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Abstract: The use of the Pseudo-Derivative Feedback (PDF) structure in the control of stable or unstable dead-time 
processes with a negative or a positive zero is investigated. A simple direct synthesis method for tuning the 
PDF controller is presented. Moreover, a modification of the proposed method, which ensures its 
applicability in the case of large overshoot response processes with dead time, is also presented. The PDF 
control structure and the proposed tuning method ensure smooth closed-loop response to set-point changes, 
fast regulatory control and sufficient robustness against parametric uncertainty. Simulation results show 
that, in most cases, the proposed method is as efficient as the best of the most recent PID controller tuning 
methods for dead-time processes with negative/positive zeros, while its simplicity in deriving the controller 
settings is a plus point over existing PID controller tuning formulae. 

1 INTRODUCTION 

In the process industry, stable second order dead-
time models as well as second order dead-time 
models with one right-half-plane pole are frequently 
used to adequately describe numerous processes for 
the purpose of designing controllers. However, these 
types of process models are inadequate in the case 
where a process controlled variable encounters two 
(or more) competing dynamic effects with different 
time constants from the same manipulated variable 
(Waller and Nygardas, 1975). This composite 
dynamics results to a process behaviour that exhibits 
an inverse response or a large overshoot response. 
Inverse response or large overshoot response is port-
rayed by the presence of one (or an odd number of) 
positive or negative zeros, respectively, in the 

process models, and they can cause, together with 
the process dead-times, serious problems in 
designing and tuning simple controllers for the pro- 
cess under consideration. 

Inverse response second order dead-time process 
models (SODT-IR) are used to represent the 
dynamics of several chemical processes (like level 
control loops in distillation columns and temperature 
control loops in chemical reactors), as well as the 
dynamics of PWM based DC-DC boost converters 
in industrial electronics. In the extant literature, there 
is a number of studies regarding the design and 
tuning of three-term controllers for SOPD-IR 
processes (Waller and Nygardas, 1975; Scali and 
Rachid, 1998; Zhang et al, 2000; Luyben, 2000; 
Chien et al, 2003; Padma Sree and Chidambaram, 
2004; Chen et al, 2005; Chen et al, 2006). In 
particular, Waller and Nygardas (1975) presented an 
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empirical tuning of PID controllers based on the 
Ziegler-Nichols method for SOPDT-IR processes. In 
Scali and Rachid (1998) and Zhang et al (2000), 
analytical design methods based on the Internal 
Model Control framework and the H∞ control 
theory, have been proposed for inverse response 
processes without time delay. In Luyben (2000), an 
empirical method that gives large overshoot and 
oscillatory response has been proposed to design PI 
controllers for SODT-IR processes. In Chien et al 
(2003), a direct synthesis tuning method is presented 
to tune PID controllers for both under-damped and 
over-damped SODT-IR processes. In Chen et al 
(2005), an analytical PID controller design for SOD-
IR processes is derived based on conventional unity 
feedback control. In Chen et al (2006), an analytical 
design scheme based on IMC theory has been 
proposed to control SODT-IR processes. Finally, in 
Padma Sree and Chidambaram (2004), a method of 
tuning set-point weighted PID controllers for 
unstable SODT processes with a positive or a 
negative zero is presented. This method is based on 
appropriately equating coefficients of like powers of 
s in the numerator and the denominator of the 
closed-loop transfer function. 

In contrast, controller tuning for large overshoot 
response dead-time processes have received less 
attention in the past, although they used to model 
several physical phenomena, like blending 
processes, mixing processes in distillation columns 
and temperature of heat exchangers (see Chien et al 
(2003), for details). In Chang et al (1997) a tuning 
method of controllers in first order lead-lag form has 
been proposed for such processes. Furthermore in 
Chien et al (2003), a direct synthesis tuning method 
is presented in order to tune PID controllers for both 
under-damped and over-damped large overshoot 
response processes. 

