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Abstract: Multiclass classification is the core issue of many pattern recognition tasks. In some applications, not only 
the predicted class is important but also the confidence associated to the decision. This paper presents a 
complete framework for multiclass classification that recovers probability estimates for each class. It 
focuses on the automatic configuration of the system so that no user-provided tuning is needed. No 
assumption about the nature of data or the number of classes is done either, resulting in a generic system. A 
suitable decomposition of the original multiclass problem into several biclass problems is automatically 
learnt from data. State-of-the-art biclass classifiers are optimized and their reliabilities are assessed and 
considered in the combination of the biclass predictions. Quantitative evaluations on different datasets show 
that the automatic decomposition and the reliability assessment of our system improve the classification rate 
compared to other schemes, as well as it provides probability estimates of each class. Besides, it simplifies 
considerably the user effort to use the framework in a specific problem, since it adapts automatically. 

1 INTRODUCTION 

Many supervised machine learning tasks can be 
formulated as a multiclass classification problem: 
object detection and recognition (e.g. for video-
surveillance), image mining and categorization (e.g. 
for large database management or for intelligence 
tasks), etc. In many applications not only the 
performance in the classification task is important, 
but also the capability of the system to recover the 
posterior probabilities of each class, or at least the 
ability to somehow assess the reliability of the 
decision. This case appears for example in data 
mining, where estimated probabilities can be used to 
rank the elements of a database with regards to the 
considered query. In other operational cases, 
probabilities are even explicitly required by the end-
users (e.g. in order to help deciding whether or not 
an alarm should be raised). 

This article focuses on multiclass tasks which 
represent the main issues for real-world systems. 
Some machine learning models (e.g. decision trees 
and neural networks) are able to naturally handle 
multiple classes. Others (e.g. boosting and support-
vector machines) were conceived for distinguishing 
between only two classes and their extension to 

multiclass is more problematic (Allwein et al, 2000). 
In such cases the multiclass problem is typically 
decomposed into many biclass classification 
problems which are solved separately and then 
combined to make the final decision. This approach 
is attractive because it enables the usage of any kind 
of pre-existing classifiers which provides huge 
computational enhancements when hardware 
acceleration already exists, for instance on DSPs or 
ASICs. 

1.1 Related Work 

Many possible decompositions of a k-class problem 
into l binary problems have been proposed: one-
against-all, leading to k problems of discrimination 
between one class and all others; all-pairs (Hastie 
and Tibshirani, 1998), that compares all possible 
pairs of classes, error-correcting output codes 
(ECOC) (Dietterich and Bakiri, 1995), a method 
which associates each class to a word of an error-
correcting code. The latter can be represented by a 
coding matrix M ∈ {−1,+1}k×l for some l, each row 
being one word of the code and each column 
inducing a biclass problem. Allwein et al (2000) 
suggested a unifying generalization of all three  
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Figure 1: Example of coding matrix. The decomposition 
into binary problems can be represented by a matrix 
M ∈ {−1,0,+1}k×l, where k is the number of classes and l 
the number of induced binary problems. If M(c,b) = +1, 
the examples of the class c are considered to be positive 
examples for the binary classification problem b. If 
M(c,b) = −1, they are considered negative. If M(c,b) = 0, 
the examples of class c are not used to train b. 

approaches by taking the matrix from the larger set 
{−1,0,+1}k×l (Figure1). 

Since its appearance, the significance of the 
coding strategy has being brought into question. The 
ECOC method was originally motivated by error- 
correcting principles, assuming that the learning task 
can be modeled as a communication problem, in 
which class information is transmitted over a 
channel. From the perspective of error-correcting 
theory, it is desirable that codewords are far from 
each other. Allwein et al (2000) deduced a bound on 
the generalization error that confirms this. However, 
they noted that this may lead to difficult binary 
problems. Guruswami and Sahai (1999) argued that 
one reason why the powerful theorems from coding 
theory cannot be directly applied to prove stronger 
bounds on the performance of the ECOC approach is 
that in the classification context errors made by 
binary classifiers do not occur independently. Dekel 
and Singer (2003) considered the fact that 
predefined output codes ignore the complexity of the 
induced binary problems, and proposed an approach 
in which the set of classifiers and the code are found 
concurrently. On our side, we still rely on the error-
correcting properties of codes, but only as a point of 
departure to build our final coding matrix. As for the 
issues of the correlation and the difficulty of binary 
tasks, we deal with both by empirically assessing the 
joint performance of the set of classifier. Thus, our 
approach guarantees the choice of informative and 
complementary binary classifiers. 

