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Abstract: In the present work, techniques of Model Predictive Control (MPC), Multi Agent Systems (MAS) and 
Reinforcement Learning (RL) are combined to develop a distributed control architecture for Large Scale 
Systems (LSS). This architecture is multi-agent based. The system to be controlled is divided in several 
partitions and there is an MPC Agent in charge of each partition. MPC Agents interact over a platform that 
allows them to be located physically apart. One of the main new concepts of this architecture is the 
Negotiator Agent. Negotiator Agents interact with MPC Agents which share control variables. These shared 
variables represent physical connections between partitions that should be preserved in order to respect the 
system structure. The case of study, in which the proposed architecture is being applied and tested, is a 
small drinking water network. The application to a real network (the Barcelona case) is currently under 
development. 

1 INTRODUCTION 

Large Scale Systems (LSS) are complex dynamical 
systems at service of everyone and in charge of 
industry, governments, and enterprises. The 
applications are wide. Examples of applications of 
LSS in continuous domains are: power networks, 
sewer networks, water networks, canal and river 
networks for agriculture, etc. Other examples of 
applications of LSS in discrete domain are traffic 
control, railway control, manufacturing industry, etc. 

Experts in automatic control have developed 
many solutions for this kind of systems. However, 
the increase of automation of LSS renders problems 
with a noticeable increase in complexity. Such 
complexity is due to the size of the system to be 
controlled and the huge number of sensors and 
actuators needed to carry out the control. 
Additionally, LSS are composed of many interacting 
subsystems. Thus, LSS control is difficult to be 
implemented using a centralized control structure 
because of robustness and reliability problems and 
due to communication limitations. For all these 
reasons, distributed control schemes have been 
proposed over the last years. 

One of the main problems of distributed control 
of LSS is how relations between system partitions 

are preserved. These relations could be, for example, 
pipes that connect two different control zones of a 
decentralized water transport network, or any other 
kind of connection between different control zones.  
When these connections represent control variables, 
the distributed control has to be consistent for both 
zones and the optimal value of these variables will 
have to accomplish a common goal. 

The authors believe that this open problem in 
control theory can be solve by the combination of 
adequate control and computer science techniques, 
more precisely, the combination of Model Predictive 
control (MPC), Multi-Agent Systems (MAS), and 
Reinforcement Learning (RL).      

Due to Distributed Control (DC) present the 
same philosophy of Distributed Artificial 
Intelligence (DAI), the idea is to apply MAS 
techniques and technology to DC problems as 
communication, coordination, need of adaptation 
(learning), autonomy and intelligence. 

The use of RL in the negotiation process will 
allow to: 

1)  Make the process of negotiation adaptive; 2) 
Learn from its own experience;  3) Explicitly 
consider the whole problem of two goal-oriented 
agents; 3) Deal with a dynamical and uncertain 
environment; 4) Optimize with or without a model; 
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5) Connect the process of negotiation whit the one of 
the control MPC, this because of compatibilities 
found between them.  

Model Predictive Control (MPC), also known as 
receding horizon control, is a control technique 
widely used in industry (see (Qin & Badwell, 2003) 
and (Camacho & Bordons, 2004)) well suited for the 
control of continuous LSS. In MPC, the control 
input is obtained by solving a discrete-time optimal 
control problem over a given horizon, producing an 
optimal open-loop control input sequence. The first 
control in that sequence is applied. At the next 
sampling instant, a new optimal control problem is 
formulated and solved based on the new 
measurements.  

The MPC control aim is to find actions 
uk, …, uk+Nc, such that after Np steps,  a sequence of 
predicted outputs y approaches a set point y*.  

The theory of MPC is well developed; most 
aspects, such as stability, nonlinearity, and 
robustness, have been discussed in the literature 
(see, e.g., (Bemporad & Morari, 1999) (Morari & 
Lee, 1999). Besides, MPC is very popular in the 
process control industry because the actual control 
objectives and operating constraints can be 
represented explicitly in the optimization problem 
that is solved at each control instant. 

