. Recall that in conventional link structure 
methods like HITS, a good “authority” is defined as 
a node with in-links from many good hubs, and a 
good “hub” is defined as a node with out-links 
pointing to many good authorities 0. Applying this 
concept to our problem, a good authority 
corresponds to a task that meets the partial-order 

preferences simultaneously for multiple task pairs if 
it is carried out earlier. Intuitively, the authority 
scores computed from POPNET are good heuristics 
for task ordering. Moreover, the authority scores 
also imply the transitivity of partial-order 
preferences, i.e., if task A is more preferable than 
task B for earlier placement, and if task B is more 
preferable than task C, then task A is more 
preferable than task C.  

Similarly, we can also apply the PageRank 
algorithm 0 to the POPNET matrix, so that 
“popular” nodes (i.e., nodes with high PageRank) 
will correspond to those nodes that many other 
nodes in the graph link to, and hence correspond to 
tasks that many other tasks depend on. On the other 
hand, nodes that are not dependencies of other nodes 
will receive a low PageRank and end up towards the 
later part of the total order. This makes intuitive 
sense since these nodes correspond to tasks that are 
less crucial towards successfully solving other tasks.  

Note that due to the special semantics of the 
ordering problem, the adjacency matrix (say, P) of 
the POPNET graph is skew symmetric i.e. PT = –P. 
This special structure is different from the structure 
of Web graph, where link analysis algorithms are 
conventionally applied 00. It is easy to show that for 
a skew symmetric adjacency matrix, the hub score 
and authority score of each node are identical (since 

PPPPPP TT ×−== ).  

Table 1: Meta data fields of documents. 

Keywords,  
ItemType,  
IndustryKeywords,  
TechnologyKeywords,  
VendorProductKeywords, BusinessFunctionKeywords,  
TopicTags,  
Creator,  
Submitter,  
Modifier,  
Alliances,  
Offerings,  
Client,  
PertinentToOrgUnit,  
PertinentToServiceLine, PertinentToDomainSpecialty, 
PertinentToWorkgroup,  
PertinentToCountry

To summarize, our solution for task ordering 
consists of two steps: first, use a training set to 
estimate the pair-wise partial-order preferences 
(Section 3), and second, apply link analysis to 
POPNET for task ordering. In the second step, we 
can use either HITS or PageRank as two alternative 
algorithms. We name these variants of our approach 
as POP.HITS and POP.PAGERANK, respectively.  
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The time complexity of the first step is 
)( 2kmO where k is the number of randomized 

sequences of size m  for each task pair in the 
calculation of partial-order preferences. The time 
complexity of the second step is )( 2mO  with a 
conventional Subspace Iteration algorithm to 
compute the first eigenvectors in the HITS or 
PageRank method.  

4 DATASETS  

We collected a set of 33,000 business proposals 
(“documents”) from Accenture, a large consulting 
organization. Each of the documents is associated 
with a list of 18 metadata fields, as shown in Table 
1. 

The number of tasks for our dataset is 18, which 
is relatively small compared to the number of tasks 
that might arise in some other potential applications, 
e.g. diagnostic tests in the medical domain, or 
potentially hundreds of tests for troubleshooting 
complex aircraft failures. Solving the NP-hard LOP 
problem has an exponential time complexity, which 
may not be tractable for the large number of tasks; 
heuristic approaches using HITS or PageRank 
provide alternative solutions for scalability. 
Nevertheless, the relatively small number of tasks in 
the Accenture dataset enables us to compute the 
LOP optimal solution, and to compare its 
performance with that of using HITS, PageRank and 
other baseline methods in a controlled setting. 
Evaluations using datasets with larger numbers of 
tasks requires substantial development of those 
benchmark datasets, which is beyond the scope of 
this paper. 

5 EXPERIMENTS 

We conducted a comparative evaluation of the two 
approaches proposed in this paper – namely 
POP.HITS, and POP.PAGERANK. We further 
compare these approaches against three baselines – 
(i) RANDOM: The average performance of using 
arbitrary orders, (ii) EXPERT: A task order 
proposed by a team of domain experts, and (iii) 
LOP: An exact solution to the LOP problem. We use 
an off-the-shelf state of the art exact solver as 
described in 0, that uses a branch and bound search 
with several heuristics to speed up the search for the 
best order. Nevertheless, while matrices up to 20x20 
take less than 5 seconds to solve, a 35x35 matrix 

takes more than 10 minutes, due to a time 
complexity that depends on the factorial of the size 
of the matrix. The output of each of these methods is 
an order in which the task of filling each field should 
be performed, aiming to maximize the utility of all 
systems in the process and hence minimizing human 
effort. Therefore, comparing these methods amounts 
to comparing the overall accuracy of the predictions 
made by the classifiers used in the corresponding 
filling order.  

