
METHOD MANUAL BASED PROCESS GENERATION AND
VALIDATION

Peter Killisperger
Competence Center Information Systems, University of Applied Sciences - München, Germany

Advanced Computing Research Centre, University of South Australia, Adelaide, Australia

Georg Peters
Department of Computer Science and Mathematics, University of Applied Sciences - München, Germany

Markus Stumptner
Advanced Computing Research Centre, University of South Australia, Adelaide, Australia

Thomas Stückl
System and Software Processes, Siemens Corporate Technology, München, Germany

Keywords: Software process, Instantiation, Automation.

Abstract: In order to use software processes for a spectrum of projects they are described in a generic way. Due to the
uniqueness of software development, processes have to be adapted to project specific needs to be effectively
applicable in projects. Siemens AG has started research projects aiming to improve this instantiation of pro-
cesses. A system supporting project managers in instantiation of software processes at Siemens AG is being
developed. It aims not only to execute instantiation decision made by humans but to automatically restore
correctness of the resulting process.

1 INTRODUCTION

Explicitly defined software processes for the devel-
opment of software are used by most large orga-
nizations. At Siemens, business units define soft-
ware processes within a company-wide Siemens Pro-
cess Framework (SPF) (Schmelzer and Sesselmann,
2004). Because of their size and complexity, they are
not defined for projects individually but in a generic
way as reference processes for application in any soft-
ware project of the particular business unit.

Due to the individuality of software development,
reference processes have to be instantiated to be ap-
plicable in projects. That is, the generic description
of the process is specialized and adapted to the needs
of a particular project. Until now, reference processes
are used as general guideline and are instantiated only
minimally. A more far reaching instantiation is de-
sirable, because manual instantiation is error-prone,

time consuming and thus expensive due to the com-
plexity of processes and due to constraints of the SPF.
Siemens defined an improved instantiation to com-
prise tailoring, resource allocation and customization
of artifacts. The latter is the individualization of gen-
eral artifacts for a project and their association with
files implementing them.

In order to reduce effort for instantiation consider-
ably, tool support has to be extended. We have devel-
oped a flexible architecture for systems that execute
instantiation decisions made by humans and automat-
ically restore correctness of the resulting process. We
define a process to be correct when it complies with
the restrictions on the process defined in a method
manual. A method manual is a meta model defining
permitted constructs in a process, derived from orga-
nizational restrictions (e.g. SPF).

In this paper we describe the developed archi-
tecture for instantiation systems executing decisions

256 Killisperger P., Peters G., Stumptner M. and Stückl T. (2009).
METHOD MANUAL BASED PROCESS GENERATION AND VALIDATION.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
256-261
DOI: 10.5220/0002014102560261
Copyright c© SciTePress

made by humans and restoring correctness of the re-
sulting process. We show the implementation of the
architecture for instantiation of a reference process of
a particular business unit of Siemens AG.

The paper is structured as follows: Section 2 dis-
cusses related work. Section 3 describes the devel-
oped instantiation approach and its architecture. A
case study describing the implementation of the ap-
proach at Siemens AG follows in Section 4. In Sec-
tion 5 we evaluate our approach and draw some con-
clusions in Section 6.

2 RELATED WORK

Instantiation of processes to project specific needs
has been subject to intensive research in recent years.
In early software process approaches it was thought
that a perfect process can be developed which fits
all software developing organizations and all types of
projects (Boehm and Belz, 1990). It was soon rec-
ognized that no such process exists (Basili and Rom-
bach, 1991), (Osterweil, 1987). Due to the dynamics
of software development, every project has individual
needs. Therefore, the description of a general process
(i.e. the reference process) has to be adapted.

Early approaches to overcome this problem have
been developed e.g. by (Boehm and Belz, 1990)
and (Alexander and Davis, 1991). Many different
approaches have been proposed since then. For ex-
ample, the situational method engineering approach
(ME) (Brinkkemper, 1996) emphasizes bottom-up as-
sembly of project specific methods from fragments,
requiring very detailed fragment specifications. In
contrary to ME, approaches like SLANG (Bandinelli
and Fuggetta, 1993) regard processes as programs,
enacted by machines (Feiler and Humphrey, 1993).

