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Abstract: Dynamic analysis of programs is one of the most promising techniques to reverse-engineer legacy code for 
software understanding. However, the key problem is to cope with the volume of data to process, since a 
single execution trace could contain millions of calls. Although many trace analysis techniques have been 
proposed, most of them are not very scalable. To overcome this problem, we developed a segmentation 
technique where the trace is pre-processed to give it the shape of a time series of data. Then we apply 
technical analysis techniques borrowed from the financial domain. In particular we show how the moving 
average filtering can be used to identify the “trend” of the involvement of the class in the execution of the 
program. Based on the comparison of the “trends” of all the classes, one can compute the coupling of 
classes in order to recover the hidden functional architecture of the software. 

1 INTRODUCTION 

Legacy software system reverse-engineering has 
been a hot topic for more than a decade. In fact, it is 
well known that maintenance represents, by far, the 
largest part of the software cost (Murphy, 2006). 
Moreover, the biggest factor in these costs is 
represented by the understanding of the software. In 
other words, maintenance is largely a software 
understanding problem. A necessary approach to 
understand large complex system such as software is 
to decompose it into quasi-decoupled sub-systems or 
components (Simon, 1996) that represent its high-
level architecture. Therefore, many techniques have 
been proposed to recover the high level architecture 
from legacy code. Although the early approaches 
dealt with the static analysis of the source code, such 
as the well known fan in and fan out metrics of RIGI 
(Muller et al., 1993), dynamic analysis techniques 
have recently attracted much interest in the academic 
community. The central idea behind these 
techniques is to execute the legacy software 
following its use-cases and harvest the time-ordered 
list of methods or functions that have been executed: 
the execution trace (Andritsos, Tzerpos, 2003). Most 
of the time, the execution trace is stored in a file and 
analyzed post mortem i.e. after the completion of the 
execution. However, the biggest technical issue with 

this approach is to deal with the large size of the 
execution trace. Generally, for any industrial system 
and real use-case, the execution trace is huge. For 
example, in our experiments, the number of 
functions calls (events) recorded amounted to 
hundreds of thousands and even several millions. 
But the information in such a file is highly 
redundant. In case of loops or recursive calls for 
example, the trace file may contain hundreds of 
contiguous similar events or hundreds of contiguous 
similar blocks of events. For an engineer to analyze 
such a trace file, this enormous quantity of 
information must be reduced. In the case of 
frequency spectrum analysis (Andritsos, Tzerpos, 
2003), the information is summarized by counting 
the occurrences of similar events. In this case, the 
quantity of data to interpret is bound by the number 
of events considered. This is ok if the only 
information one wants to extract is the global 
frequency of the events. But this analysis is of very 
limited use. Another way to reduce information is to 
remove the redundancies using specific trace 
compression techniques (Hamou-Lhadj, Lethbridge, 
2002). Since the resulting file must be human 
readable, it is not possible to use any standard 
information theory-based compression algorithms. 
In surmmary, the technique used must be tuned to 
the purpose of the analysis. In our research, the 
target is to identify the dynamic coupling between 
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classes to recover the functional architecture of the 
legacy software. The functional architecture is the 
structure of the components and their inter-
connections that implement some useful business 
function (as represented by the use-cases). Two 
classes are considered to be dynamically coupled if 
they work closely together during the execution of a 
use-case. But what does “working closely together” 
really mean? A first approach could be to analyze 
the “density” of calls between the instances of the 
two classes. However, the calls are not always 
direct. To overcome this problem many authors try 
to identify recurring patterns of calls i.e. find the 
sub-sequences of calls having the same structure. 
But this search is known to be computationally 
intensive therefore not very scalable. Moreover the 
pattern finding approaches have a hard time taking 
small variations of the patterns into account such as 
polymorphic calls. For example, lets us have a class 
A whose methods call the methods of class B 
through an indirect call to methods of class C, that 
are sometimes replaced by calls to the methods of 
class D. In other words, the intermediate classes C 
and D both implement polymorphic methods defined 
in a common superclass. Then the pattern finding 
algorithm will have problems identifying the 
coupling of A and B, even if B is always involved 
when A is called. The situation is worsened if the 
methods of A call the methods of several classes 
before calling the ones of B. But if the methods of B 
are executed each time the methods of A are, we 
understand that there is some strong coupling 
between both classes. But the analytical 
identification of such situation i.e. by checking 
individual calls is computationally hard. Therefore 
another approach must be found. 
 

