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Abstract. A new graph-based approach to edit distance cryptanalysis of some
clock-controlled generators is here presented in order to simplify search trees of
the original attacks. In particular, the proposed improvement is based on cut sets
defined on some graphs so that only the most promising branches of the search
tree have to be analyzed because certain shortest paths provide the edit distances.
The strongest aspects of the proposal are: a) the obtained results from the attack
are absolutely deterministic and b) many inconsistent initial states are recognized
beforehand and avoided during search.

1 Introduction

The main goal in the design of stream ciphers is to generate long pseudorandom keystream
sequences from a short key in such a way that it is not possible to rebuild the short key
from the keystream sequence. This work focuses on stream ciphers based on Linear
Feedback Shift Registers (LFSRs), and more precisely on Shrinking [2] and Alter-
nating Step [10] generators. Both generators produce keystream sequences with good
cryptographic properties [8].

Most types of cryptanalysis on stream ciphers are performed under a known plain-
text hypothesis, that is to say, it is assumed that the attacker has direct access to the
keystream output from the generator [11]. The computational complexity of such at-
tacks is always compared with the complexity of the exhaustive search, and if the for-
mer is smaller, then the cipher is said to be broken. Although this theoretical definition
can look useless, in fact it is very important for the development and understanding of
the security of stream ciphers because many times it reveals weaknesses that might lead
to practical attacks.

The main idea behind this paper is to propose a deterministic improvement of a
known plaintext divide-and-conquer attack consisting of three steps: 1) Guess the initial
state of an LFSR component of the generator. 2) Try to determine the other variables
of the cipher based on the intercepted keystream. 3) Check that guess was consistent
with observed keystream sequence.
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This three-step attack was first proposed in [6] and [7] by means of a distance func-
tion known as Levenshtein or edit distance. Nevertheless, the approach considered in
this work may be seen as an extension of the constrained edit distance attack to clock-
controlled LFSR-based generators presented in [12] and generalized in [1]. Our main
aim here is to investigate whether the number of initial states to be analyzed can be re-
duced. This feature was pointed out in [4] as one of the most interesting problems in the
cryptanalysis of stream ciphers. According to the original method, the attacker needs to
traverse an entire search tree including all the possible LFSR initial states. However,
in this work the original attack is improved by simplifying the search tree in such a way
that only the most efficient branches are retained. In order to achieve such a goal, cut
sets are defined in certain graphs that are here used to model the original attack. This
new approach produces a significant improvement in the computing time of the original
edit distance attack since it implies a dramatic reduction in the number of initial states
that need to be evaluated. Furthermore, it is remarkable that, unlike previous attacks,
the results obtained from this proposal are fully deterministic.

2 Preliminaries

The Shrinking Generator (SG) [2] and the Alternating Step Generator (ASG) [10]
are two well known keystream generators with cryptographic applications. The nota-
tion used within this work is as follows. The lengths of the LFSRs S, A and B are
denoted respectively by LS , LA and LB . Their characteristic polynomials are respec-
tively PS(x), PA(x) and PB(x), and the sequences they produce are denoted by {si},
{ai} and {bi}. The output keystream is {zj}.

Despite their simplicity and the large number of published attacks [3], [5], [9] and
[13], both generators remain remarkably resistant to practical cryptanalysis and the pre-
vious references are just theoretical attacks.

The edit or Levenshtein distance is the minimum number of elementary operations
(insertions, deletions and substitutions) required to transform one sequence X of length
N into another sequence Y of length M , where M ≤ N . Some applications of the
edit distance are file checking, spell correction, plagiarism detection, molecular biology
and speech recognition. The dynamic programming approach (like the shortest-distance
graph search and Viterbi algorithm) is a classical solution for computing the edit dis-
tance matrix where the distances between prefixes of the sequences are successively
evaluated until the final result is achieved. When applying an edit distance attack on a
clock-controlled stream cipher, the objective is to compute the initial state of a target
LFSR that is a component of the attacked generator. As in Viterbi search, this problem
has the property that the shortest path to a state is always part of any solution of which
such a state is a part. We will be able to see this fact quite clearly by the formalization
of the algorithm as a search through a graph.