Coupled with the issue of finding an appropriate 
decomposition, the other major issue concerns the 
design of a suitable combining strategy for inferring 
the correct class given the set of outputs. Allwein et 
al (2000) recalled Hamming decoding and proposed 
loss-based decoding as an alternative for margin-
based classifiers. However, this decoding paradigm 
does not deal with our aim to recover the probability 
of each class. 

In order to obtain probability estimates, Kong 
and Dietterich (1997) and Hastie and Tibshirani 
(1998) proposed combining methods for ECOC and 
all-pairs respectively. Zadrozny (2001) extended the 
latter to the general matrices of Allwein et al (2000). 
Nevertheless, in these works the design of a code for 
a given multiclass problem is not considered and the 
individual biclass classifiers are assumed to return 
probabilities, which is not always the case. In order 
to fuse the outputs of such a set of classifiers, a 
calibration is needed first, as indicated by Zadrozny 
and Elkan (2002). Our framework deals with all 
these issues in an efficient and generic way. 

In parallel to the work on the decomposition into 
binary problems, the design of a multiclass 
algorithm that treats all classes simultaneously has 
been addressed, among others, by Zou et al (2005). 
In particular, they suggested a multiclass SVM. 
However, it does not focus on discovering the 
probabilities of each class. Instead, the output is a 
vector of scores, which we cannot calibrate 
effectively with the techniques proposed so far on 
restricted databases due to the curse of 
dimensionality. Besides, we prefer not being bound 
to a particular classifier; indeed, our framework can 
for instance exploit simultaneously SVMs and 
AdaBoost classifiers: the system is free to select the 
most appropriate model according to the data and its 
properties. 

1.2 Overview of the System 

We present a multiclass classification framework 
which fits automatically any multiclass classification 
task, regardless of the nature and amount of data or 
the number of classes. We follow the approach of 
decomposing into several biclass problems and then 
combining the biclass predictions. This is 
qualitatively motivated by two main aspects: the aim 
to recover probability estimates for each class given 
limited learning data and the existence of high-
performing biclass methods. 

As first main contribution, we propose a scheme 
to automatically learn an appropriate decomposition 
given training data and a user-defined measure of 
performance (Section 2.1), which avoids too 
correlated or too difficult biclass classification 
problems which are maladjusted to the particular 
multiclass task. The obtained biclass problems are 
solved by means of state-of-the-art classifiers, which 
are automatically optimized and calibrated. 
Calibration (Section 2.2) allows the classifiers to 
provide probability estimates, and thus makes it 
possible to take into account their different 

  binary classifiers 
  b1 b2 b3 b4 b5 b6 

cl
as

se
s c1 +1 +1 +1 +1 0 –1 

c2 0 –1 –1 +1 +1 –1 
c3 –1 +1 -1 0 –1 –1 
c4 –1 0 +1 –1 –1 +1 
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reliabilities in the combination step. Then, the 
biclass outputs are combined into a probability 
distribution among all the classes (Section 2.3). 
Furthermore, our system can fuse several probability 
distributions when many observations of a same 
object are available. A decision can then be made 
regarding the class with the highest probability, but a 
further step may be done in order to get one score 
per class that has better ranking properties than 
individual probabilities alone: this makes the system 
especially suitable for multiclass ranking tasks 
(Section 2.4). Experimental results and conclusions 
are presented in Sections 3 and 4. 