Although much effort has been put into improving
the adaption of software processes to project specific
needs, none has become accepted in industry as the
standard so far. An important reason is the variety
of processes used. For instance, (Yoon et al., 2001)
developed an approach for adapting processes in the
form of Activity-Artifact-Graphs. Since the process
is composed of activities and artifacts, only the oper-
ations ”addition” and ”deletion” of activities and ar-
tifacts are supported as well as ”split” and ”merge”
of activities. Another example is the V-Model (BMI,
2004), a process model developed for the German
public sector. It offers a toolbox of process mod-
ules and execution strategies. The approach for de-
veloping a project specific software process is to se-
lect required process modules and an execution strat-
egy. Due to these dependencies on the Meta mod-

els, none of the existing approaches offers a complete
and semi-automated method for instantiating Siemens
processes.

Since the main purpose of Siemens software pro-
cesses is to offer high level guidance for humans,
adaptation approaches for business processes are also
of interest. Approaches for processes and workflows
of higher complexity are often restricted to only a
subset of adaptation operations. For instance, config-
urable EPCs (C-EPCs) (Rosemann and van der Aalst,
2007) enable customization of reference processes.
However, the approach only allows activities to be
switched on/off, the replacement of gateways and the
definition of dependencies of adaptation decisions.

(Armbrust et al., 2008) developed an approach for
the management of process variants. A process is
split up in stable parts and variant parts. The pro-
cess is adapted by choosing one variant at the start of
a project. Although the need for further adaptations
during the execution of the process has been identi-
fied, no standardization or tool support is provided.

(Allerbach et al., 2008) developed an approach
called Provop. Processes are adapted by using change
operations which are grouped in Options. Options
have to be predefined and can be used to adapt pro-
cesses, but they do not guarantee correctness.

Existing tools (e.g. Rational’s Method Composer
(RMC) (IBM, 2008)) provide only minimal support
in instantiation. Decisions made by humans have to
be executed mostly manually. Approaches have been
developed making the user aware of inconsistencies
(Kabbaj et al., 2008), but the actual correction of the
process is still left to humans.

3 META MODEL BASED
ARCHITECTURE

In order to improve current situation, we propose an
architecture for instantiation systems that execute in-
stantiation decisions made by humans and automati-
cally restore correctness of the resulting process.

The actual changes in the process are executed
by elemental operations on the process. Examples
are ”Deleting an Activity” and ”Association of a Re-
source with an Activity”. Existing tools allow to per-
form those changes but they do not restore correctness
of the resulting process.

For example: An activitya1 is connect by an con-
trol flow to an activitya2 which in turn is connected
by an control flow to an activitya3. If a project man-
ager wants to deletea2 in most existing tools he re-
movesa2 from the process . Additionally, he has to
take care of restoring correctness e.g. establish the

METHOD MANUAL BASED PROCESS GENERATION AND VALIDATION

257

O p e r a t i o n

+ n a m e

+ e x e c u t e I m p l e m e n t a t i o n s ()

I m p l e m e n t a t i o n

+ s e q u e n c e O f O p e r a t o r s []

+ c h e c k C o n d i t i o n s ()

+ e x e c u t e O p e r a t o r s ()

O p e r a t o r

+ n a m e

+ e x e c u t e ()

C o n d i t i o n

+ c o n d i t i o n S t a t e m e n t

+ e v a l u a t e C o n d i t i o n S t a t e m e n t ()

*

*

*
+ c o n t e x t

*

1

+ i m p l e m e n t a t i o n s

*
P r o c e s s E l e m e n t

+ n a m e

+ t y p e

+ . . .

P r o c e s s I n s t a n c e

+ n a m e

+ . . .

+ p a r a m e t e r

*

+ e l e m e n t s

*

1

M e t h o d
M a n u a l

Figure 1: Architecture for Instantiation Systems.

broken control flow betweena1 anda3, take care of
affected information flows and resource connections.
This task is further complicated by additional restric-
tions on process modeling, e.g. ’anartifact can only
be created by oneactivity’.

