
A MULTI-AGENT MPC ARCHITECTURE FOR DISTRIBUTED
LARGE SCALE SYSTEMS

Valeria Javalera, Bernardo Morcego and Vicenç Puig
Advanced Control Systems Group, Institut de Robòtica i Informàtica Industrial, CSIC-UPC

C/. Llorens i Artigas, 4-6, 08028 Barcelona, Spain

Keywords: Large scale systems, Multi agent systems, Distributed model predictive control, Reinforcement learning.

Abstract: In the present work, techniques of Model Predictive Control (MPC), Multi Agent Systems (MAS) and
Reinforcement Learning (RL) are combined to develop a distributed control architecture for Large Scale
Systems (LSS). This architecture is multi-agent based. The system to be controlled is divided in several
partitions and there is an MPC Agent in charge of each partition. MPC Agents interact over a platform that
allows them to be located physically apart. One of the main new concepts of this architecture is the
Negotiator Agent. Negotiator Agents interact with MPC Agents which share control variables. These shared
variables represent physical connections between partitions that should be preserved in order to respect the
system structure. The case of study, in which the proposed architecture is being applied and tested, is a
small drinking water network. The application to a real network (the Barcelona case) is currently under
development.

1 INTRODUCTION

Large Scale Systems (LSS) are complex dynamical
systems at service of everyone and in charge of
industry, governments, and enterprises. The
applications are wide. Examples of applications of
LSS in continuous domains are: power networks,
sewer networks, water networks, canal and river
networks for agriculture, etc. Other examples of
applications of LSS in discrete domain are traffic
control, railway control, manufacturing industry, etc.

Experts in automatic control have developed
many solutions for this kind of systems. However,
the increase of automation of LSS renders problems
with a noticeable increase in complexity. Such
complexity is due to the size of the system to be
controlled and the huge number of sensors and
actuators needed to carry out the control.
Additionally, LSS are composed of many interacting
subsystems. Thus, LSS control is difficult to be
implemented using a centralized control structure
because of robustness and reliability problems and
due to communication limitations. For all these
reasons, distributed control schemes have been
proposed over the last years.

One of the main problems of distributed control
of LSS is how relations between system partitions

are preserved. These relations could be, for example,
pipes that connect two different control zones of a
decentralized water transport network, or any other
kind of connection between different control zones.
When these connections represent control variables,
the distributed control has to be consistent for both
zones and the optimal value of these variables will
have to accomplish a common goal.

The authors believe that this open problem in
control theory can be solve by the combination of
adequate control and computer science techniques,
more precisely, the combination of Model Predictive
control (MPC), Multi-Agent Systems (MAS), and
Reinforcement Learning (RL).

Due to Distributed Control (DC) present the
same philosophy of Distributed Artificial
Intelligence (DAI), the idea is to apply MAS
techniques and technology to DC problems as
communication, coordination, need of adaptation
(learning), autonomy and intelligence.

The use of RL in the negotiation process will
allow to:

1) Make the process of negotiation adaptive; 2)
Learn from its own experience; 3) Explicitly
consider the whole problem of two goal-oriented
agents; 3) Deal with a dynamical and uncertain
environment; 4) Optimize with or without a model;

544
Javalera V., Morcego B. and Puig V. (2010).
A MULTI-AGENT MPC ARCHITECTURE FOR DISTRIBUTED LARGE SCALE SYSTEMS.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Artificial Intelligence, pages 544-551
DOI: 10.5220/0002715805440551
Copyright c© SciTePress

5) Connect the process of negotiation whit the one of
the control MPC, this because of compatibilities
found between them.

Model Predictive Control (MPC), also known as
receding horizon control, is a control technique
widely used in industry (see (Qin & Badwell, 2003)
and (Camacho & Bordons, 2004)) well suited for the
control of continuous LSS. In MPC, the control
input is obtained by solving a discrete-time optimal
control problem over a given horizon, producing an
optimal open-loop control input sequence. The first
control in that sequence is applied. At the next
sampling instant, a new optimal control problem is
formulated and solved based on the new
measurements.

The MPC control aim is to find actions
uk, …, uk+Nc, such that after Np steps, a sequence of
predicted outputs y approaches a set point y*.

The theory of MPC is well developed; most
aspects, such as stability, nonlinearity, and
robustness, have been discussed in the literature
(see, e.g., (Bemporad & Morari, 1999) (Morari &
Lee, 1999). Besides, MPC is very popular in the
process control industry because the actual control
objectives and operating constraints can be
represented explicitly in the optimization problem
that is solved at each control instant.