2 TECHNICAL DETAILS 

2.1 Matrix Learning 

The decomposition into binary problems can be 
represented by a coding matrix (Fig. 1). The number 
of possible matrices explodes with the number of 
classes. Considering all of them is neither possible 
nor interesting. Instead, we propose a heuristic 
method which is compatible with practical 
constraints of computational cost and constructs a 
matrix with good properties with regards to the 
nature of data. More particularly, we limit our search 
to a maximal number of columns, and we select 
among them a subset which leads to good 
performance. 

We do not use a matrix which is necessarily a 
strict error-correcting code. Such codes are difficult 
to generate for each possible number of columns, 
and the integrity and properties of the code would 
not be guaranteed due to deletion of invalid or 
redundant columns (e.g. a column with equal 
elements, or two columns which are the logical 
negative of each other). Anyway, the correcting 
properties are useful only if the classifiers are 
sufficiently uncorrelated, which depends not only on 
the properties of the matrix but also the nature of the 
data. Thus, as alternative to the matrix being exactly 
a code, we rather use a code only as a base for 
building the matrix. Concretely, we choose a fixed 
BCH code of 32 words 15 bits long, and with 
Hamming distance between words of at least 7, 
which is enough for a reasonable number of classes 
(for very high number of classes – in our case 
greater than 32 – another code should be generated 
as initialization point; an approach based on random 
matrices might be computationally less expensive). 
With this code and a given number of classes k, we 
obtain a sufficiently large set of columns –

presumably with better correcting properties than a 
random matrix – by taking all k × 1 sub-matrices as 
potential columns (redundant or invalid columns are 
ignored). We denote the set of columns as 

 
ϑ ={ϕi}i = 1...N (1) 

 
Next, we want to find the optimal subset of 

columns, as keeping all of them may not be the most 
appropriate solution; besides we may have 
constraints in the prediction time. The user may 
provide a performance measure σ adapted to their 
operational needs. Our target is defined as 

)(argmax*
)(

MM
M

σ
ϑ℘∈

=  (2) 

where ℘(ϑ) is the power set of ϑ. 
An optimization procedure such as a genetic 

algorithm is suitable to select the subset of columns, 
as the search space is potentially large and many 
local optima may lead to a non-convex cost function. 
The evaluation of any subset is based on its 
empirical performance on a validation set of data 
according to the user’s criterion (e.g. related to the 
global error rate; or the worst of error rates 
associated to each class). In particular, all the biclass 
classifiers corresponding to the maximal matrix are 
trained and their predictions on the validation data 
are pre-computed; any subset of columns can then 
be quickly evaluated. 

Once the definitive k × l coding matrix has been 
determined, the corresponding classifiers can be 
optimized. We choose them by means of cross-
validation among different learning algorithms (e.g. 
boosting, SVM) and their respective parameters (e.g. 
weak classifier or kernel type). These biclass 
classifiers are then trained and calibrated. Doing this 
optimization after the correcting-code selection only 
marginally affects performance, but leads to reduced 
computational cost: this is required from a pragmatic 
point of view when large number of classes and 
large databases are considered. 

2.2 Calibration 

Many biclass learning algorithms map the input to a 
score whose sign indicates if the input has been 
classified as positive or negative and whose 
magnitude can be taken as a measure of confidence 
in the prediction (Allwein et al, 2000; Zadrozny and 
Elkan, 2002). However, the scores from different 
classifiers are not directly comparable, even for 
classifiers of the same kind (partial sums of boosted 
classifiers, for example, have no intrinsic scale). 
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Calibration consists in finding the mapping from raw 
scores to accurate probability estimates, which are 
needed when we want to combine the classification 
output with other sources of information. We can 
think of a score as a non-linear projection of the 
example into a 1-dimensional space, which 
presumably corresponds to the direction that best 
discriminates between the two classes. Calibration 
attempts to regain some of the lost information in 
this projection. 