In order to execute instantiation decision and re-
store correctness, the framework must consider the
environment in which a change is performed. For ev-
ery change of a specific process step instances the
context of that change is the set of instances and rela-
tionships connected tos. The abstract description of
these entities and relationships for a particular type of
process step is what we call the scope description of
an operation. The scope description can be applied to
the method manual of the process which generates all
contexts an operations can be executed in.

Example: If milestones have restrictions on the
type of entity they can succeed and precede, correct-
ness depends on the preceding and successive element
of the milestone. Thus, the scope description is:Type
of predecessor and type of successor.

Entities and relationships influencing the way an
operation has to be executed depend on the definition
of the operation (i.e. changes on a process instance in
order to instantiate it). Therefore the scope descrip-
tion of each operation has to be defined by an human
expert. We propose the following procedure:

1. Identify restrictions on classes of entities of the
method manual directly affected by the operation.

2. Identify classes of entities allowed in the process
having a relationship with the classes of entities
directly affected by the operation.

3. Identify restrictions on related classes of entities
which might be breached by execution of the op-
eration.

From the scope description, all individual contexts
can be automatically generated. Every context has
to be associated with an particular implementation

which executes an operation in this explicit context.
However, not every context requires an individual im-
plementation that is only applicable in this particular
context. From this follows that a number of contexts
can be associated with one implementation.

The approach described above is a general frame-
work for instantiation of processes and is not re-
stricted to Siemens processes or a particular process
definition language. The way the framework is im-
plemented in detail depends on the requirements of
the applying organization and on the method manual
of the process which led to the developed of architec-
ture described in Figure 1.

The class ProcessInstancecorresponds to a
project-specific software process. A process instance
is created by copying the reference process for a par-
ticular project.

Instances of the classProcessEntityare the ele-
mental building blocks of aProcessInstance. They
can be of different types. Examples of the type ”Ac-
tivity” are ”Develop Design Specification” or ”Imple-
ment Design”. Entities and thus process instances are
adapted to project specific needs by running instances
of Operationon them.

The classOperationcorrespond to instantiation
operations. How an operation is executed on entities
depends on the context in which the affected entities
are nested in the process instance. Therefore instances
of Operationcan be associated with more than one in-
stance ofImplementation. When anOperationis exe-
cuted, theImplementationwhich relates to the context
at hand is executed.

For finding anImplementationthat relates to a
specific contextOperation.executeImplementations()
calls Implementation.checkConditions()for each of
its implementations. If ”true” is returned, the correct
implementation has been found.

The actual process adaptations are carried out by a
sequence of operators (squenceOfOperators[]) which

ICEIS 2009 - International Conference on Enterprise Information Systems

258

execute the actual changes in the process instance.
Operators are elemental actions which create, update
and remove entities of a process instance. The entirety
of operators is stored in a repository. Their number is
not fixed but can be further extended if necessary.

A context consists of one or several elemental
Condition-instances. An examples of a condition is
<self.source.isType() = ’Activity’> (type of source
element is an activity). In order for a context to be
true, all conditions associated with the context have to
be evaluatedtrue. They do not have to be defined by
humans and their number is limited. Conditions are
elemental statements about states and relationships of
elements. The method manual defines the set of al-
lowed statements for elements of a process instance.
Conditions are therefore automatically derived from
the method manual. In the next section, the proposed
architecture is implemented for a reference process of
a business unit at Siemens AG.

4 CASE STUDY

The reference process of the particular Siemens busi-
ness unit covers the whole lifecycle of a software
product. It is similar to a workflow but its focus is
to be read and understood by human.

The process used in this article is simplified be-
cause of space limitations. Figure 2 gives an overview
of the allowed classes of elements.