Typically, MPC is implemented in a centralized
fashion. The complete system is modelled, and all
the control inputs are computed in one optimization
problem.

The goal of the research described in this paper is
to exploit the attractive features of MPC (meaningful
objective functions and constraints) in a distributed
implementation combining learning techniques to
perform the negotiation of these variables in a
cooperative Multi Agent environment and over a
Multi Agent platform. All these ideas are the basis
of the proposed architecture. A methodology for the
application of the proposed architecture is also
provided.

Organization of the paper is as follows: Section
2 introduces the problem to be solved and Section 3
describes known approaches to it based on
distributed MPC. The formalization of the proposed
architecture is given in Section 4. Section 5 and 6
are devoted to an application example and the results
obtained. Finally, Section 7 presents the paper
conclusions and Section 8 presents the current and
further research that is being developed.

2 THE PROBLEM

In order to control a LSS in a distributed way, some
assumptions have to be made on its dynamics, i.e. on
the way the system behaves. Assume, first, that the
system can be divided into n subsystems, where each
subsystem consists of a set of nodes and the
interconnections between them. The problem of
determining the partitions of the network is not
addressed in this paper; instead the reader is referred
to (Siljack, 1991). The set of partitions should be
complete. This means that all system states and
control variables should be included at least in one
of the partitions.

Definition 1. System Partitions. P is the set of
system partitions and is defined by

 },,,{ 21 nppppP …= (1)

where each system partition (subsystem) pi is
described by a deterministic linear time-invariant
model that is expressed in discrete-time as follows

)()()()(

)()()()1(

,,

,,

kkkk
kkkk

iidiiuiii

iidiiuiii

dDuDxCy
dBuBxAx

++=

++=+ (2)

where variables x, y, u and d are the state, output,
input and disturbance vectors, respectively; A, C, B
and D are the state, output, input and direct matrix,
respectively. Subindices u and d refer to the type of
inputs the matrix model, either control inputs or
disturbances.

Definition 2. Internal Variables. Internal variables
are control variables that appear in the model of only
one subsystem in the problem. The set of internal
variables of one partition is defined by

 },,,{ 21 nuuuuU …= (3)

Definition 3. Shared Variables. Shared variables
are control variables that appear in the model of at
least two subsystems in the problem. Their values
should be consistent in the subsystems they appear,
so they are also called negotiated variables. V is the
set of negotiated variables defined by

 },,,{ 21 nvvvvV …=
 (4)

Each subsystem i is controlled by an MPC
controller using:

- the model of the dynamics of subsystem i
given by equation (2);

- the measured state xi(k) of subsystem i;

A MULTI-AGENT MPC ARCHITECTURE FOR DISTRIBUTED LARGE SCALE SYSTEMS

545

- the exogenous inputs di(k+1) of subsystem
i over a specific horizon of time;

As a result each MPC controller determines the
values ui(k) of subsystem i. The internal control
variables are obtained directly by the MPC
controller of this subsystem while the shared
variables are proposed to be negotiated with the
MPC controllers of the corresponding subsystem.

When there are no shared variables between
subsystems, this control scheme is usually referred
to as decentralized control. When the set of shared
variables is not empty, it is usually referred to as
distributed control. The problem addressed in this
paper is an agent based distributed control. There is
one agent in charge of each system partition and its
duties are to negotiate the shared variables with
other agents and to calculate the control actions from
the MPC formulation of its partition.

Figure 1, on the left, shows a sample system
divided into three partitions. There are three
overlapping sets that contain four shared variables.
The relations that represent those variables are
shown on the right as lines. The problem consists in
optimizing the manipulated variables of the global
system in a distributed fashion, i.e. with three local
control agents that must preserve consistency
between the shared variables.

Figure 1: The problem of distributed control.

3 DISTRIBUTED MPC

In distributed control schemes, local control inputs
are computed using local measurements and
reduced-order models of the local dynamics
(Scattolini, 2009).

Distributed MPC is attractive because it requires
only local process data for controller design and

model maintenance. Computing demands are
smaller on each control agent. Furthermore, routine
maintenance operations such as removing sensors or
actuators for repairing are achieved much more
easily under distributed MPC. Nevertheless, there is
one well known drawback: the performance of
distributed MPC is usually far from optimal when
the subsystems interact significantly. Centralized
MPC, on the other hand, achieves optimal nominal
control for any system. However, centralized MPC
is viewed by most practitioners as impractical and
unsuitable for control of large networked systems.
(Venkat et al., 2005).

