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Abstract: In recent years the emphasis for applications of 3D modelling has shifted from measurement to 
visualization. New communication and visualization technologies have created an important demand for 
photo-realistic content in 3D real-time animations, interactive fly-overs and walk-arounds, panoramic 
images, visualizations and simulations based on real-world data.  
These image-based approaches require acquisition procedures that are simple and flexible with the use of 
consumer photo- or video-cameras.  Ideally the user should be able to move freely while acquiring the 
images with any device ranging from a mobile phone to a video camera. In this context, a device 
independent algorithm for the estimation of an enhanced resolution image from multiple low-resolution and 
distorted compressed video images having arbitrary views is proposed in this paper.  
This process of spatial image enhancement is demonstrated here in a controlled scenario whereby the 
different views of the same scene are warped, firstly, to a common orientation so that a rigorous least 
squares area-based matching technique can then compute the registration parameters needed for their 
accurate combination. The sequence is acquired using a digital camera in video mode, which samples the 
image of a static scene from different angles.  
The warping is an iterative process relying on manual intervention and is used here to compensate for the 
different range of scales and orientations of the low-resolution imagery. Once this imagery is brought into 
registration and complies with pre-established image correlation criteria, they are combined to recover a 
high-resolution composite. Although the quality and resolution of the sensor arrays used to capture digital 
data continue to evolve, it is important that any technique used to enhance spatial resolution must be device 
independent, thus capable of using input from not only low-resolution images but also from higher 
resolution devices. 

1 INTRODUCTION 

Off-the-shelf digital video cameras employ low-
resolution sensors that sub-sample the original 
image sequence. The imagery obtained from video 
sequences is often compressed in a lossy manner, 
such as by the MPEG (Moving Picture Expert 
Group) protocol, in order to reduce the storage 
requirements (Russ, 2007). 

Lossy compression means that data is lost during 
compression so the quality after decoding is less 
than the original picture. Lossy compression 
protocols also introduce several distortions that can 
complicate the enhancement problem. For example, 
most compression algorithms divide the original 
image into blocks that are processed independently, 
thus creating problems of continuity between blocks  

after decompression (Farsiu et al. 2004). 
Moreover, at high compression ratios (>15:1, as 

suggested in (Reed, 2005 and Bovik, 2005)), the 
boundaries between the blocks become visible and 
lead to ‘‘blocking’’ artefacts.  The blocking effect is 
especially obvious in flat areas of an image. In areas 
with lots of detail, artefacts referred to as ringing or 
mosquito noise also become noticeable.  

Yet, video sequences contain a large overlap 
between successive frames, and regions in the scene 
of interest are sampled in several images and often 
from different perspective. This multiple sampling 
can be used to reconstruct imagery with a higher 
spatial resolution if the images in the sequence are 
accurately registered, one to another (Vandewalle et 
al, 2005).  The result is then similar to using a high-
resolution camera.  
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On the other hand, video frames cannot be 
related through global transformations due to 
arbitrary pixel movements between the images. As a 
result, images of the same scene taken from slightly 
different angles and distances to the same object 
introduce geometric distortions (i.e., parallel lines 
are not parallel, angles are not correct, distances 
appear too long or too short, etc.).  

Hence, the arbitrary and distorted views of the 
scene of interest must first be iteratively warped to a 
common orientation before an accurate registration 
procedure can compute the parameters needed for a 
correct sub-pixel registration.  

The least squares area based registration method 
employed here provides for an efficient and reliable 
scheme designed to match or align low-resolution 
images of the same scene. The methodology is 
capable of achieving sub-pixel accuracies of 
approximately 0.1 pixels. This technique can also 
overcome difficulties arising from slight radiometric 
differences, that is, slight differences in grey scale 
levels due to varying illumination conditions in the 
images being matched. 

Once all the low-resolution images are brought 
into sub-pixel registration and comply with pre-
established image correlation criteria, the images are 
combined to recover the desired high-resolution 
composite. In addition to improving the spatial 
resolution, the method may also attenuate artefacts 
caused by lossy compression protocols. 

In summary, the basic steps of the proposed 
image enhancement technique are divided into three 
main tasks: 

• Warping transformations  
• Image registration to a sub-pixel level and  
• Reconstruction via image mapping on a higher 

resolution and uniformly distributed grid.  

Details of how these three problems are solved 
are presented in the following sections. 

2 WARPING AND RESAMPLING 

Image warping is a geometric transformation that 
maps all positions from one image plane to positions 
in a second plane. It is used to solve many digital 
image-processing problems such as removing optical 
distortions introduced by a camera and a particular 
viewing perspective or registering an image with a 
map. 