Clock-controlled registers are said to work with constrained clocking when a re-
striction exists on a maximum number of times that the register may be clocked before
an output bit is produced. For these registers, attacks based on the so-called constrained
edit distance have been proposed and analyzed in [6] and [7].
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In this work, two different possible models for the attacked generator are consid-
ered. In both cases it is assumed that the feedback polynomial of the target LFSR is
known. According to the first model, it is assumed that Y = {yn} is an intercepted
keystream segment of length M , which is seen as a noisy decimated version of a seg-
ment X = {xn} of length N produced by a target LFSR. On the other hand, according
to the second model, it is assumed that X = {xn} is an intercepted keystream segment
of length N , which is seen as a noisy widened version of a segment Y = {yn} of length
M produced by a target LFSR. In this latter case, insertions in the sequence Y are in-
dicated by two sequences S and B so that S points the locations where the bits of B
must be inserted.

The main objective of the attack according to these models will be to deduce some
initial state of the target LFSR that allows one to produce an intercepted keystream
sequence through decimation or insertion, respectively, without knowing the decimation
or insertion sequences.

An essential step in edit distance attacks is the computation of edit distance matrices
W = (wi,j), i = 0, 1, . . . , N −M, j = 1, 2, . . . ,M associated each one with a couple
of sequences X and Y where Y is the intercepted keystream sequence and X is a
LFSR sequence produced by one possible initial state.

In the first model, the intercepted sequence is Y while X is the candidate sequence.
In the second model, the intercepted sequence is X while Y is the candidate sequence.
Also note that from the computation of the edit distance between X and Y , the edit
sequences that are computed in the first case correspond to decimation sequences while
in the second case they correspond to insertion sequences.

Some of the parameters of such a matrix are described below. Firstly, its dimension
is (N −M + 1) ·M . Furthermore, its last column gives the edit distance between X
and Y thanks to the value mini=0,...,N−M{wi,M + N −M − i}. Lastly, each element
of the matrix, apart from the last column wi,j , i = 0, . . . , N −M, j = 1, . . . ,M − 1,
corresponds exactly to the edit distance between prefix sub-sequences x1, x2, . . . , xi+j

and y1, y2, . . . , yj . The edit distance between prefix sub-sequences x1, x2, . . . , xi+M

and Y are given by wi,M + N −M − i, i = 0, . . . , N −M .
In the edit distance attack here analyzed only deletions and substitutions are al-

lowed. Consequently, each element wi,j of the edit distance matrix W may be recur-
sively computed from the elements of the previous columns according to the formulas
in Equation (1), which depend exclusively on the coincidence or difference between the
two bits xi+j and yj .

wi,1 = Pi(xi+1, y1), i = 0, . . . , N −M
w0,j = w0,j−1 + P0(xj , yj), j = 2, . . . , M

wi,j = mink=0,...,i{wi−k,j−1 + Pk(xi+j , yj)}, i = 1, . . . , N −M, j = 2, . . . ,M

Pk(xi+j , yj) =
{

k if xi+j = yj

k + 1 if xi+j 6= yj
, k = 0, ..., i

(1)

Pk(xi+j , yj) gives the cost of the deletion of k bits previous to xi+j plus its substi-
tution by its complementary if xi+j 6= yj . Note that a maximum length k of possible
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runs of decimations is assumed for constrained edit distance matrices. It is also remark-
able that at each stage the minimum has to be obtained in order to extend the search
at a next stage, which implies the need to maintain a record of the search in the same
way that Viterbi algorithm saves a back pointer to the previous state on the maximum
probability path.

In order to avoid the computation of the edit distances for all possible initial se-
quences, we propose a graph-theoretical approach so that the computation of edit dis-
tances may be seen as a search through a basic graph. Such a basic graph is a directed
rooted tree where each non-root vertex (i + j, j), i = 0, 1, , N − M ; j = 1, 2, , M ,
indicates a correspondence between the bits xi+j and yj and each edge indicates either
a deletion of the bit xi+j when j = 0, or a possible transition due to a deletion (D) or
a substitution (S), in the remaining cases. In this way, the computation of edit distances
consists in finding the shortest paths through the graph.

For the description of our improvement, we now define a new weighted directed
graph, here called induced graph, where the costs of shortest paths come directly from
the elements of the matrix W . This induced graph is computed from the basic graph
such as follows: if we eliminate vertical edges in the previous graph by computing the
partial transitive closure of every pair of edges of the form ((i + j − 2, j − 1), (i +
j − 1, j − 1)) and ((i + j − 1, j − 1), (i + j, j)) and by substituting them by the edge
((i + j − 2, j − 1), (i + j, j)), then we get the graph that will be called induced graph.