5.1 Experimental Setting 

We used 33,000 structured documents which is a 
subset of the Accenture data (cf. Section 4), and 
divided them into three non-overlapping parts as 
described in Section 3 – task-training set (12,000 
documents), order-training set (3,000 documents), 
and test set (18,000 documents). 

Using the task-training set, we trained an SVM 
classifier for each of the meta-data fields – i.e., one 
field at a time was chosen as the target for 
prediction, and the rest of the fields were used as the 
source or predictor variables. We pick SVM 
classifiers for each task, which have been reported as 
competitive performers on a variety of domains 0. 
Next, the fields of the documents in the order-
training set were randomly permuted and the 
classifiers trained in the previous step were used to 
make predictions on the fields in these random 
orders. Note that we can use multiple permutations 
of fields for each document to derive a better 
estimate of the pair-wise preferences, limited only 
by computational resources. In this paper, we limit 
ourselves to one permutation per document. The 
performance statistics of the classifiers were then 
used to populate the POPNET matrix. Finally, the 
optimal order derived in the previous step was used 
to determine the order in which predictions would be 
made for the fields of all documents in the test set. 
The overall performance of the classifiers was then 
measured on the Test set. 

5.2 Performance Measures 

We evaluated the performance of the proposed and 
the baseline methods using the F1 metric, which is 
the harmonic mean of recall (fraction of relevant 
items retrieved) and precision (fraction of retrieved 
items that are relevant) 0. Higher F1 values signify 
better performance, and are attained only when both 
recall and precision are high, thus providing a 
reliable summary of classification performance.  

To measure effectiveness across a wide range of 
categories that may appear with different 
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frequencies in the dataset, we report micro-averaged 
F1 as well as macro-averaged F1. Micro-averaging 
gives equal weight to each individual prediction, and 
hence, is dominated by categories with a large 
number of documents. On the other hand, macro-
averaging gives equal weight to each category, and 
hence, may be useful in highlighting the 
performance on rare categories 0. 

5.3 Results 

Table 2 shows the performance obtained using 
different task ordering approaches. We run each 
method (except EXPERT) ten times to estimate the 
mean and the standard error of the performance in 
terms of micro-averaged and macro-averaged F1. 
For each pair of methods, we conducted a sign test 
(with n = total number of binary decisions on which 
the two methods in the pair differed, for each field of 
each document in the test set). The differences 
among the performance of EXPERT, LOP, 
POP.HITS, and POP.PAGERANK are statistically 
insignificant, whereas the improvement of any of 
these methods over the RANDOM baseline is highly 
statistically significant (p-value << 1%). 

Table 2: Comparison of task ordering approaches (mean ± 
s.e.). 

Method Micro 
averaged F1 

Macro 
averaged F1 

RANDO
M 0.5261 ± 0.0002 0.3294 ± 0.0015 

EXPERT 0.6005 ± 0.0000 0.4216 ± 0.0000 

LOP 0.5991 ± 0.0009 0.4175 ± 0.0007 

POP. 
HITS 0.5943 ± 0.0000 0.4198 ± 0.0000 

 POP. 
 PAGERANK 0.5927 ± 0.0050 0.4140 ± 0.0015 

POP.HITS beats RANDOM by a substantial 
margin – 27% in terms of macro F1 and 13% in 
terms of micro F1. Hence, our approach provides an 
effective way of choosing an optimal order in the 
absence of any domain knowledge as well as 
understanding of the prediction systems, in which 
case, the user may be forced to choose an arbitrary 
(random) task order. Given that the space of possible 
permutations grows at a factorial rate with respect to 
the number of tasks, it is unlikely that such an 
arbitrary order would perform well on average. 

POP.HITS provides competitive performance 
against the EXPERT order, with the difference being 

statistically insignificant. Note that the EXPERT 
order requires domain knowledge and sufficient 
understanding of the sequence of tasks and their 
dependencies. Such expertise might not be readily 
available. Our proposed approach automatically 
infers such task dependencies and suggests a task 
order that performs close enough to the order that 
would be proposed by a panel of experts. 

