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Abstract: Fuzzy regression techniques can be used to fit fuzzy data into a regression model, where the deviations 
between the dependent variable and the model are connected with the uncertain nature either of the 
variables or of their coefficients. P.M. Diamond (1988) treated the case of a simple fuzzy regression of an 
uncertain dependent variable on a single uncertain independent variable, introducing a metrics into the space 
of triangular fuzzy numbers. In this work we managed more than a single independent variable, determining 
the corresponding estimates and providing some theoretical results about the decomposition of the sum of 
squares of the dependent variable according to Diamond’s metric, in order to identify its components. 

1 INTRODUCTION 

Modalities of quantitative variables are commonly 
given as exact single values, although sometimes 
they cannot be precise. The imprecision of 
measuring instruments and the continuous nature of 
some observations, for example, prevent researcher 
from obtaining the corresponding true values. 

On the other hand qualitative variables are 
commonly expressed using common linguistic 
terms, which also represent verbal labels of sets with 
uncertain borders. This is the case of the answers 
provided in the customer satisfaction surveys, which 
are collected through ordered categories from “not at 
all” to “completely”. 

The appropriate way to manage such an 
uncertainty of observations is provided by fuzzy 
theory.  

In 1988 P. M Diamond introduced a metric onto 
the space of triangular fuzzy numbers and derived 
the expression of the estimated coefficients in a 
simple fuzzy regression of an uncertain dependent 
variable on a single uncertain independent variable. 

Starting from a multivariate generalization of this 
regression, we give important results about the 
decomposition of the deviance of the dependent 
variable according to Diamond’s metric. 

 

2 THE FUZZY LEAST SQUARE 
REGRESSION 

A triangular fuzzy number T
RL )x,x,x(X~=  for the 

variable X is characterized by a membership 
function )(xμ iX~

 like the one represented in Fig.1. 

xL x                    xR X 

X~μ

1

 
Figure 1: Representation of a triangular fuzzy number. 

The accumulation value x is considered the centre of 
the fuzzy number, while x-xL and xR-x are 
considered the left spread and the right spread 
respectively. Note that x belongs to X~  with the 
highest degree, while the other values included 
between the extremes xL and xR belong to X~  with a 
gradually lower degree. 

The set of triangular fuzzy numbers is closed 
with respect to sum: given two triangular fuzzy 
numbers T

RL )x,x,x(X~ =  and T
RL )y,y,y(Y~ = , their 

sum is still a triangular fuzzy number 
=Z~ Y~X~ + = T

RRLL )yx,yx,yx( +++ . Moreover the 

75
Campobasso F., Fanizzi A. and Tarantini M. (2009).
SOME RESULTS ON A MULTIVARIATE GENERALIZATION OF THE FUZZY LEAST SQUARE REGRESSION.
In Proceedings of the International Joint Conference on Computational Intelligence, pages 75-78
DOI: 10.5220/0002321200750078
Copyright c© SciTePress



 

product of a triangular fuzzy number T
RL )x,x,x(X~ =  

and a real number k depends on the sign of the latter, 
resulting equal to T

RL )kx,kx,kx(X~k =  if k is positive 
or T

LR )kx,kx,kx(X~k = if k is negative. 
P.M. Diamond (1988) introduced a metric onto 

the space of triangular fuzzy numbers; according to 
this metric, the distance between X~  and Y~  is 

( ) 2RR2LL22
T

RL
T

RL2 )yx()yx()yx()y,y(y,,)x,x,x(d)Y~,X~(d −+−+−== .  
In particular Diamond analysed the regression 

model of a fuzzy dependent variable Y~  on a single 
fuzzy independent variable X~ : 

Y~ = a + b X~ + ε. 
The expression of the corresponding parameters 

is derived from minimizing the sum ∑ +
=

n

1i

2
ii )Y

~
,X

~
ba(d  

of the squared distances between theoretical and 
empirical values in n observed units of the fuzzy 
dependent variable Y~  with respect to a and b. 

Such a sum takes different forms according to 
the signs of the coefficient b, as the product of a 
fuzzy number T

RL )x,x,x(X~ =  and a real number k 
depends on whether the latter is positive or negative.  
Therefore, multiplying by a negative real number, 
the right extreme of the fuzzy number is obtained by 
adding the left spread to the centre, while its left 
extreme is obtained by subtracting the right spread 
from the centre. 

Diamond demonstrated that the optimization 
problem has a unique solution under certain 
conditions. 

3 A MULTIVARIATE 
GENERALIZATION OF THE 
REGRESSION MODEL  

Recently we generalized this estimation procedure to 
the case of k independent variables (k≥1). Let’s 
assume to observe a fuzzy dependent variable 

Tiiii )μ,μ,(yY~ =  and two fuzzy independent variables, 

Tiiii ),,x(X~ ξξ=  and Tiiii )δ,δ,(zZ~ = , on a set of n 
units. The linear regression model is given by  

iY~ *= a +b iX~ +c iZ~ ,      i=1,2, ...,n; a,b,c ∈ IR. 
The corresponding parameters are determined by 

minimizing the sum of Diamond’s distances 
between theoretical and empirical values of the 
dependent variable 

                       ∑
=

++
n

1i

2
iii )Y~,Z~cX~bd(a                      (1) 

respect to a, b and c. As we stated above, such a 
sum assumes different expressions according to the 
signs of the regression coefficients b and c. This 
generates the following four cases 
Case 1:  b≥0, c≥0 