The present paper investigates some aspects of 
the controller configuration proposed by Phelan 
(1978), and called the “pseudo-derivative feedback 
controller” (PDF), which is put forward here as an 
alternative means of tuning three-term controllers 
for stable or unstable dead time processes with a 
negative or positive zero. The aim of the paper is to 
propose a set of tuning rules for the PDF controller 
when it is applied to such processes. The proposed 
method is a direct synthesis tuning method and it is 
based on the manipulation of the closed loop transfer 
function through appropriate approximations of the 
dead-time term in the denominator of the closed 
loop transfer function as well as appropriate 
selection of the derivative gain, in order to obtain a 
second order dead-time closed-loop system. On the 

basis of this method the settings of the PDF 
controller are obtained in terms of two adjustable 
parameters, one of which can further be 
appropriately selected in order to achieve a desired 
damping ratio for the closed-loop system, while the  
other is free to designer and can be selected in order 
to enhance the obtained regulatory control 
performance. Moreover, an appropriate modification 
of the proposed method, that makes it applicable in 
the case of large overshoot response processes with 
dead time, is also presented. For assessment of the 
effectiveness of the proposed tuning method and in 
order to provide a comparison with existing tuning 
methods, a series of simulation examples are 
presented. Simulation results verify that the PDF 
control structure and the proposed direct synthesis 
tuning method ensure smooth closed-loop response 
to set-point changes, fast regulatory control and 
sufficient robustness in case of model mismatch. 

2 THE PSEUDO-DERIVATIVE 
FEEDBACK CONTROLLER 

The Pseudo-Derivative Feedback (PDF) controller 
has first been proposed by Phelan (1978), and its 
general feedback configuration is shown in Figure 1. 
The transfer function CLG (s) of the closed loop 
system is given by 
 

( )
I P

CL n 2
D,n 1 D,1 D,0 I P

K G (s)
G (s)

s K s ... K s K s K G (s)−

=
+ + + + +

  (1) 

 
The PDF controller is essentially a variation of 

the conventional PID controller. In contrast to the 
PID controller, the PDF controller does not 
contribute to closed-loop zeros, and hence it is 
expected that it will not render worst the overshoot 
of the closed-loop response. The two configurations 
differ in the way they react to set-point changes (as 
it can be easily checked, they are equivalent for load 
or disturbance changes). The PID controller often 
has an abrupt response to a step change because the 
step is amplified and transmitted directly to the 
feedback control element and downstream blocks. 
This can induce a significant overshoot in the 
response that is unrelated to the closed loop system 
damping. For this reason, it is a common practice to 
ramp or filter the set-point. The PDF structure 
avoids this because naturally ramps the controller 
effort, since it internalizes the pre-filter that one 
would apply to cancel any closed-loop zeros 
introduced in the PI/PID control configuration. 
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Figure 1: The general PDF control structure. 

In the present paper, we focus our attention on 
the specific form of the general PDF control 
structure which contains proportional as well as a 
single derivative action in the feedback path (i.e. 
KD,i=0 for i=2,…,n-1 and KP≠0, KD,1≠0). We call 
this feedback scheme, the PD-1F control structure, 
in contradistinction with the PDF controller without 
derivative action (i.e. the controller with D,1K 0= ), 
which is designated as the PD-0F controller. We 
shall next analyze its performance, in the case where 
the system under control is a second order process 
with both dead-time and a minimum or a non-
minimum phase zero, which can be described by the 
following general transfer function model 
 

( ) ( )( )P 1 2G (s) K ps 1 exp( ds) / s 1 s q= + − τ + τ +⎡ ⎤⎣ ⎦  (2) 
 
where 
 

z

z

   in the case of a positive zero
p

   in the case of a negative zero
−τ⎧

= ⎨ τ⎩
,  τz>0 

 
and q=1, in the case of a stable process or q=-1, in 
the case of an unstable process, and where, K, d, τz, 
τ1 and τ2, are the process gain, the dead-time, the 
zero’s time constant and the process time constants, 
respectively. 

To this end, observe that, equation (1), in the 
case of a PD-1F controller and for process models of 
the form (2), takes the form 
 

( ) ( )

( ) ( ) ( )
( )

CL

I 1

2
2 d P I

1

                               G (s)

KK ps 1 / s 1 exp( ds)
ps 1

s s q KK s KK s KK exp( ds)
s 1

=

+ τ + −⎡ ⎤⎣ ⎦
+

τ + + + + −
τ +

 (3) 

 
Relation (3) will be the starting point for the 

development of the tuning method that will be 
presented in the sequel. 