Entities are of the classes StartEvent, ManualAc-
tivity, AutomaticActivity, Milestone, Artifact, Hu-
man, System and splits and joins of the types And,
Or and Xor. They are connected by ControlFlow, In-
formationFlow and ResourceConnection. A method
manual has been defined on the basis of the Siemens
Process Framework (SPF) and on specific regula-
tions of the business unit. It describes restrictions on
classes and their relationship by using OCL (OMG,
2006).

Operations required for instantiation of the refer-
ence process have been defined by experts of the busi-
ness unit. In the following we focus on one example
by describing how the scope description of the opera-
tion Creating a Resource Connectionis defined.

The operationCreating a Resource Connectionis
defined as follows:An existing Resource (res) is as-
sociated with an existing Activity (act) by a Resource-
Connection (rc) of the type ExecutesRC, Responsi-
bleRC or ContributesRC. The user has to select the
Resource (res), Activity (act) and the type of the Re-
sourceConnection (rc).

For defining the scope description of the operation
the procedure described in section 3 was used:

1. Identify restrictions on classes of entities of the
method manual directly affected by the opera-
tion.

Creating a ResourceConnectioncan affect restric-
tions on Flow, ResourceConnection, ExecuteRC, Re-
sponsibleRC and ContributeRC since ResourceCon-
nection has a superclass and subclasses. The method
manual contains the following restrictions for these
classes:

context ExecuteRC
inv: (self.source.oclIsKindOf(Human)

and self.target.oclIsKindOf(ManualActivity))
or (self.source.oclIsKindOf(System)

and self.target.OclIsKindOf(AutomaticActivity))
context ResponsibleRC

inv: self.source.oclIsKindOf(Human)
inv: self.target.oclIsKindOf(Activity)

context ContributesRC
inv: self.source.oclIsKindOf(Human)
inv: self.target.oclIsKindOf(ManualActivity)

In case of ExecuteRC, Human can only be associated
with ManualActivity and System can only be asso-
ciated with AutomaticActivity. In case of Responsi-
bleRC and ContributeRC, only Human can be associ-
ated with ManualActivity or AutomaticActivity.

From this follows that how a new ResourceCon-
nection has to be created depends on the kind of Re-
sourceConnection to be created, the kind of Activity
and the kind of Resource. Thus a first part of the
Scope Description is:

rc.isType()
res.isType()
act.isType()

2. Identify classes of entities allowed in the pro-
cess having a relationship with the classes of
entities directly affected by the operation.

By analyzing the statements extracted in step 1 it is
identified that the classes Activity, AutomaticActiv-
ity, ManualActivity, Human and System have a rela-
tionship with the classes identified in 1. (Activity has
no explicit restrictions defined in the method manual).

context AutomaticActivity
inv: self.incomingCF->size()=1
inv: self.outgoingCF->size()=1
inv: self.executesRC->size()=1
inv: self.responsibleRC->size()=1
inv: self.contributesRC->empty()

context ManualActivity
inv: self.incomingCF->size()=1
inv: self.outgoingCF->size()=1
inv: self.executesRC->notEmpty()
inv: self.responsibleRC->notEmpty()
inv: self.responsibleRC->size()<=1

context Human
inv: self.incomingCF->empty()