Distributed MPC algorithms are classified into
iterative and non-iterative and further subclassified
into independent or cooperative algorithms.

In iterative algorithms information is bi-
directionally transmitted among local regulators
many times within the sampling time. In non-
iterative algorithms information is bi-directionally
transmitted among local regulators only once within
each sampling time. (Scattolini, 2009) gives a
review of distributed control architectures for LSS.

Independent (non-cooperative) algorithms are
widely studied in game theory. Their aim is to get
better results than the other controllers, which are
seen as opponents. They have also been applied in
MPC distributed control strategies [see, for instance,
(Jia & Krogh, 2002) (Camponogara, 2002)].

Contrarily, cooperative algorithms intend to find
a compromise for shared variables in order to
maximize the performance of the complete system,
worsening if necessary the performance of
partitions. (Negenborn et al., 2008) and (Venkat et
al., 2005) are two recent examples of the application
of cooperative algorithms, the first one is non-
iterative and the second one is iterative.

4 MULTI-AGENT MPC
ARCHITECTURE

In this section, the proposed multi-agent MPC
(MAMPC) architecture is presented. First the
elements of the proposed architecture are presented.
Then, the whole architecture is described.

4.1 Elements

The elements of the proposed architecture are: MPC
Agents and Negotiator Agents. They interact over an
Agent Platform that is composed by a set of Nodes.

 Sub-division of the plant

Relations
between

controllers

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

546

Definition 4. MPC Agent. An MPC Agent is the
entity that is in charge of controlling one specific
partition of the system.

There is one MPC Agent for each system
partition. The MPC Agent solves an MPC control
problem considering the internal variables of the
partition and cooperating with one or more
Negotiator Agents to determine the optimum value
of the shared variables. A is the set of MPC Agents

 },,,{ 21 naaaaA …= (5)

Definition 5. Negotiator Agent. A Negotiator
Agent is the entity that is in charge of determining
the value of one or more shared variables between
two MPC Agents.

In this negotiation, each MPC Agent is arranged
to cooperate so that the negotiator agent solves the
optimization of a common goal by means of an
algorithm based on Reinforcement Learning. A
negotiator Agent exists for every pair of MPC
Agents that have one or more shared variables in
common. N is the set of Negotiator Agents defined
by

 },,,{ 21 nnnnnN …= (6)

Definition 6. Nodes. A node is the physical device
(commonly a computer) in which the agents are
located. W is the set of nodes defined by

 },,,{ 21 nwwwwW …= (7)

There is a node for each MPC Agent. Nodes are
communicated via some communication
infrastructure (LAN, WAN or Internet).

Definition 7. Agent Platform. The agent platform
works as a virtual machine providing the agents a
homogenous medium to communicate and providing
the user a way to manage agents. The agent platform
is denoted by b.

This platform has to be installed and running in
all nodes.

4.2 Architecture

Definition 8. MAMPC Architecture. The MAMPC
distributed control architecture is defined as:

 },,,,,,{ bUVWPNA nann=γ (8)

where: A is the set of MPC Agents, N is the set of
Negotiator Agents, P is the system partitions, W is
the set of nodes, Vnn is the set formed by all sets of
Shared Variables, Una is the set formed by all sets of
Internal Variables and b is the Agent platform.

A methodology has been developed to apply this
MAMPC architecture in a given system. This
methodology will be illustrated in the following
section with an example.

4.3 Cooperation of MPC-Agents

The cooperative interaction of MPC agents is a basic
issue in the proposed approach. Three main actions
are necessary to perform this cooperation:

 To perform actions and provide data required
by the Negotiatior Agent

 To accept the value(s) provided by the
Negotiator Agent of its shared variable(s).

 To solve the MPC control problem of its
partition, adjusting the value(s) of its shared
control variable(s) in order to coordinate the
solution of the negotiation.

The Negotiator Agent determines the optimal
value of the values in set Vx. This set contains the
shared variables of two, and just two MPC Agents.
The Negotiator Agent optimizes them through a
Negotiation algorithm based on Reinforcement
Learning (RL). Each shared variable is an
optimization problem. This problem is solved as a
whole looking for the optimal value of the relation.
The method is based on the reinforcements given at
each step and on the experience obtained. This
experience is stored in a knowledge base, one for
each negotiation variable.

In the distributed model of the system, shared
variables appear in the local models of each MPC
Agent involved in the relation, therefore they end up
duplicated.