3 A SIMPLE TUNING METHOD 

In order to systematically present the proposed 
tuning method, observe that by making use of the 
approximation 
 
                   ( ) ( )1 1ps 1 / s 1 1 ( p)s+ τ + ≈ − τ −              (4) 
 
in the numerator of (3), and observing that 
 

( )exp 1 ds
exp( ds)

exp( ds)
− −α⎡ ⎤⎣ ⎦− =

α
 

 
for some α∈ℜ, we obtain 
 

  ( )
( ) ( )

( )

CL

1

2d2 P

I I I I 1

                               G (s)

1 p s exp( ds)

ps 1 exp 1 dsK Kqs s s s 1
KK KK K K s 1 exp( ds)

=

− τ − −⎡ ⎤⎣ ⎦
+ − −α⎡ ⎤⎛ ⎞ ⎛ ⎞τ ⎣ ⎦+ + + +⎜ ⎟ ⎜ ⎟ τ + α⎝ ⎠ ⎝ ⎠

  (5) 

 
Next, using the approximations,  

 
( ) [ ] [ ]ps 1 exp (1 )ds p (1 )d s 1+ − −α = − −α +  

( ) ( )1 1s 1 exp( ds) d s 1τ + α = τ +α +  
 
in (5), we obtain  
 

( )
( )

( )

CL

1

2d2 P

I I I I 1

                               G (s)

1 p s exp( ds)

p 1 d s 1K Kqs s s s 1
KK KK K K d s 1

=

− τ − −⎡ ⎤⎣ ⎦
⎡ ⎤− − α +⎡ ⎤⎛ ⎞ ⎛ ⎞τ ⎣ ⎦+ + + + ⎢ ⎥⎜ ⎟ ⎜ ⎟ τ + α +⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦

  (6) 

 
Relation (6) may further be written as 

 

           
( )1

CL
2

I I

1 p s exp( ds)
G (s)

qs s P(s)
KK KK

− τ − −⎡ ⎤⎣ ⎦=
⎛ ⎞τ

+ +⎜ ⎟
⎝ ⎠

            (7) 

where 
 

( ) ( ) ( )
( )

d dP
2

1 I 1 I 1 I

K KK
P(s) s Q(s)

d K d K d K

         p 1 d s 1

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + − +

⎜ ⎟τ + α τ + α⎢ ⎥τ + α⎝ ⎠⎣ ⎦
⎡ ⎤× − −α +⎡ ⎤⎣ ⎦⎣ ⎦

 

( ) ( )
( )

dP
2

1 I 1 I

1

KK1
d K d K

Q(s)
d s 1

− +
τ + α τ + α

=
τ +α +

 

 
Observe now that by selecting 
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           ( ) ( )2
d 1 P 1 IK d K d K= τ +α − τ +α               (8) 

 
we obtain Q(s)=0 and 

( )p
1

I

K
P(s) d s 1 p 1 d s 1

K
⎡ ⎤⎛ ⎞

⎡ ⎤= − τ −α + − −α +⎡ ⎤⎢ ⎥⎜ ⎟ ⎣ ⎦⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦
 

 
Therefore, relation (7) yields 

 

( )

( )

CL

1

p2
1

I I I

                                     G (s)

1 p s exp( ds)
Kqs s d s 1 p 1 d s 1

KK KK K

=

− τ − −⎡ ⎤⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞τ ⎡ ⎤+ + − τ −α + − −α +⎡ ⎤⎢ ⎥⎜ ⎟⎜ ⎟ ⎣ ⎦⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦

  (9) 

 
which can further be written in the form 
 

         
( )1

CL 2 2

1 p s exp( ds)
G (s)

s 2 s 1
− τ − −⎡ ⎤⎣ ⎦=
λ + ζλ +

           (10) 

 [ ]p2
1

I I

K
d (1 )d p

KK K
⎛ ⎞τ

λ = − − τ −α −α −⎜ ⎟
⎝ ⎠

(11) 

 

[ ]

p
1

I I

p2
1

I I

K qd p
K KK

K
2 d (1 )d p

KK K

− − τ + +
ζ =

⎛ ⎞τ
− − τ −α −α −⎜ ⎟
⎝ ⎠

(12) 

 
Τhe Routh stability criterion about (10) yields 

 

                  ( )P 1 I
qK d p K
K

> + τ − −                 (13) 

 
and  
 

         ( ) [ ]
2

P 1 IK d K
K (1 )d p

τ
< τ +α +

−α −
           (14) 