METHOD MANUAL BASED PROCESS GENERATION AND VALIDATION

259

M a n u a l A c t i v i t y A u t o m a t i c A c t i v i t y

A n d S p l i t

A n d J o i n

X o r S p l i t

X o r J o i n

O r S p l i t

O r J o i n

S t a r t E v e n t E n d E v e n t

M i l e s t o n eA r t i f a c t

H u m a n P a r t i c i p a n t S y s t e m

C o n t r o l F l o w

I n f o r m a t i o n F l o w

R e s o u r c e C o n n e c t i o n

E x e c u t e s R C R e s p o n s i b l e R C C o n t r i b u t e s R C

I n p u t I F U p d a t e I F O u t p u t I F

E l e m e n t

+ n a m e : S t r i n g

+ i d : S t r i n g

+ i n c o m i n g C F [] : C o n t r o l F l o w

+ o u t g o i n g C F [] : C o n t r o l F l o w

+ i n p u t I F [] : I n p u t I F

+ u p d a t e I F [] : U p d a t e I F

+ o u t p u t C F [] : O u t p u t I F

+ e x e c u t e s R C [] : E x e c u t e s R C

+ r e s p o n s i b l e R C [] : R e s p o n s i b l e R C

+ c o n t r i b u t e s R C [] : C o n t r i b u t e s R C

F l o w

+ i d : S t r i n g

+ s o u r c e : E l e m e n t

+ t a r g e t : E l e m e n t

A c t i v i t y

R e s o u r c e

E v e n t S p l i t

J o i n

Figure 2: Classes of Process Entities and their Relationship.

inv: self.outgoingCF->empty()
inv: self.inputIF->empty()
inv: self.updateIF->empty()
inv: self.outputIF->empty()

context System
inv: self.incomingCF->empty()
inv: self.outgoingCF->empty()
inv: self.inputIF->empty()
inv: self.updateIF->empty()
inv: self.outputIF->empty()
inv: self.responsibleRC->empty()
inv: self.contributesRC->empty()

The actually affected properties of the classes are de-
termined through the types of attributes of class Ele-
ment (all four classes are subtypes of Element).

3. Identify restrictions on related classes of enti-
ties which might be breached by execution of
the operation.

By examining the statements from step 2, we can ig-
nore all which are not affected by the creation of a
ResourceConnection.

The number of ExecutesRC and ResponsibleRC
an AutomaticActivity can be associated with is re-
stricted to 1 and no ContributesRC are allowed. Since
these values are static, they do not have influence on
the way a new ResourceConnection is to be created.

We can ignore restrictions on ExecutesRC, since
ManualActivity does not have a maximum number. A
ManualActivity is only allowed to have either zero or
one ResponsibleRC. Therefore the number of exist-
ing ResponsibleRC has to be taken in consideration.
Since the operation is defined to deal with an instance
of Activity (act) and not ManualActivity, we abstract
to the former.

For Human Resources there are no restrictions re-
gardingCreating a ResourceConnection.

System is not allowed to have ResponsibleRC and
ContributeRC associated with it. Since these restric-
tions are static, they can be neglected.

In conclusion the Scope Description of the opera-
tion Creating a Resource Connectionis:

rc.isType()
res.isType()
act.isType()
act.responsibleRC.size()

From the Scope Description all possible contexts can
be computed. In the case of the operationCreating
a Resource Connectioneach combination of all types
of rc, res, actand the number ofresponsibleRCof act
is regarded as individual context.

Because of space restrictions we cannot detail all
contexts and their implementation forCreating a Re-
source Connection, but make use of a use case:

A resource connection ResponsibleRC (rc) has to
be created between the ManualActivity (act) and the
Human (res). The Activity (act) has another Re-
sourceConnection (rc2) of the same class and one of
the class ExecutesRC.

The specific context for execution ”Creating a Re-
sourceConnection” in this situation is therefore:

rc.isType() = ResponsibleRC
res.isType() = Human
act.isType() = ManualActivity
act.responsibleRC.size() = 1

The implementation of the Basic Instantiation Opera-
tion for this context is:

delete (rc2)
create ResponsibleRC (act, res)

Since ManualActivity is only allowed to have one Re-
sponsibleRC associated, first, rc2 is deleted and then
a new ResponsibleRC (rc) created.

ICEIS 2009 - International Conference on Enterprise Information Systems

260

5 EVALUATION

A prototype of a system for instantiating the refer-
ence process of a Siemens business unit available in
an extended version of XPDL 2.0 (WFMC, 2005) has
been developed. The operations ”Inserting an Activ-
ity” and ”Deleting an Activity” have been chosen for
testing. The architecture has been implemented ac-
cordingly.

For the operation ”Inserting an Activity” the sys-
tem computed 43 contexts from the method manual
and created for each context an instance ofImplemen-
tation. Experts defined a sequence of operators for
executing the insertion of an activity. Each implemen-
tation was executed with this sequence. The resulting
process instances were checked by a debugger-class
regarding their conformity to the XML-based method
manual. The tests showed no violations of the result-
ing process instances.