Warping is closely related to the popular image 
metamorphosis, or morphing technique, and is used 

extensively to produce special effects in the field of 
computer graphics and the entertainment industry.  

In most iterative warping systems, the user 
specifies the warp in some very general way, for 
example by moving grid lines or by specifying 
point-to-point correspondence or control points 
(Zitova et. al., 2004). A computerised system then 
automatically interpolates these geometric 
specifications. 

Amongst the diverse warping models available, 
the use of generic polynomials is often considered 
appropriate due to the simplicity of application and 
accuracy requirements (Russ, 2007). Polynomials 
are widely used as an approximating function in all 
types of data analysis. 

The level of detail in the data that can be 
approximated depends directly on the order of the 
polynomial.  The polynomial models are determined 
by first defining a set of control points (CPs) on each 
image (source and target) which correspond to pixel 
locations that must align together. This is necessary 
to constrain the polynomial coefficients. Ideally the 
control points should have the following 
characteristics:  

• High contrast in all images of interest 
• Small feature size 
• Unchanging over time 
• Coplanar  

Choosing the optimal warping procedure is 
problematic, with the approach taken here to use a 
warping process to stretch and pull the source 
images about defined CPs. This yields images that 
conform to particular geometric and scene 
requirements. The pixels are then repositioned, by 
way of interpolation techniques, from their original 
locations in the data array, into a specified reference 
grid dictated by the selected CPs. 

Finding corresponding CPs in an image is the 
most tedious aspect of warping transformations, 
since it usually requires manual intervention to 
determine their optimal location. Determining 
optimal CPs automatically (i.e. without human 
participation) is desirable and is a subject of further 
research by the author. 

An illustration of the warping process used in the 
experimental part of the proposed image 
enhancement process is given in Figure 1, showing a 
distorted grid on the right that has undergone a 
geometric transformation from an original grid (on 
the left) making it appear trapezoidal in shape. 
Located in the centre of the rectangular grid are four 
points that can be related to the corresponding points 
in the distorted grid 
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The geometric association between these eight 
points describes the geometric distortion between 
the trapezoidal and the rectangular grids. It is also 
due to this geometric relationship that these eight 
points are referred to as the CPs.  

 

G0→F0; G1→F1; G2→F2; G2→F2 

Figure 1: An example of a trapezoidal distortion of a 
rectangular grid. 

If G(r, s) describes the original grid and F(x, y) 
the trapezoidal grid, then the coordinates of these 
CPs can be related through a set of bilinear 
equations as: 

       x = a1r + a2s + a3rs + a4                     (1)     

       y = a5r + a6s + a7rs + a8               (2)

where the coefficients ai (i = 1…8) determine the 
actual geometric relationship between the original 
and distorted grids. 

Given that there are eight unknown coefficients 
and four corresponding CPs on each grid, then a 
unique and simple solution is possible. Equations (1) 
and (2) can produce only linear geometric 
transformations, so to correct for arbitrary and 
complex curvatures or distortions, higher order 
terms may be needed. Typically, equations (1) and 
(2) can be expanded to include higher order terms or 
to construct spline models (Gonzalez, 2007). 

The concept of removing the geometric 
distortions from a grid can be easily transferred to 
that of a digital image. Indeed, the CPs in the grid 
example above could be considered as relating four 
pixels in the undistorted image to four pixels in the 
geometrically distorted image. 

The approach used in this study is to use many 
closely spaced CPs and model the geometric 
distortion within the region defined by those points 
as linear. Each set of CPs corrects the pixels just 
within the region enclosed by the control points.  
The results in Figure 2 were achieved using this 
process.  

The disadvantage of using this method is the  

quantity of CPs needed for very complex geometric 
distortions. In implementing equations (1) and (2), 
every pixel in the restored image G(r,s) is obtained 
by using the mapping coordinates x, y in the 
geometrically distorted image F(x,y) and the CPs 
associated with that pixel. 

For two given images (distorted and reference) 
of the same scene, the warping process will usually 
need to be iterated until the selected distorted image 
clearly resembles the selected target or reference 
image. Tests by the author show the warping process 
is satisfactory when the correlation coefficient 
between the two registered images is greater or 
equal to 0.999. 

 
 

 
Figure 2: A distorted image (a) is warped to create the 
image in (b) where proportions are rectified. 

Figure 2 shows the results of warping or 
transforming the image in Figure 2(a) into the image 
in Figure 2(b) after 14 warping attempts. 45 CPs 
were used in this process. By way of illustration, 
only a few of the total number of CPs are shown in 
the figure. 