Typically, MPC is implemented in a centralized 
fashion. The complete system is modelled, and all 
the control inputs are computed in one optimization 
problem.  

The goal of the research described in this paper is 
to exploit the attractive features of MPC (meaningful 
objective functions and constraints) in a distributed 
implementation combining learning techniques to 
perform the negotiation of these variables in a 
cooperative Multi Agent environment and over a 
Multi Agent platform. All these ideas are the basis 
of the proposed architecture. A methodology for the 
application of the proposed architecture is also 
provided. 

Organization of the paper is as follows: Section 
2 introduces the problem to be solved and Section 3 
describes known approaches to it based on 
distributed MPC. The formalization of the proposed 
architecture is given in Section 4. Section 5 and 6 
are devoted to an application example and the results 
obtained. Finally, Section 7 presents the paper 
conclusions and Section 8 presents the current and 
further research that is being developed. 

 

2 THE PROBLEM 

In order to control a LSS in a distributed way, some 
assumptions have to be made on its dynamics, i.e. on 
the way the system behaves. Assume, first, that the 
system can be divided into n subsystems, where each 
subsystem consists of a set of nodes and the 
interconnections between them. The problem of 
determining the partitions of the network is not 
addressed in this paper; instead the reader is referred 
to (Siljack, 1991). The set of partitions should be 
complete. This means that all system states and 
control variables should be included at least in one 
of the partitions. 

Definition 1. System Partitions. P is the set of 
system partitions and is defined by  

 },,,{ 21 nppppP …=  (1) 

where each system partition (subsystem) pi is 
described by a deterministic linear time-invariant 
model that is expressed in discrete-time as follows 
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where variables x, y, u and d are the state, output, 
input and disturbance vectors, respectively; A, C, B 
and D are the state, output, input and direct matrix, 
respectively. Subindices u and d refer to the type of 
inputs the matrix model, either control inputs or 
disturbances. 

Definition 2. Internal Variables. Internal variables 
are control variables that appear in the model of only 
one subsystem in the problem. The set of internal 
variables of one partition is defined by 

 },,,{ 21 nuuuuU …=  (3) 

Definition 3. Shared Variables. Shared variables 
are control variables that appear in the model of at 
least two subsystems in the problem. Their values 
should be consistent in the subsystems they appear, 
so they are also called negotiated variables. V is the 
set of negotiated variables defined by 

     },,,{ 21 nvvvvV …=   
  (4) 

Each subsystem i is controlled by an MPC 
controller using:  

- the model of the dynamics of subsystem i 
given by equation (2); 

- the measured state xi(k) of subsystem i; 
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- the exogenous inputs di(k+1) of  subsystem 
i over a specific horizon of time; 

As a result each MPC controller determines the 
values ui(k) of subsystem i. The internal control 
variables are obtained directly by the MPC 
controller of this subsystem while the shared 
variables are proposed to be negotiated with the 
MPC controllers of the corresponding subsystem.  

When there are no shared variables between 
subsystems, this control scheme is usually referred 
to as decentralized control. When the set of shared 
variables is not empty, it is usually referred to as 
distributed control. The problem addressed in this 
paper is an agent based distributed control. There is 
one agent in charge of each system partition and its 
duties are to negotiate the shared variables with 
other agents and to calculate the control actions from 
the MPC formulation of its partition. 

Figure 1, on the left, shows a sample system 
divided into three partitions. There are three 
overlapping sets that contain four shared variables. 
The relations that represent those variables are 
shown on the right as lines. The problem consists in 
optimizing the manipulated variables of the global 
system in a distributed fashion, i.e. with three local 
control agents that must preserve consistency 
between the shared variables. 

 
Figure 1: The problem of distributed control. 

3 DISTRIBUTED MPC 

In distributed control schemes, local control inputs 
are computed using local measurements and 
reduced-order models of the local dynamics 
(Scattolini, 2009). 