∑
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where y L
i

= yi -
i

μ , y R
i

= yi + iμ  and x L
i

, x R
i

, z L
i

, z R
i

have 
similar meanings. 
Case 2: b<0, c≥0 
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Case 3: b≥0, c<0 
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Case 4: b<0, c<0 
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Let’s consider, as an example, case 3. The 
expression to be minimized is given by 

(yL-XLRβ)'(yL-XLRβ)+(y-Xβ)'(y-Xβ)+(yR-XRLβ)'(yR-XRLβ) (2) 

in matricial terms, where 
y L e y R are n-dimensional vectors, whose elements 
are the lower extremes y L

i
= yi -

i
μ and the upper 

extremes  y R
i

= yi + iμ  respectively; 
XLR is the n×3 matrix, formed by vectors 1, 
xL=[x L

i = xi- iξ ] and zR=[z R
i = zi+ iδ ]; 

XRL is the n×3 matrix (analogous to XLR), formed by 
vectors 1, xR, zL; 
y is the n-dimensional vector of centres yi; 
X is the n×3 matrix formed by vectors 1, xC=[xi], 
zC=[zi]; 
β is the vector (a, b, c) '. 

Similarly to OLS estimation procedure, the 
optimization problem admits a single and finite 
solution if [(XLR)' XLR + (X)' X + (XRL)' XRL] is 
invertible and the hessian matrix [2(XLR)' XLR + 
2(X)' X + 2(XLR)' XRL] is definite positive. The 
matricial expression of the fuzzy least square (FLS) 
estimator is given by 

β=[(XLR)'XLR+X'X+(XRL)'XRL]-1[(XLR)'yL+X'y+(XRL)'yR].  

IJCCI 2009 - International Joint Conference on Computational Intelligence

76



 

It’s worth noticing that the FLS estimator would 
equal the OLS one if the observed variables were 
crisp. The found solution β*=(a* ,b*, c*) is admissible 
if the signs of the regression coefficients are 
coherent with basic assumptions (b*≥0 and c*<0). 

In the remaining three cases the expression (2) 
to be minimized is obtained after replacing XLR and  
XRL   by   XLL and  XRR  (case 1), by  XRL and  XLR  
(case 2),  XRR and  XLL  (case 4) respectively. 

The optimum solution corresponds to that 
(admissible) one which makes minimum (1) among 
all.  

Note that the generalization of such a procedure 
to the case of several independent variables is 
immediate and that the number of solutions to 
analyse, in order to identify the optimum one, 
growths exponentially with the considered number 
of variables. For example, if the model includes k 
independent variables, 2k possible cases must be  
taken into account, which derive from combining the 
signs of the regression coefficients. 

4 DECOMPOSITION OF TOTAL 
DEVIANCE OF THE 
DEPENDENT VARIABLE 

In this section two important theoretical results will 
be demonstrated: the first one regards the inequality 
between theoretical and empirical values of the 
average fuzzy dependent variable (unlike in the OLS 
estimation procedure for crisp variables); the second 
one regards the decomposition of the total deviance 
of the dependent variable, which involves other two 
additive components besides the regression and the 
residual deviances. 

It is necessary to obtain preliminary results for 
this purpose. After considering, only for example, 
the case 3 and in particular rewriting (2) as  
[(XLR)'XLR+(X)'X+(XRL)'XRL]β=[(XLR)'yL+(X)'y+(XRL)'yR], 

we can obtain the following system of equations: 
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Equation (3) shows that the total sum of lower 
extremes, centres and upper extremes of the 
theoretical values of the dependent variable  
coincides with the same amount referred to the 
empirical values. Such an equation does not allow us 
to say that theoretical and empirical values of the 
average fuzzy dependent variable coincide. 

Let’s examine how the total deviance of Y can 
be decomposed according to Diamond’s metric: 

Dev(Tot)= ∑ −+−+− ])yy()yy()yy[( 2RR
i

2
i

2LL
i . 

Adding and subtracting the corresponding 
theoretical value within each square and developing 
all the squares, the total deviance can be expressed 
as 
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Adding and subtracting the theoretical average 
values of the lower extremes, of the centres and of 
the upper extremes of the dependent variable within 
each square and solving all the squares, the previous 
expression becomes 
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where 
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represents the residual deviance,  
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represents the regression deviance and 
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represents the distance between theoretical and 
empirical average values of Y. 
Synthetically the expression (6) can be written as: 
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As the sums of deviations of each component 
from its average equal zero, then it is 
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By replacing expressions of the theoretical values in 
the latter equation, we obtain  
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Finally the expression (7) can be reduced to 
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Note that, if the residual  deviance equals zero, also 
η and 2* )Y,Y(d  equal zero, because  theoretical and 
empirical average values of Y coincide for each 
observation.  
Therefore:  
- if the regression deviance equals zero, then the 
model has no forecasting ability, because the sum of 
the components of the i-th estimated fuzzy value 
equal the sum of the sample average components (i 
= 1 ,..., n). Actually, if  Dev (regr) = 0, for each i we 
have 
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- if the residual deviance equals zero, the 
relationship between dependent variable and 
independent ones is well represented by the  
estimated model. In this case, the total deviance is 
entirely explained by the regression deviance. 

As usual, the largest the regression deviance is 
(the smallest the residual deviance is), the better the 
model fits data. 

5 CONCLUSIONS 

In this work, starting from a multivariate 
generalization of the Fuzzy Least Square 
Regression, we have decomposed the total deviance 
of the dependent variable according to the metric 
proposed by Diamond (1988). In particular we have 
obtained the expression of two additional 
components of variability, besides the regression 
deviance and the residual one, which arise from the 
inequality between theoretical and empirical values 
of the average fuzzy dependent variable (unlike in 
the OLS estimation procedure for crisp variables).  
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