The use of contiguous triangles between three 
control points and with linear polynomial 
transformations in each triangle usually eliminates 
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the discontinuities of the boundaries. The distortion 
is then modelled by a piecewise set of planes, 
similar to a faceted surface. 

When using a network of CPs, it may not be 
necessary to warp all the triangle areas with the 
same number of iterations. For instance, intuitively it 
could be expected that the ocean areas in Figure 2, 
which are smooth with low detail features, would 
require fewer warping iterations than the building 
regions.  

Since the (x,y) pixel coordinates of the warped 
image will no longer be integer values, new integer 
pixels must be estimated by an interpolation process. 
There exist many interpolation methods, the most 
common being the nearest neighbour, bilinear, cubic 
convolution and splines techniques. 

The spatial and local interpolation technique 
considered here was the nearest neighbour 
interpolation. Although bilinear interpolation and 
cubic convolution may yield more visually pleasing 
results the nearest neighbour approach is generally 
used when radiometric fidelity is at a premium 
(Russ, 2007).  

Once all the low-resolution images are processed 
and warped to a common orientation using the 
methodology described above, the next step is to 
register or match all the low resolution images to a 
common reference frame and thereby determine the 
value of the sub-pixels shifts existing (if any) among 
them. 

3 IMAGE REGISTRATION 

In an idealised scene registration, two different 
images of the same object are assumed to be 
essentially identical except for an x and y shift. In 
practice, with distorted and multi-temporal video 
frames, the two images will generally exhibit 
substantial differences beyond this assumption. 
These differences can be classified as: 

• Intensity differences, - e.g. the images are taken 
at different times or under different lighting 
conditions;  

• Structural differences, - e.g. between the taking 
of the two images the common objects may have 
altered; and  

• Geometric differences, - e.g. the motion of the 
camera may cause geometric differences such as 
rotation, aspect and scale in the object. 

Even though two images may both be of the 
same scene, these differences of intensity, structure, 
and geometry will often be sufficient to produce 

erroneous registrations. If the differences of intensity 
and structures are very small, the reference image 
can be thought of as an exact map of the object 
scene and scene matching can be characterised as 
map matching. 

On the other hand, when the differences between 
two images are large, the reference information may 
no longer be a map but somewhat like directions 
given to a lost tourist: ‘Turn left at the set of lights, 
follow the road past the church and then turn right 
after the park’. With this knowledge, the tourist can 
effectively perform the scene-matching function and 
find his way to his intended destination.  

Analogously, when there is a considerable 
difference between two images, simple matching 
algorithms will not work and so some iterative 
warping of one image relative to the other must take 
place before the images can appear similar and be 
combined into a higher resolution composite. 

The registration problem can be stated as finding 
the transformation T (the warping transform) that, 
when applied to one image F(x, y), will ultimately 
bring the object detail into registration with the 
corresponding detail in another image G(r, s), such 
that: 

                 T * F(x,y) = G(r,s)                       (3)

where the symbol = means equivalence of object 
detail.  

The result of applying the warping 
transformation T to all the low-resolution images is 
used to carry out a preliminary alignment of all the 
low-resolution images. The alignment assumes that 
there is only a global translation among the images 
and, as a preliminary step, this alignment is carried 
out within the integer range. This initial step is 
referred to as the pixel shift estimator and is based 
on normalized cross-correlation techniques. 

After the low-resolution images are aligned 
within a pixel, the second step is to compute the real 
fractional shift between each image. The method for 
estimating this fractional shift is based on Taylor 
series and can achieve sub-pixel accuracies of 
approximately 0.1 pixels. The reader is referred to 
Pilgrim (1991) for the theory and formulation behind 
this methodology.  

For a correct detection of the shifts or offsets 
between two images, the images must contain some 
features that make it possible to register or match 
them. 

Very sharp edges and small details are most 
affected by aliasing, so they are not reliable to be 
used to estimate these shifts. Uniform areas are 
useless, since they are translation invariant 
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(Hendriks et al. 1999). The best features are slow 
transitions between two areas of grey values as these 
areas are generally unaffected by aliasing. Such 
portions of an image need not be detected 
specifically, although their presence is very 
important for an accurate result. Hence, before a 
given sequence of images of the same scene is 
registered, a low-pass filter may be applied 
uniformly to each image. The purpose of a low-pass 
filter, as shown in Figure 3, is to smooth:  

• Sharp edges and small details  
• Sudden changes of intensity values and  
• The distortions created by the compression 

process. 