 
Therefore, as for KP one can choose the middle 

value of the range given by inequalities (13) and 
(14). That is 
 

( ) [ ]
[ ]

2
1 I

P

q (1 )d p
2 1 d p K

K (1 )d p
K

2

τ − −α −
τ + + α − +⎡ ⎤⎣ ⎦ −α −

=     (15) 

 
Then, from (15), we obtain 

 

( ) [ ]
[ ]

2
1

IP

I

q (1 )d p
2 1 d p

K K (1 )d pK
K 2

τ − −α −
τ + +α − +⎡ ⎤⎣ ⎦ −α −

β = =   (16) 

 
which yields, 
 

[ ]
[ ] ( )

2
I

1

q (1 )d p
K

K (1 )d p 2 2 1 d p
τ − −α −

=
−α − β− τ − +α +⎡ ⎤⎣ ⎦

 (17) 

 
Therefore, 

 
[ ]

[ ] ( )
2

P
1

q (1 )d p
K

K (1 )d p 2 2 1 d p

⎡ ⎤β τ − −α −⎣ ⎦=
−α − β− τ − + α +⎡ ⎤⎣ ⎦

 (18) 

[ ]
[ ] ( )

2
1 1 2

d
1

( d) ( d) q (1 )d p
K

K (1 )d p 2 2 1 d p

⎡ ⎤ ⎡ ⎤β τ + α − τ +α τ − −α −⎣ ⎦⎣ ⎦=
−α − β− τ − +α +⎡ ⎤⎣ ⎦

(19) 

 
Clearly, relations (17)-(19) provide the settings 

of the desired PD-1F controller as functions of two 
adjustable parameters α and β, which must be 
selected in order to guarantee positive controller 
settings (in the case where the process parameters 
take positive values), as well as to fulfil inequalities 
(13) and (14). For a pre-specified value of α∈ℜ, 
parameter β can be selected in order to assign a 
specific damping ratio ζdes of the closed-loop system. 
Indeed, using relations (12), (17) and the definition 
of β, and after some trivial algebra, one can resort 
the following quadratic equation with regard to β, 
 
 2

2 1 0A 0β + Α β+ Α =  (20) 
 

( )
( )

( )
( )
( ) [ ]

( )

2
1 des

2

2

1
1

2

2A 4 1 1 d p
T q 1 d p

2q 1 d p
      2 1

T q 1 d p

q 1 d p 2 (1 )d p
       d q

T q 1 d p

⎡ ⎤
= ζ − −α −⎡ ⎤⎢ ⎥ ⎣ ⎦− −α −⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤−α −⎡ ⎤⎣ ⎦− +⎢ ⎥
− −α −⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤−α − τ + +α −⎡ ⎤⎣ ⎦× + τ − +⎢ ⎥
− −α −⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

 (21) 

            
( )
( )

2

2
2

2q 1 d p
A 1

T q 1 d p

⎡ ⎤−α −⎡ ⎤⎣ ⎦= +⎢ ⎥
− −α −⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

            (22) 

( ) [ ]
( )

[ ]
( )

( )

2

1
0 1

2

2 12
des 1

2

q 1 d p 2 (1 )d p
A d q

q 1 d p

2 (1 )d p
      4 d 1 d p

q 1 d p

⎡ ⎤−α − τ + + α −⎡ ⎤⎣ ⎦= + τ − +⎢ ⎥
τ − −α −⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤τ τ + + α −
− ζ − τ −α −α −⎡ ⎤⎢ ⎥ ⎣ ⎦τ − −α −⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

(23) 

 
Then, β is chosen as the maximum real root of  (20) 

Clearly, the method presented above is 
applicable when p=τΖ or – τΖ and q=1 or -1. 
However, extensive simulations show that, in the 
case where τΖ>>0 (i.e. in the case of large overshoot 
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processes), the method provides controller settings 
that renders the closed-loop unstable or marginally 
stable. This is due to the swings of the controller  
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Figure 2: PD-1F control structure in the case of large 
overshoot response processes. 

output induced by the excessive derivative action. 
One way to avoid this problem is to filter the 
controller output using a first order filter of the form 
(see Figure 2). 
 
                       ( )F FG (s) 1/ s 1= τ +                     (24) 
 
while calculating the PD-1F controller settings as 
suggested by relations (17)-(19). The time constant 
of the filter can be selected as τF= τZ. 