In this graph there are as many vertices as elements in the matrix W , plus an
additional source and an additional sink. On the other hand, the directed edges in
this induced graph are defined from the computation of the edit distances described
in Equation (1), plus additional edges joining the source with the vertices associated
to the first column of W and additional edges joining the vertices associated to the
last column of W with the sink. For instance, the induced graph corresponding to a
constrained edit distance matrix with runs of decimations of maximum length 1 has
(N −M + 1) · (2M −N + 2) vertices and 2 · (N −M + 1) · (2M −N + 2)−M − 3
edges. Moreover, edges in the induced graph have different costs depending on the
specific pair of sequences X and Y , and particularly on the coincidences between the
corresponding bits of both sequences, as described in Equation (1). Note that in the
induced graph, the shortest paths between the source and the sink give us the solu-
tion of the cryptanalytic attack through the specification of both decimation and noise
sequences that can be extracted from them.

3 Search of Promising Initial States

The main idea behind the method shown in this Section comes directly from the asso-
ciation between bits xi+j and edges of the induced graph. Since the calculation of the
minimum edit distance implies the computation of some shortest path in such a graph,
cut sets between the source and the sink in the induced graph may be useful in order
to define a set of conditions for candidate sequences so that it is possible to establish
a minimum threshold edit distance. In this way, once an intercepted sequence fulfills
some of those stated conditions, the cost of the corresponding cut set can be guaranteed
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to be minimal for some possible candidate sequence, what has direct consequences on
the costs of the shortest paths, that is to say, on the edit distances.

In this way, as soon as an intercepted sequence fulfills some specific condition de-
fined below, and this fact allows the description of a candidate and feasible initial se-
quence, we will know that such an initial sequence will provide us with a useful upper
threshold for the edit distance and even in many cases, such a sequence will be a mini-
mum edit distance sequence.

The specific cut sets that we have used for the numerical results shown in this work
are defined as follows. Each cut set Ci+j , 2 ≤ i + j ≤ N − 1 contains:

1. The set of all the arcs corresponding to the vertex xi+j .
2. All those edges corresponding to bits xw with w > i + j whose output vertex is

one of the output vertices of the former set.

For the first model, these cut sets may be characterized by several independent con-
ditions on the intercepted sequence Y that may be used to guarantee a decrease on the
edit distances of different candidate sequences X . After having checked each hypothe-
sis separately, the tools used to check both sets of conditions on candidate sequences X
are described in terms of a pattern that is made out of independent bits of X according
to the formulas in Equation (2).

If ∀j : 2, 3, . . . , N − M + 1; y1 = y2 = · · · = yj then yj = x1 = x2 = · · · =
xj+N−M

If ∀j : N −M + 2, N −M + 3, . . . ,M ; yM−N+j = · · · = yj−1 = yj then yj =
xj = xj+1 = · · · = xj+N−M

If ∀j : M + 1,M + 2, . . . , N − 1; yM−N+j = · · · = yM−1 = yM then yM = xj =
xj+1 = · · · = xN

(2)

For the second model, the cut sets may be characterized by different independent condi-
tions on the intercepted sequence X that may be used to guarantee a decrease on the edit
distances of candidate sequences Y . After having checked each hypothesis separately,
the tools used to check both sets of conditions on candidate sequences Y are described
in terms of a pattern that is made out of independent bits of Y according to the formulas
in Equation (3).

If ∀j : 2, 3, . . . , N −M + 1; x1 = x2 = · · · = xj+N−M then x1 = y1 = y2 = · · · =
yj

If ∀j : N −M + 2, N −M + 3, . . . ,M ;xj = xj+1 = · · · = xj+N−M then xj =
yM−N+j = · · · = yj−1 = yj

If ∀j : M + 1,M + 2, . . . , N − 1; xj = xj+1 = · · · = xN then xj = yM−N+j =
· · · = yM−1 = yM

(3)

For checking previous equations (2) and (3), it is necessary to determine the value
of N , which depends on k that is the maximum length of possible runs of decimations.
For example, if k = 1, then N = 3M/2, which is the mathematical expectation of N
in such a case.
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Note that the checking procedure of hypothesis described with the previous Equa-
tions, applied on the intercepted sequence takes polynomial time as it implies a simple
verification of runs. The previous patterns allow one to discover promising initial states
producing sequences with a low edit distance. In fact, such a pattern provides a good
quality threshold for the method that will be described in the following Section.