The Negotiator Agent restores the broken
connections when the system was partitioned,
unifiying this duplicate variables in a single one, just
as in the original model. Therefore, for the
Negotiator Agent, this two control variables are
taken as one.

The philosophy of the proposed negotiation
algorithm is to consider the shared variables as
belonging to a single problem with a single goal,
instead of two different problems with conflicting
goals. The Negotiator Agent solves the optimization
problem for that variable and communicates the
result to the MPC Agents at each sampling time.
Then, MPC Agents set those values as a hard
constraint in its respective internal control variables
and recalculate the multivariable control problem.

 The optimization of the Negotiator Agent
algorithm is based on its experience and on
maximizing the reinforcements received at every
action taken in the past on similar situations.

A MULTI-AGENT MPC ARCHITECTURE FOR DISTRIBUTED LARGE SCALE SYSTEMS

547

 This algoritm is based on the Q-learning
algorithm, and adapted to be applied in dynamical
environments. Next, the formulation of the
algorithm is detailed.

4.3.1 Formulation of the Negotiation-
learning Problem

The goal of the Negotiator Agent is to detemine the
optimal value of the set of shared variables Vx. Each
element of the set Vx is an optimization problem
addressed individually by the Negotiator Agent and
there is a knowledge base for each one. The internal
architecture of the Negotiator Agent comprises the
following elements:

 A set of knowledge bases (Q-tables); each Q-
table represents the knowledge base of the
agent, which has a Q-table for each shared
variable because each one can have diferent
behaviour and even different goals.

 A communication protocol that allows it to
have bi-directional communication with two
MPC-Agents.

 A negotiation algorithm
Next, these elements are described in further

detail.

Q-Table. The Q-table represents the knowledge
base of the agent, which has a Q-table for each
shared variable because each one can have diferent
behaviour and even different goals.

Q-tables maintain the reinforcement gained for
each possible state and action. A state represents the
global state of each sub-problem, which is
established in terms of the error of the output with
respect to the goal. The definition of the error that
MPC Agents use is:

 iii yg −=ε (9)

where εi is the error, gi is the goal and yi is the
output of variable i.

The state value is determined by:

2

21 iis
εε +

= (10)

where εi1 is the error of the variable i of first agent,
and εi2 of the corresponding variable in the second
agent. This state is updated every sampling time.

Since states are continuous, they have to be
discretized for the application of the RL algorithm.

Actions are all the posible values that the shared
variable can take. Since actions are continuous, they
have to be discretized for the application of the RL
algorithm.

The reward function determines the reward of
every action taken by the agent. In this case, the
reward function is:

 sr −= ρ (11)

where ρ is a value greater or equal than s

Communication Protocol. MPC Agents start the
comunication by interchanging the resulting output
of the control applied (yi(k)), the vector of controls
applied (ui(k)), the absolute error whith respect to the
goal of the shared variable εi(k) and the sampling
time k. Then, the algorithm of the Negotiator Agent
is executed. When it finishes, it communicates the
result of the optimization and the parameters needed
by de MPC Agents to solve their multivariable
problems, taking as restrictions the values given by
the negotiator. Then the procces starts again.

Negotiation Algorithm. This algorithm is divided in
two phases, the training phase and the exploitation
phase. In both cases, the updated rule for Q-table
values is:

)),((),(asQrasQ ×+= α (12)

The training phase creates a new Q-table off-line
using stored data obtained, for instance, from the
control actions determined by the centralized
approach.

Once the Q-table is initialized, the exploitation
phase can start. The main difference here is that
actions are chosen according to

)),((max' asQa
a

= (13)

in order to select for the next time instant, the value
of the action (negotiated variable) with maximum
reward

5 APPLICATION EXAMPLE

5.1 Description

A small drinking water network is used to exemplify
the proposed MAMPC architecture. The example
was proposed in (Barcelli, 2008) where a centralized
and a decentralized solution was studied and
compared. This hypothetical water distribution
network has 8 states (tanks) and 11 control variables
(valves). It has been divided into two subsystems.
Two MPC Agents are used to determine the internal
control variables of each subsystem. Furthermore,
one Negotiator Agent is responsible of negotiating

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

548

the values of the two shared control variables
between the two MPC agents (see Figure 2).

5.2 Analysis

In the analysis phase, the MAMPC Architecture is
defined. This phase comprises the following tasks:

Definition of the Optimization Goals. The control
goal of the application presented in Figure 2 is to
keep a water volume in each tank around 3m3.

Partitioning of the Network. The system is splitted
into two partitions:

Figure 2: Case study and its partitioning.