Alternatively, one can select the controller 
settings according to the following method, which is 
a modification of the method resulting in the settings 
given by relations (17)-(19): In the case where the 
filter of the form (24) is introduced in the control 
loop, relation (3) is modified as 
 

( )( )

( ) ( ) ( )( )

CL

I
F 1

2
2 d P I

F 1

                               G (s)

ps 1KK exp( ds)
s 1 s 1

ps 1s s q KK s KK s KK exp( ds)
s 1 s 1

=

⎡ ⎤+
−⎢ ⎥τ + τ +⎣ ⎦

⎡ ⎤+
τ + + + + −⎢ ⎥τ + τ +⎣ ⎦

 

 
Then, making use of the approximations 

 
( ) ( )( )F 1 1ps 1 / s 1 s 1 1 ( p)s+ τ + τ + ≈ − τ −  

( )exp 1 ds
exp( ds)

exp( ds)
− −α⎡ ⎤⎣ ⎦− =

α
 

[ ] [ ]
F

ps 1 exp (1 )ds p (1 )d s 1
s 1

⎛ ⎞+
− −α = − −α +⎜ ⎟τ +⎝ ⎠

 

( ) ( )1 1s 1 exp( ds) d s 1τ + α = τ +α +  
 
where, Fp p= − τ , we finally obtain 
 

( )

( )

CL

1

p2
1

I I I

                                     G (s)

1 p s exp( ds)
Kqs s d s 1 p 1 d s 1

KK KK K

=

− τ − −⎡ ⎤⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞τ ⎡ ⎤+ + − τ −α + − −α +⎡ ⎤⎢ ⎥⎜ ⎟⎜ ⎟ ⎣ ⎦⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦

(25) 

It is now obvious that relation (25) is similar to 
relation (9) when p is replaced by Fp p= − τ . 
Therefore, following an argument similar to that 
used above to produce relations (17)-(19), we may 
easily conclude that, in the present case 

[ ]
[ ] ( )

2
I

1

q (1 )d p
K

K (1 )d p 2 2 1 d p
τ − −α −

=
−α − β− τ − +α +⎡ ⎤⎣ ⎦

 

[ ]
[ ] ( )

2
P

1

q (1 )d p
K

K (1 )d p 2 2 1 d p

⎡ ⎤β τ − −α −⎣ ⎦=
−α − β− τ − + α +⎡ ⎤⎣ ⎦

 

[ ]
[ ] ( )

2
1 1 2

d
1

( d) ( d) q (1 )d p
K

K (1 )d p 2 2 1 d p

⎡ ⎤ ⎡ ⎤β τ + α − τ + α τ − −α −⎣ ⎦⎣ ⎦=
−α − β− τ − + α +⎡ ⎤⎣ ⎦

 

Now, it only remains to select the filter time 
constant. A suitable choice of τF, is τF=τZ. With, this 
selection, the PD-1F controller settings in the case of 
large overshoot processes are obtained as suggested 
by the relations 

           
[ ]

[ ] ( )
2

I
1

q (1 )d
K

K (1 )d 2 2 1 d
τ − −α

=
−α β− τ − + α⎡ ⎤⎣ ⎦

     (26) 

           
[ ]

[ ] ( )
2

P
1

q (1 )d
K

K (1 )d 2 2 1 d

⎡ ⎤β τ − −α⎣ ⎦=
−α β− τ − + α⎡ ⎤⎣ ⎦

     (27) 

 [ ]
[ ] ( )

2
1 1 2

d
1

( d) ( d) q (1 )d
K

K (1 )d 2 2 1 d

⎡ ⎤ ⎡ ⎤β τ + α − τ + α τ − −α⎣ ⎦⎣ ⎦=
−α β− τ − + α⎡ ⎤⎣ ⎦

(28) 

4 SIMULATION RESULTS 

For assessment of the effectiveness of the proposed 
tuning methods and in order to provide a comparison 
with existing tuning methods, a series of simulation 
examples are carried out for different dead-time 
processes. 