 
Figure 1: Stock price time series. 

In fact, there is a domain where correlations 
between events can be detected without exact 
knowledge of the dependency chains between the 

events: finance. In particular, one of the techniques 
to identify stock price correlation is to analyze the 
“shape” of their time series (Figure 1). This is 
known as technical analysis (Bechu et al., 2008). 
However, to apply these techniques to an execution 
trace, we must transform it to a kind of time series of 
data for each of the classes occurring in the trace. 
This is done by segmenting the trace file into 
contiguous trace segments. Then the occurrences of 
the classes in each segment can be counted and 
displayed as a time series (where time is defined by 
the sequence of segments). From that basis, we can 
apply time series filtering techniques to build our 
dynamic correlation metrics. In section 2 we present 
the details of the technique we used to get the 
classes’ time series of data. Section 3 focuses on the 
time series filtering and comparison techniques we 
selected. Section 4 presents the experimental results 
obtained using this technique and section 5 presents 
the state of the art in trace analysis techniques. 
Section 6 concludes the paper and presents future 
work.  

2 GENERATIN TIME SERIES 

2.1 Introduction 

The first step to dynamic analysis is to generate the 
trace file. Although many techniques can be used 
(Hamou-Lhadj, Lethbridge, 2004) we decided to use 
code instrumentation. Then, instrumentation 
statements are inserted in the source code of the 
legacy system that is recompiled. This technique is 
somewhat intrusive but has the advantage to be 
applicable to any legacy programming language. 
Some non intrusive techniques exist such as virtual 
machine (VM) instrumentation but are limited of 
course to languages that run on top of a VM. This is 
not the case of most of the legacy programming 
languages. Each of the recorded events must contain 
at least the signature of the method called as well as 
the name of the class in which it is defined. In case 
of languages using module or package declarations, 
the trace events must also record the package or 
module in which the class is defined. Once the trace 
file is generated (that could contain millions of 
method calls or events), it is loaded into a database 
for further processing. 

2.2 Trace Segmentation 

Once the trace is loaded in the database it is 
segmented in contiguous segments and the number 
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of occurrences of each of the classes is counted in 
each segment. Figure 2 symbolically represents the 
segmentation and occurrence counting of one class 
in the execution trace. The trace file is represented 
horizontally and each line in the file represents one 
event (one method call). In this example, the class 
investigated occurs 1 time in the first segment, 2 
times in the second segment, 5 times in the third 
segment and so on. This computation must be done 
for each of the classes that occur at least once in the 
trace file. The time series of a class is then 
represented by the time-ordered sequence of 
occurrences of this class in each of the trace 
segments. After its computation, the time series is 
stored in the database and can be displayed as a 
graph as shown in figure 3. 
 

 
Figure 2: Execution trace segmentation. 

On the horizontal axis we represent the segment 
number and on the vertical axis the number of 
occurrences. We can observe that the shape of such 
a curve is very “shaky”. 
 

 
Figure 3: Class occurrence in the execution trace 
represented as a time series of data. 

3 TIME SERIES PROCESSING 

3.1 Identifying Trends 

Since the time series of any class shows a high 
volatility (i.e. its graph representation is “shaky”), it 
is difficult to compare it to the time series of another 
class. Rather than comparing the rough curves it 
would be much easier to compare the underlying 
trends. This is the same as in finance where the 
rough time series of stock prices are smoothed out 

using mathematical operators to reveal patterns of 
behavior. In particular the famous moving average 
operator has proven to be very efficient at 
identifying the macro trends. We then decided to use 
this operator to analyze the time series of the classes. 
The computation of the moving average is simple: 
each value of the graph is the result of the 
computation of the average of the n-1 previous 
values plus the current one. This is known as the 
order n moving average (n values are taken into 
account to compute the present value). The result of 
such a computation for the time series of a class is 
presented in figure 4. The curve displayed in the 
center of the figure is the filtered version of the 
rough curve using a moving average of order 10. 
Since the moving average must take the n-1 values 
into account, it can only be displayed from the nth 
value.  
 