Distributed MPC is attractive because it requires 
only local process data for controller design and 

model maintenance. Computing demands are 
smaller on each control agent. Furthermore, routine 
maintenance operations such as removing sensors or 
actuators for repairing are achieved much more 
easily under distributed MPC. Nevertheless, there is 
one well known drawback: the performance of 
distributed MPC is usually far from optimal when 
the subsystems interact significantly. Centralized 
MPC, on the other hand, achieves optimal nominal 
control for any system. However, centralized MPC 
is viewed by most practitioners as impractical and 
unsuitable for control of large networked systems.  
(Venkat et al.,  2005). 

Distributed MPC algorithms are classified into 
iterative and non-iterative and further subclassified 
into independent or cooperative algorithms. 

In iterative algorithms information is bi-
directionally transmitted among local regulators 
many times within the sampling time. In non-
iterative algorithms information is bi-directionally 
transmitted among local regulators only once within 
each sampling time. (Scattolini, 2009) gives a 
review of distributed control architectures for LSS. 

Independent (non-cooperative) algorithms are 
widely studied in game theory. Their aim is to get 
better results than the other controllers, which are 
seen as opponents. They have also been applied in 
MPC distributed control strategies [see, for instance, 
(Jia & Krogh, 2002) (Camponogara, 2002)]. 

Contrarily, cooperative algorithms intend to find 
a compromise for shared variables in order to 
maximize the performance of the complete system, 
worsening if necessary the performance of 
partitions. (Negenborn et al., 2008) and (Venkat et 
al., 2005) are two recent examples of the application 
of cooperative algorithms, the first one is non-
iterative and the second one is iterative. 

4 MULTI-AGENT MPC 
ARCHITECTURE 

In this section, the proposed multi-agent MPC 
(MAMPC) architecture is presented. First the 
elements of the proposed architecture are presented. 
Then, the whole architecture is described. 

4.1 Elements  

The elements of the proposed architecture are: MPC 
Agents and Negotiator Agents. They interact over an 
Agent Platform that is composed by a set of Nodes. 
            

  Sub-division of the plant       

Relations 
between 

controllers
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Definition 4. MPC Agent. An MPC Agent is the 
entity that is in charge of controlling one specific 
partition of the system.  

There is one MPC Agent for each system 
partition. The MPC Agent solves an MPC control 
problem considering the internal variables of the 
partition and cooperating with one or more 
Negotiator Agents to determine the optimum value 
of the shared variables. A is the set of MPC Agents  

 },,,{ 21 naaaaA …=  (5) 

Definition 5. Negotiator Agent. A Negotiator 
Agent is the entity that is in charge of determining 
the value of one or more shared variables between 
two MPC Agents.  

In this negotiation, each MPC Agent is arranged 
to cooperate so that the negotiator agent solves the 
optimization of a common goal by means of an 
algorithm based on Reinforcement Learning. A 
negotiator Agent exists for every pair of MPC 
Agents that have one or more shared variables in 
common. N is the set of Negotiator Agents defined 
by 

 },,,{ 21 nnnnnN …=  (6) 

Definition 6. Nodes. A node is the physical device 
(commonly a computer) in which the agents are 
located. W is the set of nodes defined by 

 },,,{ 21 nwwwwW …=  (7) 

There is a node for each MPC Agent. Nodes are 
communicated via some communication 
infrastructure (LAN, WAN or Internet). 

Definition 7. Agent Platform. The agent platform 
works as a virtual machine providing the agents a 
homogenous medium to communicate and providing 
the user a way to manage agents. The agent platform 
is denoted by b.              

This platform has to be installed and running in 
all nodes. 

4.2 Architecture 

Definition 8. MAMPC Architecture. The MAMPC 
distributed control architecture is defined as: 

 },,,,,,{ bUVWPNA nann=γ  (8) 

where: A is the set of MPC Agents, N is the set of 
Negotiator Agents, P is the system partitions, W is 
the set of nodes, Vnn  is the set formed by all sets of 
Shared Variables, Una  is the set formed by all sets of 
Internal Variables and b is the Agent platform.  