4.1 Inverse Response Processes with 
Two Stable Poles 

Consider the typical inverse response process with 
K=1, τ1=1, τ2=1, d=0.8, p=-0.5, q=1. Applying the 
proposed method with α=0.6 and ξdes= 0.8225, yields 
β=2.15. The PD-1F controller settings are then 
obtained as KI=0.4221, KP=0.9076 and Kd=0.4186. 
The settings of the series form PID controller with 
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filtered derivative, tuned according the method 
proposed by Chien et al (2003), are KC=0.3367, 
τΙ=1, τD=1, while the low-pass filter parameter takes 
the value a=0.1 and the inverse of the cyclic 
frequency of the desired critically damped closed-
loop system takes the value τcl= 0.8348. The settings 
of the conventional PID controller that is tuned 
according to the method reported in Chen et al 
(2006), are KC=0.71, τΙ=2, τD=0.5. Figure 3 
illustrates the comparison of the servo-responses as 
well as of the regulatory control responses obtained 
by the proposed method and by the methods 
reported in Chien et al (2003) and Chen et al (2006), 
in the case of nominal process parameters. In case of 
set-point tracking, the proposed method provides a  

0 20 40 60 80

0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 
1.6 
1.8 

2 

Time (second) 

C
lo

se
d-

Lo
op

 R
es

po
ns

e 

 
Figure 3: Servo-responses and regulatory control 
responses for the system GP(s)=(-0.5s+1)exp(-0.8s)/(s+1), 
in case of nominal process parameters. Black line: 
Proposed Method. Orange line: Method in Chien et al 
(2003). Blue line: Method in Chen et al (2006). 
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Figure 4: Servo-responses and regulatory control 
responses for the system GP(s)=(-0.5s+1)exp(-0.8s)/(s+1), 
in case of a +20% mismatch in all process parameters. 
Other legend as in Figure 3. 

slightly more sluggish response as compared to the 
abovementioned PID tuning methods, while the 
initial jump obtained by our method is smaller. In 
the case of regulatory control, our method gives a 
better response in terms of maximum error, while 
the settling time is comparable to that obtained by 
the methods in Chien et al (2003) and Chen et al 
(2006).  

A comparison in terms of the ISE criterion, in the 
case of regulatory control, gives the values 1.2002 
for the proposed method, while for the methods in 
Chien et al (2003) and Chen et al (2006), we obtain 
ISE=1.5782 and ISE=1.4425, respectively. The 
respective IAE values for the methods under 
comparison are obtained as 2.443, 3.058 and 2.8941. 
Figure 4 shows the comparisons of the servo-
responses and of the regulatory control responses in 
the case where a simultaneous +20% uncertainty in 
all process parameters is assumed. The responses 
obtained by the proposed method are better in terms 
of overshoot, maximum error and initial jump, while 
the settling time is similar to that of the responses 
obtained by the PID controllers tuned according to 
the methods by Chien et al (2003) and Chen et al 
(2006). The ISE values, in case of regulatory 
control, are 1.9514, for the proposed method, 2.3765 
for the method of Chien et al (2003) and 2.1673, for 
the method of Chen et al (2006). The respective IAE 
values are 3.8221, 4.2492 and 3.9183. 

As already mentioned, for a pre-specified value 
of adjustable parameter α, parameter β is directly 
related to the damping ration ζ of the second order 
approximation (10) of the closed-loop system. In  

0 20 40 60 80
0

0.5

1

1.5

2

Time (second) 

C
lo

se
d-

Lo
op

 R
es

po
ns

e 

 
Figure 5: Servo-responses and regulatory control 
responses for the system GP(s)=(-0.5s+1)exp(-0.8s)/(s+1), 
in case of nominal process parameters, for α=0.6 and for 
three values of β. Orange line: β=2.05; Black line: 
β=2.15;. Blue line: β=2.25. 
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Figure 6: Servo-responses and regulatory control 
responses for the system GP(s)=(-0.5s+1)exp(-0.8s)/(s+1), 
in case of nominal process parameters, for β=2 and for 
three values of α. Orange line: α=0.45; Black line: α=0.5;. 
Blue line: α=0.55. 

particular, as shown in Figure 5, β increases when ζ 
is increased. This of course results to a more 
conservative PD-1F controller. Therefore, a greater 
value of β, renders the closed-loop system more 
robust. Parameter α has an inverse effect on the 
closed-loop system robustness: For a pre-specified 
value of the parameter β, an increase of the 
parameter α, leads to a less robust but faster closed-
loop system, as illustrated in Figure 6. 