 
Figure 4: Rough time series for a class and its filtered 
counterpart based on the moving average. 

We call filtered time series a class time series to 
which we applied the moving average smooting 
operator. Our experiments seem to suggest that the 
comparison of two filtered time series is largely 
insensitive to the number of segment in which we 
split the execution trace. This is in sharp contrast 
with our previous coupling measurement technique 
that was based on the binary occurrence of the 
classes in the segments (Dugerdil, 2007). In the 
latter we only detect the absence (0) or presence (1) 
of a class in the segments without taking into 
account the actual number of occurrences. In other 
words if a class occurs 1000 times or 1 time in a 
given segment, the binary value for the class is 1 for 
the segment. Then we compare the binary 
occurrence of the classes among all the segments of 
the execution trace to detect similarities. This binary 
technique is very sensitive to the number of 
segments in which we split the execution trace. This 
is straightforward to understand. The widening of 
the segment size could easily change the binary 
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occurrence value from absent to present for a class 
in a segment, since only 1 occurrence is enough. But 
this change would not necessary happen to the other 
classes it is coupled to, therefore changing the 
coupling metrics. With our new technique based on 
time series of data, the widening of the segment size 
could lead to a bigger number of occurrences for a 
given class. But this would probably also happen to 
any class it is strongly coupled to, even if not to the 
same magnitude. Moreover, we found that two 
filtered time series for the same class computed with 
different number of segments were very comparable 
provided that we adapted the order of the moving 
average when changing the number of segments. In 
particular, we empirically observed that if we double 
the number of segments, we must double the order 
of the moving average to get similar trends for the 
filtered time series of any class. The number of 
segments in an execution trace must be set relative 
to the number of classes occurring in the trace 
(Dugerdil, 2007). We note NS(n) to mean that the 
number of segments is n times the number of classes 
in the trace. As an example, figure 5 compares the 
trends of the same class using two sets of 
parameters: NS(5), Moving Average(30) and 
NS(10), Moving Average(60). 
 

 
Figure 5: Comparison of two time series of data for the 
same class using different number of segments. 

As can be seen in Figure 5, the two curves are 
almost superimposed. To be able to display the 
curves on the same scale we normalized the 
horizontal axis to 100, whatever the number of 
segments. But, the goal of our research is to compare 
the time series of different classes to see if they are 
dynamically coupled (if their “trends” are the same). 
The first experiment with two different classes is 
presented in Figure 6. We can see that the shape of 
both curves display some similarities suggesting that 
the classes might be coupled. To compute the 
strength of the coupling of two classes, one idea is to 

sum the absolute difference over all the segment of 
the filtered time series of the two classes. But this 
rough computation would lead to the same coupling 
value for very different shapes of the time series. For 
example, this technique would be unable to 
distinguish between the two situations presented in 
Figure 7. 

 
Figure 6: Comparison of the time series of data of two 
classes. 

While the situation on the left part of the figure 
could correspond to strongly coupled classes, this 
would certainly not be the case for the situation 
depicted on the right, although the absolute 
difference would be the same. 

 

 

Figure 7: Two very different situations leading to the same 
coupling value. 

To avoid such a problem we decided to compare 
normalized time series where the occurrence value 
in each segment is expressed as the percentage of the 
maximum value for the time series. Therefore the 
biggest value for any normalized time series is 100. 
This idea has been applied to the curves presented in 
Figure 6. The result is displayed in figure 8. We can 
now clearly see that the shape of both curves is very 
similar, in spite of the fact that their absolute values 
were quite different. This may suggest some 
moderate coupling between these two classes. 

In contrast, figure 9 presents two classes whose 
coupling is weak. The number of segments as well 
as the order of the moving average is the same as in 
the figure 8. 
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Figure 8: Filtered and normalized time series of two 
moderately coupled classes. 

 
Figure 9: Filtered and normalized time series of two 
weakly coupled classes. 