4 General Attack

The threshold obtained through the pattern described in the previous Section is a funda-
mental ingredient of the general attack described below. The algorithm here developed
also makes use of a new concept, the so-called stop column, which leads to a consider-
able saving in the computation of the edit distance matrices. Indeed, a stop column with
respect to a threshold T may be defined as a column j0 of the edit distance matrix W
such that each one of their elements fulfills the Equation (4).

wi,j0 > T − (N −M − i),∀i (4)

Once a minimum edit distance threshold has been obtained, we may use such a
threshold to stop the computation of any matrix W as soon as a stop column has been
detected. This is due to the fact that the edit distance corresponding to the candidate
initial state will be worse than the threshold. In this simple way, two new improvements
on the original attack may be achieved. On the one hand, as yet mentioned, the com-
putation of any matrix may be stopped as soon as a stop column is obtained. On the
other hand and thanks to the association between bits xi+j and edges of the graph, we
may define a new anti-pattern on the initial states of the target LFSR, the so-called IS-
anti-pattern. This new parameter allows us to discard the set of initial states fulfilling
such an IS-anti-pattern when an early stop column has been detected. This is so because
once a stop column has been obtained, it is possible to discard directly all the initial
states whose first bits coincide with those that produce the stop column. In order to take
full advantage of stop columns, it is convenient to have some efficient way of obtain-
ing a good threshold. That is exactly the effect of the pattern described in the previous
Section.

Since it is possible that the described pattern correspond only to sequences that may
not be produced by the target LFSR, in practice it is convenient to restrict the pattern
to the length of the target LFSR. So, the pattern obtained from the first formulas of
Equations (2) and (3) limited to the length of the target LFSR is what we call IS-
pattern. On the other hand, although sequences generated through the IS-pattern have
minimum edit distance, it is possible that the corresponding obtained decimation or
insertion sequences and noise sequences are not consistent with the description of the
attacked generator. This is the reason why the proposed algorithm includes a process
of hypothesis relaxation, which implies the successive complementation of bits of the
IS-pattern until getting a positive result.

Finally, since the IS-pattern is determined by the runs at the beginning of the in-
tercepted sequence, if no long run exists at the beginning of the sequence, initially the
algorithm discards the first bits in the intercepted sequence before a long run, and use
those discarded bits to confirm the result of the attack. This idea is expressed within the
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algorithm by a parameter H ∈ [0, L], chosen by the attacker depending on its compu-
tational capacity (the greater capacity, the fewer H).
The full description of the proposed general edit distance attack is as follows.

Algorithm.
Input: The intercepted keystream sequence and the feedback polynomial of the tar-

get LFSR of length L.
Output: The initial states of the target LFSR producing sequences with a low edit

distance with the intercepted sequence, and the corresponding decimation or insertion
sequence and noise sequence.

1. Verification of hypothesis on the intercepted sequence described in Equation (2) or
(3).

2. While fewer than H hypothesis are fulfilled, discard the first bit and consider the
resulting sequence as new intercepted sequence.

3. Definition of the IS-pattern according to the first L formulas in Equation (2) or (3).
4. Initialization of the threshold T = N .
5. For each initial state fulfilling the IS-pattern, which has not been previously re-

jected:
(a) Computation of the edit distance matrix, stopping after detecting a stop column

according to threshold T and Equation (4).
(b) Definition of the IS-anti-pattern and rejection of all initial states fulfilling it.
(c) Updating of the threshold T .

6. For each initial state producing a sequence with minimum edit distance:
(a) Computation of the shortest paths from the graph induced by the edit distance

matrix.
(b) Translation from each shortest path into decimation or insertion sequences and

noise sequences.
(c) Checking that the obtained decimation or insertion sequences, and noise se-

quences are consistent with the attacked generator. Otherwise, updating of the
IS-pattern by complementing one of the bits in the original IS-pattern.

Note that if the output is not the minimum edit distance sequence, the obtained edit
distance can be used as threshold for the stop column method in order to find such a
sequence quickly.

5 Attack on Shrinking and Alternating Step Generators

In this Section a specific implementation of the general attack presented in the previous
Section for the cases of the SG and the ASG is considered.