A methodology has been developed to apply this 
MAMPC architecture in a given system. This 
methodology will be illustrated in the following 
section with an example. 

4.3 Cooperation of MPC-Agents 

The cooperative interaction of MPC agents is a basic 
issue in the proposed approach. Three main actions 
are necessary to perform this cooperation: 

 To perform actions and provide data required 
by the Negotiatior Agent 

 To accept the value(s) provided by the 
Negotiator Agent of its shared variable(s). 

 To solve the MPC control problem of its 
partition, adjusting the value(s) of its shared 
control variable(s) in order to coordinate the 
solution of the negotiation. 

The Negotiator Agent determines the optimal 
value of the values in set Vx. This set contains the 
shared variables of two, and just two MPC Agents. 
The Negotiator Agent optimizes them through a 
Negotiation algorithm based on Reinforcement 
Learning (RL). Each shared variable is an 
optimization problem. This problem is solved as a 
whole looking for the optimal value of the relation. 
The method is based on the reinforcements given at 
each step and on the experience obtained. This 
experience is stored in a knowledge base, one for 
each negotiation variable. 

In the distributed model of the system, shared 
variables appear in the local models of each MPC 
Agent involved in the relation, therefore they end up 
duplicated. 

The Negotiator Agent restores the broken 
connections when the system was partitioned,  
unifiying this duplicate variables in a single one, just 
as in the original model. Therefore, for the 
Negotiator Agent, this two control variables are 
taken as one. 

The philosophy of the proposed negotiation 
algorithm is to consider the shared variables as 
belonging to a single problem with a single goal, 
instead of two different problems with conflicting 
goals. The Negotiator Agent solves the optimization 
problem for that variable and communicates the 
result to the MPC Agents at each sampling time. 
Then, MPC Agents set those values as a hard 
constraint in its respective internal control variables 
and recalculate the multivariable control problem. 

   The optimization of the Negotiator Agent 
algorithm is based on its experience and on 
maximizing the reinforcements received at every 
action taken in the past on similar situations. 
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   This algoritm is based on the Q-learning 
algorithm, and adapted to be applied in dynamical 
environments. Next, the formulation of the 
algorithm is detailed. 

4.3.1 Formulation of the Negotiation-
learning Problem 

The goal of the Negotiator Agent is to detemine the 
optimal value of the set of shared variables Vx. Each 
element of the set Vx is an optimization problem 
addressed individually by the Negotiator Agent and 
there is a knowledge base for each one. The internal 
architecture of the Negotiator Agent comprises the 
following elements: 

 A set of knowledge bases (Q-tables); each Q-
table represents the knowledge base of the 
agent, which has a Q-table for each shared 
variable because each one can have diferent 
behaviour and even different goals. 

 A communication protocol that allows it to 
have bi-directional communication with two 
MPC-Agents. 

 A negotiation algorithm 
Next, these elements are described in further 

detail. 

Q-Table. The Q-table represents the knowledge 
base of the agent, which has a Q-table for each 
shared variable because each one can have diferent 
behaviour and even different goals. 

Q-tables maintain the reinforcement gained for 
each possible state and action. A state represents the 
global state of each sub-problem, which is 
established in terms of the error of the output with 
respect to the goal. The definition of the error that 
MPC Agents use is: 

 iii yg −=ε  (9) 

where εi is the error, gi  is the goal and yi is the 
output of variable i.  

The state value is determined by: 

 
2

21 iis
εε +

=  (10) 

where εi1 is the error of the variable i of first agent, 
and εi2 of the corresponding variable in the second 
agent. This state is updated every sampling time. 

Since states are continuous, they have to be  
discretized for the application of the RL algorithm.  