3.2 Computing Coupling Metrics 

The coupling value between two classes is computed 
as the sum of the absolute difference between their 
filtered and normalized time series. The smaller the 
coupling metrics, the higher the coupling between 
the classes. Two perfectly coupled classes would 
then have a coupling metrics of 0. However, there is 
still a problem remaining: if the most of the values 
of the two filtered time series is 0, the corresponding 
coupling metrics would be small whatever the 
coupling of the classes. To avoid this bias we 
compute the average of the absolute difference over 
all segments where at least one of the data of the 
time series is not null. If both time series have 0 as 
the value for some segment, we do not take this 
segment into account. Formally the computation is 
given by the following formulae. Let: 

…  and  …  

be two sets of values resulting from the filtering and 
normalization of the time series of data for the 
classes Ci and Cj respectively. The following is the 

set of all pairs of values for the corresponding 
segments, where at least one value is non zero. 

, ,         
                  0    0   

Then, the number of segments for which at least one 
value is non zero is the size of the previous set. 

,  

Therefore, the coupling metrics becomes: 

,
∑ | |

 

4 EXPERIMENTAL RESULTS 

To analyze the coupling between the classes we 
developed a trace analysis tool that computes and 
displays the time series of data of the classes as well 
as the filtered and normalized curves. Then it 
computes the coupling between any two classes and 
shows the result as a list sorted by increasing value 
of the coupling. In Figure 10 we present the control 
panel of the trace analyzer.  
 

 
Figure 10: The control panel of the trace analyzer. 

In this panel we can select the execution trace to 
analyze from the ones available in the database, set 
the number of segments and the order (range) of the 
moving average filter. On the right we can see the 
list of classes present in the trace. From this panel 
we can also launch the display of the time series of 
data for any class or any set of classes. Next we can 
switch to the coupling analysis panel where the 
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coupling between any pair of classes is displayed. 
This is shown in figure 11 where we can see the list 
of all pairs of classes, ranked in increasing number 
of the coupling metrics. This example shows the 
result of the analysis of a 600’000 events execution 
trace with 139 classes. The parameters of the 
analysis were NS = 5 and Moving Average order = 
60. This analysis took about 4 min on a standard PC 
(3GHz, 2GB Ram). In Figure 12 we present the 
graph of two strongly coupled classes (coupling 
value: 2). The two curves are indistinguishable. 
 

 
Figure 11: The coupling metrics panel of the trace 
analyzer. 

 
Figure 12: Filtered and normalized graph of two strongly 
coupled classes. 

In comparison, we present in figure 13 the 
unfiltered but normalized time series for the same 
two classes as figure 12. Although we know from 
our coupling measurement technique that the two 
classes are strongly coupled, this is not evident from 
the figure. As a final example, figure 14 present two 

classes whose behavior is largely decoupled 
(coupling value: 19398). 

 
Figure 13: Unfiltered but normalized graph for the same 
classes as figure 12. 

 
Figure 14: Filtered and normalized graph for decoupled 
classes. 