4.2 Control of a Continuous Stirred 
Tank Reactor 

Let us consider the transfer function model of a 
CSTR reported in Padma Sree and Chidambaram 
(2004), and having the form 
 

P 2

2.07(0.1507s 1)G (s) exp( 0.3s)
2.85s 2.31s 1

2.07(0.1507s 1)        exp( 0.3s)
(0.8905s 1)(3.2005s 1)

− +
= −

+ −
− +

= −
+ −

 

 
The process has one dominant unstable pole and 

one stable pole, at s=0.3125 and s= -1.123, 
respectively, as well as a stable zero -6.6357. Here, 
K=-2.07, τ1=0.8905, τ2= 3.2005, d=0.3, p=0.1507, 
q=-1. Application of the proposed method with α=-
0.5, β=2.5, yields the PD-1F controller settings KP=-
4.3862, KI=-1.7545, Kd=-2.2859. The settings of the 
set-point weighted PID controller tuned according to 
the method reported in Padma Sree and 
Chidambaram (2004) are, KC=-0.7205, τI=39.7228, 

τD=0.1494, while the tuning parameter used in the 
above mentioned paper, as well as the set-point 
weight b, take the values 0.15 and 0.3275, 
respectively. Figure 7 illustrates the servo-responses 
obtained by the two controllers. Figure 8 shows the 
comparison of the regulatory control responses for a 
negative unit step load change. Obviously, the PD-
1F controller tuned according to the proposed 
method provides a considerably better performance, 
particularly in the case of regulatory control, where 
the response obtained by the controller tuned 
according to the method in Padma Sree and 
Chidambaram (2004) is practically unacceptable. 
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Figure 7: Closed-loop servo-responses of the CSTR 
model. Black line: Proposed method. Blue line: Set-point 
weighted PID controller tuned according to the method 
proposed by Padma Sree and Chidambaram (2004). 
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Figure 8: Regulatory control responses of the CSTR. 
Other legend as in Figure 7. 
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4.3 Second Order Unstable Process 
with a Positive Zero 

Consider the process with K=1, τ1=2.07, τ2=5, 
d=0.939, p=-1, q=-1. The process has a stable pole, 
an unstable pole and a strong non-minimum phase 
zero. To the authors’ best knowledge, controller 
design for second order processes with one or two 
righ-half-plane poles and a right-half-plane zero has 
not yet been addressed in the literature. Application 
of the proposed method, with α=0.3 and β=25, yields 
the PD-1F controller settings KI=0.0920, KP=2.3012, 
Kd=4.9027. The process model is next approximated 
as ( )( )PG (s) exp( 1.939s) / 2.07s 1 5s 1= − + −⎡ ⎤⎣ ⎦ , i.e. 
the negative numerator time constant has been 
approximated as a time delay term of the form exp(-
s). This is reasonable since an inverse response has a 
deteriorating effect on control similar to that of a 
time delay. We next apply the method reported in 
Lee et al (2000), in order to design a PID controller 
with first order set-point filter for the given process, 
on the basis of the approximated model. Application 
of the method reported in Lee et al (2000), with the 
IMC parameter λ=6.25, yields the PID controller 
settings KC=1.9570, τΙ=34.9614 and τD=2.4889. 
Figure 9 illustrates the comparison of the servo-
responses and the regulatory control responses for a 
unit step set-point change at t=0 sec and an inverse 
unit step load change at t=75 sec. It is seen that the 
proposed method results in an improved load 
disturbance response as compared to the method in 
Lee et al (2000), while the set-point responses are 
similar, with comparable settling times. 
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Figure 9: Servo-responses and regulatory control 
responses for the system G(s)=(-s+1)exp(-0.939s) / 
[(2.07s+1)(5s-1)]. Black line: Proposed method; Blue line: 
Method in Lee et al (2000). 

4.4 Stable Second Order Unstable 
Process with a Positive Zero 

Consider the process model of the form (2), with 
K=1, τ1=2, τ2=1, d=1, p=0.3, q=1. Application of the 
proposed method with α=0.4, β=3, yields ΚΙ=1.0358, 
KP=3.1073, Kd=1.6340. The settings of the series 
form PID controller with filtered derivative, tuned 
according the method proposed by Chien et al 
(2003) are KC=1.0355, τΙ=2, τD=1, while the low-
pass filter parameter takes the value τF=0.3 and the 
inverse of the cyclic frequency of the desired 
critically damped closed-loop system takes the value 
τcl= d / 2 = 0.5457. Figure 10 illustrates the 
comparison of the servo-responses as well as of the 
regulatory control responses obtained by the 
proposed method and by the method reported in 
Chien et al (2003). In the regulatory control case our 
method gives a considerably better response, 
whereas, although our method provides a smooth 
response, the method in Chien et al (2003) is better 
in the case of set-point tracking. 