One of the first questions that have to be taken into account in both cases is the
limitation on the number of consecutive deletions because the longest run of consecutive
deletions in X to get Y is always shorter than the length LS of the selector register S.
This restriction implies that the equation (1) corresponding to the computation of the
edit distance matrix should be modified in the following way:
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wi,1 = Pi(xi+1, y1), i = 0, . . . , LS

w0,j = w0,j−1 + P0(xj , yj), j = 2, . . . , M
wi,1 = ∞, i = LS + 1, . . . , N −M

wi,j = mink=0,...,LS−1{wi−k,j−1 + Pk(xi+j , yj)}, i = 1, . . . , N −M, j = 2, . . . , M

Pk(xi+j , yj) =

{
k if xi+j = yj

k + 1 if xi+j 6= yj
k = 0, ..., LS − 1

(5)

Equations (2) and (3) corresponding to the definition of the pattern in the first and
the second model, respectively must be also adapted to the SG and the ASG, producing
the Equations (6) and (7) respectively:

If ∀j : 2, 3, . . . , N − M + 1; y1+j/LS
= · · · = yj−1 = yj then yj = xLS(j/LS) =

xLS(j/LS)+1 = · · · = xLS(j/LS)+LS−1

If ∀j : N −M + 2, N −M + 3, . . . ,M ; yM−N+j = · · · = yj−1 = yj then yj =
xj = xj+1 = · · · = xj+LS−1

If ∀j : M +1,M +2, . . . , N − 1; yM−N+j = · · · = yM−(N−j)/LS
then yM = xj =

xj+1 = · · · = xmin(j+LS−1,N)

(6)

If ∀j : 2, 3, . . . , N − M + 1; xLS(j/LS) = xLS(j/LS)+1 = · · · = xLS(j/LS)+LS−1

then xLS(j/LS) = y1+j/LS
= · · · = yj−1 = yj

If ∀j : N −M + 2, N −M + 3, . . . ,M ;xj = xj+1 = · · · = xj+LS−1 then xj =
yM−N+j = · · · = yj−1 = yj

If ∀j : M + 1,M + 2, . . . , N − 1; xj = xj+1 = · · · = xmin(j+LS−1,N) then
xj = yM−N+j = · · · = yM−(N−j)/LS

(7)

Finally, the process of hypothesis relaxation explained in the last Section must also
be used for the cases of SG and ASG when the minimum obtained edit distance is
greater than N −M since it corresponds to the presence of noise.

6 Simulation Results

From several randomly generated examples, we may deduce a general classification of
inputs into several cases. The best ones correspond to IS-patterns which directly identify
solutions. On the contrary, bad cases are those ‘missing the event’ cases in which the
IS-pattern fails to identify any correct initial state. Such cases are generally associated
with long runs at the beginning of the sequences Y . Finally, the medium cases are those
for which, despite the non existence of solutions fulfilling the pattern, a good threshold
is obtained. Such cases allow a good percentage of saving in computing thanks to the
detection of many early stop columns.

From the obtained results and the relationship between LA and Seq.pat. we may
deduce that the proposed algorithm produces the solution in O(2LA/2) time instead
of the O(2LA) time corresponding to the exhaustive search that implied the original
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attack [13]. Furthermore, it is clear that the worst outputs appear when the initial results
in steps 1 to 4 are not adequate as there are no initial states fulfilling the IS-pattern.
However, even in these cases that require more computation, it is guaranteed that the
solution is always obtained.

Note that as aforementioned, the proposed algorithm not always output the mini-
mum edit distance sequence. However, since the hypothesis on Y are independent, the
groups of bits in the IS-pattern are also independent and, consequently, the conditions
might be considered separately in such way that we might define in this way a relaxed
IS-pattern which might lead to sequences that fulfill them. In addition, empirical re-
sults have shown that intercepted sequences Y with short runs at the beginning cause a
greater improvement in the time complexity of the attack. Thus, another way to avoid
a bad behavior of the original algorithm is by choosing sub-sequences from the inter-
cepted sequence Y that have no too long runs at the beginning, and by applying the
algorithm to each one of these sub-sequences.

7 Conclusions

In this work a new deterministic approach to the cryptanalysis of LFSR-based stream
ciphers has been proposed. In particular, a practical improvement on the edit distance
attack on certain clock-controlled LFSR-based generators has been proposed, which
reduces the computational complexity of the original attack because it does not require
an exhaustive search over all the initial states of the target LFSR. The main tool used
for the optimization of the original attack was the definition of graphs where optimal
paths provide cryptanalytic results and of cut sets on them that have been used to obtain
a useful threshold to cut the search tree.

An extension of this article, which is being part of a work in progress, takes ad-
vantage of the basic idea of using cut sets to improve edit distance attacks against gen-
eralized clock-controlled LFSR-based generators. In order to do this, the three edit
operations are considered and the resulting cut sets on the corresponding induced graph
allow the identification of promising initial states.
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