 },,,,{ 654211 xxxxxp = (14)
 },,{ 8732 xxxp = (15)
 },{ 1110 uuV = (16)
 },,,,,{ 9876211 uuuuuuU = (17)
 },,{ 5432 uuuU = (18)

The plant is defined by all its state and input
variables

},,,,,,,,

,,,,,,,,,,{

11109876543

2187654321

uuuuuuuuu
uuxxxxxxxxPlant = (19)

An important step is to check that the
partinioning of the plant leads to a complete set of
partitions. This is accomplished verifying the
following relation:

 VUPPlant ∪∪= (20)

which can be easily verified,

 VUUppPlant ∪∪∪∪= 2121 (21)

Thus, the partition is a complete set of partitions.

Definition of the Architecture. In this step, the
MAMPC Architecture is defined for the water
network case study. Considering the definition of

the architecture in (8), the remaining elements are
defined as follows:

 },{ 21 aaA = (22)
 }{ 1nN = (23)
 },{ 21 wwW = (24)

Inclusion of Restrictions and Considerations. The
maximum water volume in tanks is 20m3, the control
value of the measured variables ranges from 0.0 to
0.4 except for u2 that it ranges from 0.0 to 0.1. The
sampling time is 1 hour and the prediction horizon is
24 hours. The demands are considered as measured
perturbations. They typically present a sinusoidal
behaviour throghout the day.

5.3 Design

In the design process, the subproblems of every
MPC Agent and Negotiator Agent are formulated.
This formulation is based on the information
collected in the analysis phase that allows to know
the internal structure of the MPC Agents.

The core of the MPC agent is a MPC controller.
This controller solves the multivariable problem of
one partition of the plant based on a model. This
model contains the set ux of the agent. Other
important part of the MPC Agent is the
communication block. MPC Agents can
communicate in a sophisticated way because they
are implemented using the Agent Oriented
Paradigm. This paradigm provides methods,
standards and tools that allow good communication
skills.

Formulation of the MPC Problem. In this step, all
the MPC parameters and requierements have to be
defined for both agents, such as:
1)The plant; 2) The measured, non-measured and
manipulated variables; 3) Limits and constraints; 4)
The negotiation variables are set as restrictions; 5)
References (goals); 6) Prediction horizon; 7) Control
Horizon; 8) Initial state; 9) Perturbations models

All these data have to be set in all MPC Agents.
The prediction and control horizon should be the
same for all MPC Agents.

5.3.1 Training and Exploitation

As in any RL algorithm, the proposed architecture is
based on the agent experience and the expected
reinforcements. The richer the agent experience has
been, the more efficient the optimization algorithm
will be.

A MULTI-AGENT MPC ARCHITECTURE FOR DISTRIBUTED LARGE SCALE SYSTEMS

549

An off-line training was done in order to provide
this experience to the Negotiatior Agent. First,
control actions determined from a 48 hours scenario
of the centralized approach were used as
initialization values for the agent training process.
From this point, the training continued taking
random actions The reward was calculated for all
actions.

In the RL exploitation phase the knowledge
adquired in the exploration (and training) phase is
used.

The exploitation phase uses the knowledge
adquired in order to solve the MPC distributed
problem through the MA system.

6 RESULTS

The results obtained using the proposed MAMPC
Architecture are shown in Figure 3. Each graph
presents a 48 hour scenario, showing the absolute
error with respect to the goal (volume of 3m3 in each
tank) at every time step. The results are contrasted
with the centralized solution (dashed line) for all
tanks.

The distributed solution was expected not to be
as good as the centralized one. However, the graphs
shows that, in some cases (tanks 1, 2, 7 and 8) the
distributed MAMPC Architecture solution is better.
It is important to note that the volume of tanks 1, 7
and 8 depends on the valute of the negotiated
variables (u10 and u11).

Figure 3: Distributed MA-MPC Architecture solution
against centralized solution.

7 CONCLUSIONS

The results obtained suggest that the use of a Multi-
Agent control architecture based on negotiation can
converge to the centralized solution with an
acceptable degree of approximation but taking
advantage from the MAS properties and the tools
that the Agent Oriented Paradigm (AOP) provides
for development and implementation. Even more,
the application of learning techniques can provide
the Negotiatior Agent the ability of prediction.
Training of the negotiator can be made directly from
a centralized MPC or from human operator driven
control. In order to achieve optimization, no model
is needed by the negotiator. Data from centralized
MPC is advisable but not essential. The type and
quality of the training is a very important issue in
order to obtain an efficient optimization. Also the
compromise between exploration and explotation
can be implemented on line to enable the system not
just adaptation to the problem but adaptation to
changes in time. In this paper, this capability is not
addressed in training but in exploring during the
optimization. Communication protocols and
coordination methods for MAS have to be studied
and tested in a more complex case of study in which
many agents interact.