Actions are all the posible values that the shared 
variable can take. Since actions are continuous, they 
have to be  discretized for the application of the RL 
algorithm. 

The reward function determines the reward of 
every action taken by the agent. In this case, the 
reward function is: 

 sr −= ρ  (11) 

where ρ is a value greater or equal than s 

Communication Protocol. MPC Agents start the 
comunication by interchanging the resulting output 
of the control applied (yi(k)), the vector of controls 
applied (ui(k)), the absolute error whith respect to the 
goal of the shared variable εi(k) and the sampling 
time k. Then, the algorithm of the Negotiator Agent 
is executed. When it finishes, it communicates the 
result of the optimization and the parameters needed 
by de MPC Agents to solve their multivariable 
problems, taking as restrictions the values given by 
the negotiator. Then the procces starts again. 

Negotiation Algorithm. This algorithm is divided in 
two phases, the training phase and the exploitation 
phase. In both cases, the updated rule for Q-table 
values is: 

 )),((),( asQrasQ ×+= α  (12) 

The training phase creates a new Q-table off-line 
using stored data obtained, for instance, from the 
control actions determined by the centralized 
approach. 

Once the Q-table is initialized, the exploitation 
phase can start. The main difference here is that 
actions are chosen according to 

 )),((max' asQa
a

=  (13) 

in order to select for the next time instant, the value 
of the action (negotiated variable) with maximum 
reward 

5 APPLICATION EXAMPLE 

5.1 Description 

A small drinking water network is used to exemplify 
the proposed MAMPC architecture. The example 
was proposed in (Barcelli, 2008) where a centralized 
and a decentralized solution was studied and 
compared. This hypothetical water distribution 
network has 8 states (tanks) and 11 control variables 
(valves). It has been divided into two subsystems. 
Two MPC Agents are used to determine the internal 
control variables of each subsystem. Furthermore, 
one Negotiator Agent is responsible of negotiating 
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the values of the two shared control variables 
between the two MPC agents (see Figure 2). 

5.2 Analysis 

In the analysis phase, the MAMPC Architecture is 
defined. This phase comprises the following tasks: 

Definition of the Optimization Goals. The control 
goal of the application presented in Figure 2 is to 
keep a water volume in each tank around 3m3. 

Partitioning of the Network. The system is splitted 
into two partitions: 

 
Figure 2: Case study and its partitioning. 

 },,,,{ 654211 xxxxxp =  (14) 
 },,{ 8732 xxxp =  (15) 
 },{ 1110 uuV =  (16) 
 },,,,,{ 9876211 uuuuuuU =  (17) 
 },,{ 5432 uuuU =  (18) 

The plant is defined by all its state and input 
variables 

 
},,,,,,,,

,,,,,,,,,,{

11109876543

2187654321

uuuuuuuuu
uuxxxxxxxxPlant =  (19) 

An important step is to check that the 
partinioning of the plant leads to a complete set of 
partitions. This is accomplished verifying the 
following relation: 

 VUPPlant ∪∪=  (20) 

which can be easily verified, 

 VUUppPlant ∪∪∪∪= 2121  (21) 

Thus, the partition is a complete set of partitions. 

Definition of the Architecture. In this step, the 
MAMPC Architecture is defined for the water 
network case study. Considering the definition of  

the architecture in (8), the remaining elements are 
defined as follows: 

 },{ 21 aaA =  (22) 
 }{ 1nN =  (23) 
 },{ 21 wwW =  (24) 

Inclusion of Restrictions and Considerations. The 
maximum water volume in tanks is 20m3, the control 
value of the measured variables ranges from 0.0 to 
0.4 except for u2 that it ranges from 0.0 to 0.1. The 
sampling time is 1 hour and the prediction horizon is 
24 hours. The demands are considered as measured 
perturbations. They typically present a sinusoidal 
behaviour throghout the day.  

5.3 Design 

In the design process, the subproblems of every 
MPC Agent and Negotiator Agent are formulated. 
This formulation is based on the information 
collected in the analysis phase that allows to know 
the internal structure of the MPC Agents. 