 

 
Figure 3: The lighthouse (top) and after applying a low-
pass filter (Gaussian, 18 pixels radius, below). 

The motion estimator (registration procedure) 
adopted in this research determines the x- and y-
shifts and rotations between any two images, but 
what is really required is the relative positions of a 
sequence of images. By calculating the shifts with 
respect to a single reference image, only one 
realization of the relative positions is obtained. By 
repeating the procedure for another reference image, 
a second estimate for the relative positions is made. 

Continuing to repeat this process for all images 
in the sequence, a better estimate of the relative 
shifts, image to image, can be found. The statistical 
measure used to determine the ‘best’ possible value 
for all possible combinations of the motion vectors 
between a set of shifted low-resolution images is the 
vector median.   

If the vector mean was taken instead of the 
median, then the final motion vector would be an 
entirely new vector, and not one of the vectors 
originally estimated. In addition, the mean is less 
robust than the median if outliers are present 
(Spiegel et al., 1999). 

4 IMAGE RECONSTRUCTION 

Once all the low-resolution images have been 
warped and registered to a sub-pixel level, they are 
projected or mapped on a uniformly spaced high-
resolution grid (see Figure 4). A weighted arithmetic 
mean associates each known pixel of the low-
resolution images to the high-resolution pixels.  

For example, in Figure 4 the low-resolution pixel 
C1 can be related to the pixels of the high-resolution 
grid by way of Equation 4. In Figure 4 the Xi 
(i=1…25) represent the high-resolution pixels 
whereas the Cj, (j=1…6) are the low-resolution 
pixel. 

 
Figure 4: An idealized image enhancement set-up. 

After C1 is related to the high-resolution 
coordinate system, the process moves on to the next 
low-resolution data pixel (i.e. C2) where another 
equation is constructed. This sequence of equations 
may be thought of as “observation equations” where 
the unknowns are the values of the high-resolution 
pixels (Xi). These linear equations can be solved by 
traditional least squares techniques (for example, 
Fryer et al., 2001).  

R
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C1= 
w12x12+w13x13+w16x16+w17x17+…+w23x23   (4) 

w12 +w13 +w16+w17…+w23 

The weights (w) are defined by the inverse of the 
distance that separates the low-resolution pixel from 
the unknown high-resolution pixels that fall within a 
circle of constant radius (R). This circle is centred 
on each low-resolution pixel as shown in Figure 4.  

The dimension of the radius R depends on the 
magnification factor required. As a general rule, if 
the magnification factor is chosen to be equal to 2 
then the minimum radius for the circle required to 
search all the high-resolution pixels is 2√2. On the 
other hand, if the chosen magnification factor is n 
then the minimum search radius is taken as n√n, etc. 

The example in Figure 4 relates to a 
magnification factor of 3 where the final high- 
resolution composite will have 3 times more pixel 
values in each coordinate direction than any of the 
low-resolution images. To comply with sampling 
theory, R must ensure that an overlapping occurs 
between the circles, as it is important that each of the 
unknown high-resolution pixels appear at least twice 
in different observation equations. 

Note that there will be an equation for each low-
resolution pixel, being the number of equations at 
least equal or greater than the number of desired 
high-resolution pixels in the final enhanced 
composite. Hence, when (say) five suitably 
overlapping images each of modest size 500x500 are 
considered, it becomes apparent that 500x500x5 = 
1.25 million observation equations could be formed. 
If a magnification factor of 2 is chosen, then the 
resultant resolution enhanced image will exceed in 
size 1000 x 1000 thus requiring the solution of 1 
million linear simultaneous equations. 

Although more computationally expensive, as 
compared to direct interpolation methods, the 
process minimizes the error variance and sets the 
mean of the prediction errors to zero so that there are 
no over- or under-estimates. An important feature of 
this “reverse mapping” process is that it also gives 
an estimation of the error at each computed point, 
thus providing a measure of confidence for the 
accuracy and precision of each high-resolution pixel 
of the enhanced composite.  

5 THE TEST IMAGES 

To explore the performance of the image 
enhancement algorithm using images requiring 
warping, a sequence of dynamic low-resolution 
images of a lighthouse was taken with a digital 
camera in video mode. They were taken under 

similar lighting conditions, but each with slightly 
different scale, views and aspect.  

These high-resolution images were then warped 
and subsequently matched to determine the sub-
pixel shifts existing amongst them. The shifts were 
then used to map the low-resolution as described in 
the previous section and used to form the 
observation equations required to construct a high-
resolution composite of the same scene. 