8 FURTHER RESEARCH

The MAMPC Architecture presented in this work is
currently being tested on the Barcelona water
transport network. The Barcelona water network is
comprised of 200 sectors with approximately 400
control points. At present, the Barcelona information
system receives, in real time, data from 200 control
points, mainly through flow meters and a few
pressure sensors. This network have been used as a
LSS case of study to test several LSS control
approaches, see (Brdys & Ulanicki 1994) and
(Cembrano et al, 2002) (Cembrano et al, 2004)
(Cembrano et al., 2000). As starting point for the
application of the MAMPC Architecture, recent
work on centralized (Caini et al., 2009) and
decentralized MPC (Fambrini & Ocampo, 2009)
applied to the Barcelona network is being used, as
well as, the partitioning algorithm developed by
(Barcelli, 2008).

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

550

ACKNOWLEDGEMENTS

This work is in the context of the European Project
Decentralized and Wireless Control of Large Scale
Systems, WIDE - 224168 - FP7-ICT-2007-2. First
author is sponsored by the Consejo Nacional de
Ciencia y Tecnología (CONACYT) of México and
is partially supported by the Instituto Tecnológico
Superior de Cajeme (ITESCA).

REFERENCES

Barcelli, D. (2008). Optimal decomposition of Barcelona´s
water distribution network system for applying
dsitribuited Model Predictive Control. Master thesis .
Universitat Politècnica de Cataluña-IRI-Universitá
degli Study di Siena.

Bemporad, A. and Morari, M. “Robust model predictive
control: A survey,” in Robustness in Identification and
Control (Lecture Notes in Control and Information
Sciences), vol. 245. New York: Springer-Verlag,
1999, pp. 207-226.

Brdys, M. A., & Ulanicki, B. (1994). Operational control
of water systems, Structures, Algorithms and
Applications. Great Britain: Prentice Hall
International.

Caini, E., Puig Cayuela, V., & Cembrano, G. (2009).
Development of a simulation environmet for water
drinking networks: Application to the validation of a
centralized MPC controller for the Barcelona Case of
study. Barcelona, Spain: IRI-CSIC-UPC.

Camacho, E. F., & Bordons, C. (2004). Model Predictive
Control. Springer-Verlag, London.

Cembrano, G., Figueras, J., Quevedo, J., Puig, V.,
Salamero, M., & Martí, J. (2002). Global control of
the Barcelona Sewerage system for environment
protection. IFAC.

Cembrano, G., Quevedo, J., Salamero, M., Puig, V.,
Figueras, J., & Martí, J. (2004). Optimal control of
urban drainage systems. A case of study. Control
Engineering Practice (12), 1-9.

Cembrano, G., Wells, G., Quevedo, J., Pérez, R., &
Argelaguet, R. (2000). Optimal Control of a water
distribution network in a supervisory control system.
Control of Engineering Practice (8), 1177-1188.

Fambrini, V., & Ocampo Martinez, C. (2009). Modelling a
decentralized Model Predictive Control of drinking
water network. Barcelona, Spain: IRI-CSIC-UPC.

Negenborn, R. R. (2008). Multi-Agent Model Predictive
Control with applications to power networks.
Engineering Applications of Artificial Intelligence ,
21, 353-366.

Negenborn, R. R., De Shutter, B., & Hellendoorn, J.
(2004). Multi-Agent model predictive control: A
survey. Technical report, Delf University of
Technology, Delf center for systems and control.

Qin, S. J., & Badwell, T. A. (2003). A survey of industrial
Model Predictive Control Technology. Control
Engineering Practice, 11, pp. 733–764.

Scattolini, R. (2009). Architectures for distributed and
hiearical Model Predictive Control- A Review. Journal
of Process Control , 723-731.

Siljack, D.D. (1991). Decentralized Control of Complex
Systems, Academic Press, New York.

Venkat, A. N., Rawlings, J. B., & Wrigth, S. J. (2005).
Stability and Optimality of distributed Model
Predictive Control. IEEE Conference on Decision and
Control / IEE European.

A MULTI-AGENT MPC ARCHITECTURE FOR DISTRIBUTED LARGE SCALE SYSTEMS

551