The core of the MPC agent is a MPC controller. 
This controller solves the multivariable problem of 
one partition of the plant based on a model. This 
model contains the set ux of the agent. Other 
important part of the MPC Agent is the 
communication block. MPC Agents can 
communicate in a sophisticated way because they 
are implemented using the Agent Oriented 
Paradigm. This paradigm provides methods, 
standards and tools that allow good communication 
skills.    

Formulation of the MPC Problem. In this step, all 
the MPC parameters and requierements have to be 
defined for both agents, such as: 
1)The plant; 2) The measured, non-measured and 
manipulated variables; 3) Limits and constraints; 4) 
The negotiation variables are set as restrictions; 5) 
References (goals); 6) Prediction horizon; 7) Control 
Horizon; 8) Initial state; 9) Perturbations models 

All these data have to be set in all MPC Agents. 
The prediction and control horizon should be the 
same for all MPC Agents. 

5.3.1 Training and Exploitation 

As in any RL algorithm, the proposed architecture is 
based on the agent experience and the expected 
reinforcements. The richer the agent experience has 
been, the more efficient the optimization algorithm 
will be. 
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An off-line training was done in order to provide 
this experience to the Negotiatior Agent. First,  
control actions determined from a 48 hours scenario 
of the centralized approach were used as 
initialization values for the agent training process. 
From this point, the training continued taking 
random actions The reward was calculated for all 
actions. 

In the RL exploitation phase the knowledge 
adquired in the exploration (and training) phase is 
used.  

The exploitation phase uses the knowledge 
adquired in order to solve the MPC distributed 
problem through the MA system. 

6 RESULTS 

The results obtained using the proposed MAMPC 
Architecture are shown in Figure 3. Each graph 
presents a 48 hour scenario, showing the absolute 
error with respect to the goal (volume of 3m3 in each 
tank) at every time step. The results are contrasted 
with the centralized solution (dashed line) for all 
tanks.  

The distributed solution was expected not to be 
as good as the centralized one. However, the graphs 
shows that, in some cases (tanks 1, 2, 7 and 8) the 
distributed MAMPC Architecture solution is better. 
It is important to note that the volume of tanks 1, 7 
and 8 depends on the valute of the negotiated 
variables (u10 and u11). 

Figure 3: Distributed MA-MPC Architecture solution 
against centralized solution. 

7 CONCLUSIONS 

The results obtained suggest that the use of a Multi- 
Agent control architecture based on negotiation can 
converge to the centralized solution with an 
acceptable degree of approximation but taking 
advantage from the MAS properties and the tools 
that the Agent Oriented Paradigm (AOP) provides 
for development and implementation. Even more, 
the application of learning techniques can provide 
the Negotiatior Agent the ability of prediction. 
Training of the negotiator can be made directly from 
a centralized MPC or from human operator driven 
control. In order to achieve optimization, no model 
is needed by the negotiator. Data from centralized 
MPC is advisable but not essential. The type and 
quality of the training is a very important issue in 
order to obtain an efficient optimization. Also the 
compromise between exploration and explotation 
can be implemented on line to enable the system not 
just adaptation to the problem but adaptation to 
changes in time. In this paper, this capability is not 
addressed in training but in exploring during the 
optimization. Communication protocols and 
coordination methods for MAS have to be studied 
and tested in a more complex case of study in which 
many agents interact. 

8 FURTHER RESEARCH 

The MAMPC Architecture presented in this work is 
currently being tested on the Barcelona water 
transport network. The Barcelona water network is 
comprised of 200 sectors with approximately 400 
control points. At present, the Barcelona information 
system receives, in real time, data from 200 control 
points, mainly through flow meters and a few 
pressure sensors. This network have been used as a 
LSS case of study to test several LSS control 
approaches, see (Brdys & Ulanicki 1994) and 
(Cembrano et al, 2002) (Cembrano et al, 2004) 
(Cembrano et al.,  2000). As starting point for the 
application of the MAMPC Architecture, recent 
work on centralized (Caini et al.,  2009) and 
decentralized MPC (Fambrini & Ocampo, 2009) 
applied to the  Barcelona network is being used, as 
well as, the partitioning algorithm developed by 
(Barcelli, 2008). 
 