For the operation ”Deleting an Activity” the same
procedure was chosen. The system identified 49 con-
texts and created the corresponding instances ofIm-
plementation. After executing all implementations
with a first sequence of operators, 44 resulted in a cor-
rect process. Violations of the remaining were written
to a file and solved by iteratively developing the cor-
rect sequences of operators for them.

6 CONCLUSIONS

Siemens is currently undertaking research efforts to
improve their software process related activities. Part
of these efforts is the development of a system that
supports project managers in instantiation of refer-
ence processes. The system aims not only to execute
decisions but to restore correctness of the resulting
process. Since the implementation of such a system
is organization-specific and depends on the permitted
constructs in the process, a flexible architecture has
been developed and described in this paper. The ap-
proach was applied to a reference process of a busi-
ness unit at Siemens AG and its feasibility was veri-
fied by the implementation of a prototype.

ACKNOWLEDGEMENTS

This work was partially supported by a DAAD post-
graduate scholarship.

REFERENCES

Alexander, L. and Davis, A. (1991). Criteria for selecting
software process models. In Proceedings of the Fif-
teenth Annual International Computer Software and
Applications Conference, pages 521528.

Allerbach, A., Bauer, T., and Reichert, M. (2008). Manag-
ing process variants in the process life cycle. In Pro-
ceedings of the Tenth International Conference on En-
terprise Information Systems, volume ISAS-2, pages
154161.

Armbrust, O., Katahira, M., Miyamoto, Y., Munch, J.,
Nakao, H., and Ocampo, A. (2008). Scoping software
process models - initial concepts and experience from
defining space standards. In ICSP, pages 160172.

Bandinelli, S. and Fuggetta, A. (1993). Computational re-
flection in software process modeling: The slang ap-
proach. InICSE, pages 144–154.

Basili, V. and Rombach, H. (1991). Support for comprehen-
sive reuse.Software Engineering Journal, 6(5):303–
316.

BMI (2004). The new v-modell xt - development stan-
dard for IT systems of the federal republic of ger-
many. URL: http://www.v-modell-xt.de (accessed
01.12.2008).

Boehm, B. and Belz, F. (1990). Experiences with the spiral
model as a process model generator. InProceedings
of the 5th Intern. Software Process Workshop ’Experi-
ence with Software Process Models’, pages 43–45.

Brinkkemper, S. (1996). Method engineering: engineer-
ing of information systems development methods and
tools. Information & Software Tech., 38(4):275–280.

Feiler, P. H. and Humphrey, W. S. (1993). Software pro-
cess development and enactment: Concepts and defi-
nitions. InICSP, pages 28–40.

IBM (2008). Rational method composer. URL:
http://www-01.ibm.com/software/awdtools/rmc/ (ac-
cessed 26.11.2008).

Kabbaj, M., Lbath, R., and Coulette, B. (2008). A deviation
management system for handling software process en-
actment evolution. InICSP, pages 186–197.

OMG (2006). Object constraint language v 2.0.
URL: http://www.omg.org/spec/OCL/2.0/ (accessed
15.11.2008).

Osterweil, L. J. (1987). Software processes are software
too. In ICSE, pages 2–13.

Rosemann, M. and van der Aalst, W. (2007). A configurable
reference modelling language.Information Systems,
32(1):1–23.

Schmelzer, H. and Sesselmann, W. (2004).
Geschäftsprozessmanagement in der Praxis: Produk-
tivität steigern - Wert erhöhen - Kunden zufrieden
stellen. Hanser Verlag, Muenchen, 4 edition.

WFMC (2005). WFMC-TC-1025-03-10-05 Specification
for XPDL v2.0. URL: http://www.wfmc.org (ac-
cessed: 28.11.2008).

Yoon, I.-C., Min, S.-Y., and Bae, D.-H. (2001). Tailor-
ing and verifying software process. In APSEC, pages
202209.

METHOD MANUAL BASED PROCESS GENERATION AND VALIDATION

261