5 RELATED WORK 

In the literature, many techniques have been proposed 
to recover the structure of a system by splitting it into 
components. They range from document indexing 
techniques (Marcus A., 2004), slicing (Verbaere, 
2003), “concept analysis” technique (Siff, Reps, 
1999) or even mixed techniques (Harman et al., 
2002). All these techniques are static i.e. they try to 
partition the set of source code statements and 
program elements into subsets that will hopefully help 
to rebuild the architecture of the system. But the key 
problem is to choose the relevant set of criteria (or 
similarity metrics) (Wiggerts, 1997) with which the 
“natural” boundaries of components can be found. In 
the reverse-engineering literature, the similarity 
metrics range from the interconnection strength of 
RIGI (Muller et al., 1993) to the sophisticated 
information-theory based measurement of (Andritsos, 
Tzerpos, 2003, 2005), the information retrieval 
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technique such as Latent Semantic Indexing (Marcus, 
2004) or the kind of variables accessed in formal 
concept analysis (Siff, Reps, 1999) (Tonella, 2001). 
Then, based on such a similarity metric, an algorithm 
decides what element should be part of the same 
cluster (Mitchell, 2003). In their work, Xiao and 
Tzerpos compared several clustering algorithms based 
on dynamic dependencies (Xiao, Tzerpos, 2005). In 
particular they focused on the clustering based on the 
global frequency of calls between classes. But this 
approach does not discriminate the situations where 
the calls happen in different locations in the trace. 
This is to be contrasted with our approach that takes 
the location of the calls in the trace into account. Very 
few authors have worked on sampling or 
segmentation techniques for trace analysis. One 
pioneering work is the one of (Chan et al., 2003) to 
visualize long sequence of low-level Java execution 
traces in the AVID system (including memory event 
and call stack events). But their approach is quite 
different from ours. It selectively picks information 
from the source (the call stack for example) to limit 
the quantity of information to process. The problem to 
process very large execution traces is now beginning 
to be dealt with in the literature. For example, 
Zaidman and Demeyer proposed to manage the 
volume of the trace by searching for common global 
frequency patterns (Zaidman, Demeyer, 2004). In 
fact, they analyzed consecutive samples of the trace to 
identify recurring patterns of events having the same 
global frequencies. In other words they search locally 
for events with similar global frequency. It is then 
quite different from our approach that analyzes class 
distribution throughout the trace. Another technique is 
to restrict the set of classes to include in the trace like 
in the work of (Meyer, Wendehals, 2005). In fact, 
their trace generator takes as input a list of classes, 
interfaces and methods that are to be monitored 
during the execution of the program under analysis. 
Similarly, the tool developed by (Vasconcelos et al., 
2005) allows the selection of the packages and classes 
to be monitored for trace collection. In this work, the 
trace is sliced by use-case scenarios and message 
depth level and it is possible to study the trace per 
slice and depth level. Another technique developed by 
(Hamou-Lhadj, 2005) uses text summarization 
algorithms, which takes an execution trace as input 
and returns a summary of its main contents as output. 
(Sartipi, Safyallah, 2006) use a patterns search and 
discovery tool to separate, in the trace, the patterns 
that correspond to common features from the ones 
that correspond to specific features. Although the 
literature is abundant in clustering and architecture 
recovery techniques exploiting execution traces, most 

of the approaches are analytical. The few paper 
dealing with statistical approaches are still very 
rudimentary. 

6 CONCLUSIONS 

The technique we presented in this paper is aimed at 
computing the dynamic coupling between classes or 
modules in legacy systems. The metrics is based on 
the segmentation of the execution trace that let us 
compute a time series of data for each class 
occurring in the trace. The time series are then 
filtered using the moving average technique, 
borrowed from the technical analysis in finance. The 
normalized result can then be used to compute the 
coupling between any two classes. This represents 
the key contributions of our work. In fact, none of 
the published papers ever tried to segment the trace 
to get another “perspective” on the trace analysis 
problem. Our coupling metrics is used to identify 
clusters of strongly coupled classes that represent the 
functional components of the software. This metrics 
has proven to be largely insensitive to the number of 
segments. In fact, in the experiments we conducted 
we saw that by changing the number of segments in 
the trace, the order of the pairs of classes in the list 
ranked by increasing coupling value stayed the 
same. Only the coupling value changed slightly, 
which is understandable since the number of 
occurrences of the classes in each segment may 
differ if the segment size is changed. Our technique 
has the big advantage over analytical techniques (i.e. 
the ones that analyze the individual events in the 
trace) that it is very scalable. In fact, we were able to 
analyze traces up to 7 millions of events without 
trouble. So far, no techniques based on analytical 
approaches for component identification have been 
shown to be able to cope with such an amount of 
data. Again, our method is successful because it 
processes the trace using statistical technique rather 
than analytical techniques. Clustering classes based 
on their involvement in use-case implementation is 
only the first step to recover the architecture of a 
legacy system. The next step is to recover the 
connections between the components using again the 
coupling between the contained classes. Then not 
only can, the coupling metrics, lead to the 
identification of functional components, but also to 
the identification of the connections between the 
components. Therefore, our trace analysis technique 
let us reconstruct the complete functional 
architecture of the software. However the detailed 
explanation of the architecture reconstruction 

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

200



technique goes beyond the scope of this paper. Our 
current work focuses on the development of a series 
of tool to leverage the component recovery system 
presented in this paper. The first tool will display the 
sequence diagram of the interaction between the 
clusters (functional component). This will provide 
us with a high level description of the sequence of 
involvement of each cluster when executing the 
system. Each cluster will then be matched against 
the steps of the use-cases. Second, we are working 
on a matcher to link the functional components to 
high level features of the program. Third, we work 
on 3D visualization to display the cluster formed 
while executing the system. All these tools take 
place in our reverse-architecting environment built 
under Eclipse for legacy system understanding and 
reengineering 
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