Let us now consider the case of a large overshoot 
process with K=1, τ1=2, τ2=1, d=1.2, p=5, q=1. 
Evaluating relations (17)-(19), while assuming 
α=0.2, β=3, yields the PD-1F controller settings 
KI=0.2208, KP=0.6624, Kd= 0.3759. Application of 
the above controller yields an unacceptable 
oscillatory response, as shown in Figure 11. Let us 
try, another design by evaluating relations (17)-(19) 
in the case where we select a=0.6, β=3. This yields 
KI=0.1951, KP=0.5853, Kd= 0.1486, i.e. a more 
conservative controller. The obtained servo-response  
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Figure 10: Servo-responses and regulatory control 
responses for the system GP(s)=(0.3s+1)exp(-0.8s) 
/(2s+1)(s+1). Black line: Proposed method. Blue line: 
Method in Chien et al (2003). 
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Figure 11: Closed-loop servo-response and regulatory 
control response of the system G(s)=(5s+1)exp(-1.2s) 
/(2s+1)(s+1), in the case of he PD-1F controller with 
parameters KI=0.2208, KP=0.6624, Kd= 0.3759. 
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Figure 12: Closed-loop servo-response and regulatory 
control response of the system G(s)=(5s+1)exp(-1.2s) 
/(2s+1)(s+1), in the case of he PD-1F controller with 
parameters KI=0.1951, KP=0.5853, Kd= 0.1486. 

and regulatory control responses are given in Figure 
12. In the later case, the servo-response is quite 
smooth while the regulatory control response is less 
oscillatory. However, the robustness of the closed-
loop system is marginal, and a small parameter 
mismatch can readily lead to instability. 

Let us now consider filtering the output of the PD-
1F controller that is designed for the case where 
α=0.2, β=3, with settings KI=0.2208, KP=0.6624, 
Kd= 0.3759, by a filter of the form (24), where τF=5. 
Moreover, let us design a PD-1F controller with 
filtered output as suggested by relations (26)-(28), 
with α=-0.2, β=2, τF=5. In this case the controller  
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Figure 13: Closed-loop servo-response and regulatory 
control responses of the system G(s)=(5s+1)exp(-1.2s) 
/(2s+1)(s+1). Black line: PD-1F controller with filtered 
output tuned according to relations (17)-(19); Orange line: 
PD-1F controller with filtered output tuned according to 
relations (26)-(28); Blue line: Series form PID controller 
with filtered derivative tuned according to the method in 
Chien et al (2003). 

settings are KI=0.3183, KP=0.6366, Kd= 0.1344. 
Figure 13 shows the obtained servo-responses and 
regulatory control responses for both designs, 
together with the respective responses obtained by a 
series PID controller with filtered derivative, 
designed according the method reported in Chien et 
al (2003). It is seen that, in the regulatory control 
case our method gives a considerably better 
response, whereas, although our methods provide 
smooth responses, the method in Chien et al (2003) 
is better in the case of set-point tracking. A 
comparison in terms of ISE in the case of regulatory 
control gives the ISE values 1.8326 and 1.5892, for 
the proposed methods and 4.5754 for the method in 
Chien et al (2003). The respective IAE values are 
4.5287, 3.7058 and 4.9453. 

5 CONCLUSIONS 

A new direct synthesis method of tuning the PDF 
controller for stable or unstable dead-time processes 
with a negative or a positive zero has been 
presented. The proposed tuning method ensures 
smooth closed-loop response to set-point changes, 
fast regulatory control and sufficient robustness 
against parametric uncertainty. Numerical 
simulation examples verify the advantages of the 
proposed method over known PID controller tuning 
methods for the classes of dead-time processes under  
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study. Extension of the proposed tuning method in 
the case of frequency domain specifications of the 
closed-loop system in terms of gain and phase 
margins is currently under investigation.  
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