A section of 640x480 pixels depicting the 
lighthouse was cropped from an image of a large 
poster taken at a resolution of 2560X1920 using a 
digital camera in still mode for a JPEG compression 
ratio of approximately 6 (as illustrated in Figure 5). 
This image section was considered as the true image 
in the following test. 

 
Figure 5: The original true image of the lighthouse 
(640x480). 

The objective was to investigate how well a 
resolution-enhanced image could be recovered from 
40 MPEG compressed image sections of the same 
scene extracted from the same camera in video 
mode. The video sequence was taken at a resolution 
of 640x480 and by moving the camera so as to 
sample the object of interest from slightly different 
angles and distances.  

The 40 low-resolution images were cropped to 
be approximately of dimensions 160x120 pixels so 
as to depict the same scene. Figure 6 shows one of 
these low-resolution images.  

For statistical purposes care was taken to obtain 
one of these low-resolution images (reference 
image) from exactly the same distance and 
perspective view as the true image. This was 
attained by fixing the camera to a tripod. 

Since there were 40 low-resolution images, 39 
different sub-pixel shifts in x and y could be defined 
for each image with respect to each of the others. All 
the  low-resolution  images  were manually warped 
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Figure 6: One example of the 40 low-resolution images 
(160x120). 

 
Figure 7: The high-resolution composite (640x480) as 
constructed using 40 low-resolution distorted images 
(160x120). 

as described in section 4 and aligned with the 
reference image. This tedious operation involved an 
average of 40 control points per image mostly 
distributed with the building areas of the image.  

An enhanced image was then computed for a 
magnification factor of 4, and using the shifts as 
determined by the vector median of all possible 
combinations. Figure 7 shows the final enhanced 
composite. 

The root mean square (r.m.s.) of the difference 
between the reconstructed composite shown in 
Figure 7 and the full resolution image or true image 
in Figure 5 was computed as ±5.22 grey-scale values 
with a correlation coefficient of 0.99968.  

6 NUMBER OF IMAGES 

The required number of low-resolution images 
generally depends on the distribution of the shifts, as 

well as on the signal-to-noise ratio, and the amount 
of noise present. For instance, to minimise the 
influence of noise it is important that the distribution 
of the shifts between the low-resolution images be as 
complete as possible. 

The reconstruction of a higher resolution image 
with the minimum number of low-resolution images 
is possible, but it should not be expected to always 
achieve a high accuracy, especially for higher 
magnification factors (>5). High magnification 
factors require large numbers of low resolution 
images, meaning that these low resolution images 
must be relatively close to one another, that is, 
relatively small offsets. 

The accuracy of detecting those offsets will 
clearly affect the accuracy of the final composite 
image as the uncertainty in an offset’s determination 
may be of the same magnitude as the offset itself  
(Scarmana G. and Fryer J., 2006). 

7 CONCLUSIONS 

A procedure for reconstructing a high-resolution 
image from a sequence of low-resolution, distorted 
and compressed image sequences has been 
described. 

The method makes use of an image warping 
technique to align or register the low-resolution and 
distorted images to a common reference framework. 
The results for a sequence of 40 video images of a 
static image that were manually warped in order to 
be compatible for the enhancement algorithm, 
showed an r.m.s. comparison with a higher 
resolution “true” image of +/- 5.22 grey scale values. 

Refinements to the proposed methodology are 
presently being explored in an effort to further 
enhance the spatial and brightness resolution and 
thereby expand the range of applications that may 
benefit from using the proposed technique for image 
enhancement of small dynamic objects. Small is 
defined such that the total number of pixels on the 
border of the objects is significant, as compared to 
the amount of pixels within the object. 

This is typical of objects of interest which appear 
small if compared to the field of view of the images 
and the relatively large distance between the image 
sensor and the scene (i.e., faces in security cameras). 

The author is also currently investigating the 
possibility of adapting this enhancement process to a 
more generalised scheme whereby both sensor and 
object are dynamic and the illumination is non-
uniform. A considerable amount of manual input 
was required to select control points for the warping 
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procedure, and although there is an argument for 
manual input, investigations into automating the 
warping process with the automatic detection of 
specific landmarks on the images is under 
consideration. 

The image enhancement algorithm described in 
this paper expands the possibilities for using either 
low-cost digital still cameras, video camcorders or 
even the new generation of videophones to obtain 
suitable imagery for numerous applications in 
security, forensic measurement, architecture, 
archaeology and other non-traditional areas of 
digital image processing.  
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