The differences in the performance of the link 
analysis based approaches (POP.HITS and 
POP.PAGERANK) and the exact LOP solution are 
also statistically insignificant. While LOP is known 
to be an NP-hard problem, making it not scalable to 
applications with a large number of tasks, the 
proposed approaches provide a computationally 
efficient alternative through the use of HITS and 
PageRank, which have been successfully applied to 
Web-scale problems. 

An interesting observation is that – on the one 
hand, the domain experts have sufficient knowledge 
of the tasks, but they may not understand the 
behavior and dynamics of various prediction 
systems – i.e., how the systems combine various 
features to make a sequence of predictions. This 
might lead to suboptimal task orders that do not take 
into account the complex interactions of system 
predictions. On the other hand, our proposed 
approach lacks any domain knowledge whatsoever, 
but it can observe the empirical behavior of systems 
(i.e., any choice of retrieval or classification 
systems) on the given set of tasks, to suggest a near-
optimal order. How to combine the knowledge of 
domain experts and the statistical prowess of the 
proposed method is an interesting topic for future 
exploration. 

6 DISCUSSIONS 

The importance of research on IR in context has 
been realized in recent years 0. Users rarely perform 
IR tasks in isolation; instead, studies show that an 
overall information-seeking task often involves a 
multitasking search session comprising of a 
sequence of related searches, affected by various 
contextual factors like time, place, and user feedback 
0. However, thorough investigations in leveraging 
context are relatively sparse so far. Yang et al. 
investigated how to improve information distillation 
tasks (retrieval, adaptive filtering and novelty 
detection) by leveraging the history of user 
interactions as the context 0. In this paper, we 
approach the problem of IR in context from a 
different angle, i.e., how to improve the total utility 
of multiple systems in a multi-step process with user 
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interactions, specifically, by offering a novel 
solution to the problem of optimally ordering a set of 
interrelated prediction tasks.  

The partial-order preferences part of our 
formulation for the task ordering problem relates our 
work to Cohen et al. 0, who used a similar pair-wise 
preference formulation for the problem of ranking 
Web pages when user feedback is available in the 
form of pair-wise preferences. However, their main 
focus was on finding a good linear combination of 
preference functions. The problem of finding the 
optimal total order was addressed using a simple 
greedy algorithm, which provides an approximate 
solution within a factor of two of the optimal order. 
It is noteworthy that our solution for the problem 
goes beyond other approximation algorithms for 
LOP. That is, the link-analysis based approach for 
heuristically optimizing the task order enables us to 
leverage the transitivity of partial-order preferences, 
which is not a property of other algorithmic 
approximations for LOP. By modelling such 
transitive relations explicitly, we hope to make our 
method more robust against noisy or insufficient 
data by estimating all pair-wise preferences more 
reliably through the use of the transitivity. It is 
possible to combine the strength of our current 
method with those of other approximation 
algorithms for LOP, which is an interesting topic for 
future research. 

In our proposed approach, the pair-wise task 
order preferences are empirically estimated by 
directly observing the performance of the classifiers 
with respect to different task orders. This has the 
benefit of allowing direct optimization of arbitrary 
performance metrics, for instance, domain-specific 
utility metrics that assign different costs to each 
prediction task. It would be interesting to experiment 
with different choices of the metric used to populate 
the partial order matrix and the metric used to 
evaluate the system, and assessing the effect of 
matching vs. mismatching the two choices. 

7 CONCLUSIONS 

This paper examines the task ordering problem for 
prediction systems in a multi-step process. We 
propose a formulation of the problem in terms of 
pair-wise preferences of task orders that are learned 
in a supervised fashion and represented using 
directed graphs. Such a formulation naturally lends 
itself to the application of link analysis approaches 
like HITS and PageRank, which provide reasonable 
heuristics for optimizing the overall utility of a 
sequence of prediction tasks, and more importantly, 

enable efficient computation of optimal sequence for 
applications with a large number of tasks. 
Experiments on a real collection of structured 
documents provide promising empirical evidence for 
the effectiveness of the proposed methods: the 
performance in terms of macro and micro F1 of the 
classifiers improved by 27% and 13%, respectively, 
over the performance of random ordering, and was 
statistically indistinguishable from the performance 
obtained when using an expert-suggested ordering of 
the tasks. 
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