 
 

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

550



 

ACKNOWLEDGEMENTS 

This work is in the context of the European Project 
Decentralized and Wireless Control of Large Scale 
Systems, WIDE - 224168   -   FP7-ICT-2007-2. First 
author is sponsored by the Consejo Nacional de 
Ciencia y Tecnología (CONACYT) of México and 
is partially supported by the Instituto Tecnológico 
Superior de Cajeme (ITESCA). 

REFERENCES 

Barcelli, D. (2008). Optimal decomposition of Barcelona´s 
water distribution network system for applying 
dsitribuited Model Predictive Control. Master thesis . 
Universitat Politècnica de Cataluña-IRI-Universitá 
degli Study di Siena. 

Bemporad, A. and Morari, M. “Robust model predictive 
control: A survey,” in Robustness in Identification and 
Control (Lecture Notes in Control and Information 
Sciences), vol. 245. New York: Springer-Verlag, 
1999, pp. 207-226. 

Brdys, M. A., & Ulanicki, B. (1994). Operational control 
of water systems, Structures, Algorithms and 
Applications. Great Britain: Prentice Hall 
International. 

Caini, E., Puig Cayuela, V., & Cembrano, G. (2009). 
Development of a simulation environmet for water 
drinking networks: Application to the validation of a 
centralized MPC controller for the Barcelona Case of 
study. Barcelona, Spain: IRI-CSIC-UPC. 

Camacho, E. F., & Bordons, C. (2004). Model Predictive 
Control. Springer-Verlag, London. 

Cembrano, G., Figueras, J., Quevedo, J., Puig, V., 
Salamero, M., & Martí, J. (2002). Global control of 
the Barcelona Sewerage system for environment 
protection. IFAC.  

Cembrano, G., Quevedo, J., Salamero, M., Puig, V., 
Figueras, J., & Martí, J. (2004). Optimal control of 
urban drainage systems. A case of study. Control 
Engineering Practice (12), 1-9. 

Cembrano, G., Wells, G., Quevedo, J., Pérez, R., & 
Argelaguet, R. (2000). Optimal Control of a water 
distribution network in a supervisory control system. 
Control of Engineering Practice (8), 1177-1188. 

Fambrini, V., & Ocampo Martinez, C. (2009). Modelling a 
decentralized Model Predictive Control of drinking 
water network. Barcelona, Spain: IRI-CSIC-UPC. 

Negenborn, R. R. (2008). Multi-Agent Model Predictive 
Control with applications to power networks. 
Engineering Applications of Artificial Intelligence , 
21, 353-366. 

Negenborn, R. R., De Shutter, B., & Hellendoorn, J. 
(2004). Multi-Agent model predictive control: A 
survey. Technical report, Delf University of 
Technology, Delf center for systems and control. 

Qin, S. J., & Badwell, T. A. (2003). A survey of industrial 
Model Predictive Control Technology. Control 
Engineering Practice, 11, pp. 733–764.  

Scattolini, R. (2009). Architectures for distributed and 
hiearical Model Predictive Control- A Review. Journal 
of Process Control , 723-731. 

Siljack, D.D. (1991). Decentralized Control of Complex 
Systems, Academic Press, New York. 

Venkat, A. N., Rawlings, J. B., & Wrigth, S. J. (2005). 
Stability and Optimality of distributed Model 
Predictive Control. IEEE Conference on Decision and 
Control / IEE European. 

 
 

A MULTI-AGENT MPC ARCHITECTURE FOR DISTRIBUTED LARGE SCALE SYSTEMS

551