The straightforward way of calibrating consists 
in dividing the possible scores into segments and 
calculating the empirical probability in each of them. 
The choice of the segment sizes is a trade-off 
between a sufficiently fine representation of the 
mapping function and a sufficiently accurate 
estimate in each interval. Zadrozny and Elkan 
(2002) made a review of two methods for calibrating 
two-class classifiers – Platt’s method and binning – 
and introduced a method based on isotonic 
regression. We avoid parametric methods (e.g. 
Platt’s) as the relation between SVM scores and 
empirical probabilities does not necessarily fit a 
predefined function for all datasets and all learning 
algorithms. Binning guarantees a minimum number 
of examples in each segment, but it does not 
maintain the idea of local averaging and the number 
of bins has to be chosen. Isotonic calibration only 
imposes the mapping to be non-decreasing, which is 
an interesting way of regularizing given that scores 
are supposed to be a measure of confidence in the 
prediction. In our framework, isotonic regression is 
preferred, because of its nice compromise between 
regularity and local fitting, adapting automatically to 
the training data, without additional a priori. 

2.2.1 Reliability of the Probability Estimates 

Obviously, the obtained mapping varies depending 
on the calibration data. Moreover, we have noticed 
that the reliability of the probability estimate is not 
necessarily the same for all scores, as it depends on 
the distribution of the data along the scores: until 
now, little attention has been paid to this issue, while 
it could provide more precise information for the 
fusion process, and therethrough a more reliable 
output. We are interested in assessing the relative 
reliabilities of the probability estimates obtained 
from different classifiers on the same test example, 
in order to use them as weighting coefficients in the 
posterior combination phase, instead of assigning a 
global confidence to each classifier. Thus, each 
classifier would be weighted differently according to 
the test example and its ambiguity. 

The length of the confidence interval of the 
estimate in each score segment could be used as 
basis for these coefficients. However, as each score 
interval is treated independently, this strategy does 
not take into account the regularization effect of 
isotonic regression, by which the obtained estimates 
are much less variable in practice. Furthermore, it 
ignores the fact that estimates are not reliable if the 
partition of the scores axis is not sufficiently fine. In 
the case of isotonic calibration, this happens when 
the underlying mapping is decreasing in some 
interval. We have considered the analysis of score 
sub-segments by means of hypothesis testing. We 
look for the presence of sufficient statistical 
evidence to declare that the average in the sub-
segment does not match the average in the whole 
segment, and assign reliability accordingly. 

Alternatively, variability can be empirically 
estimated by using different subsets of the 
calibration data to perform the calibration. We 
propose to average the different calibrations 
obtained this way to enhance the global calibration, 
when a sufficient amount of calibration data is 
available. 

2.3 Combination Strategy 

Once we have produced diverse classifiers, a 
suitable combining strategy must be designed 
according to two possible aims: inferring the correct 
class given the set of outputs, or obtaining 
probability estimates for each class. Our framework 
focuses on the second case. 

We consider from now on that the outputs of the 
binary classifiers are probability estimates. In other 
terms, for each column b of M and each example x 
with class c, we have an estimate rb(x) such that 

∑
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where A and N are the sets of classes for which 
M(c,b) = +1 and M(c,b) = −1 respectively. For each 
example x, we want to obtain a set of probabilities 
P(c = ci | x) = pi(x) compatible with the set of rb(x). 
Note that if the matrix has no zero entries, the 
expression reduces to 

∑
∈

=∈=
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i

pAcr )( )|P()( xxx  (4) 

This is an over-constrained problem which – as 
recalled by Zadrozny and Elkan (2002) – can be 
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solved by least-squares with non-negativity 
constraints or minimizing the Kullback-Leibler 
divergence. We notice that both the squared error 
and the Kullback-Leibler divergence may be 
weighted to give more or less importance to the 
match of certain classifiers. The idea is to focus on 
matching the reliable observations rb, so as to 
converge to the good solution even if the rb are not 
compatible. Hastie and Tibshirani (1997) include the 
number of examples used for training each classifier 

as weights as ‘a crude way for accounting for the 
different precisions in the pairwise probability 
estimates’. We argue that this can be done in a finer 
way, as presented in Section 2.2.  

2.4 Fusion of Redundant Data and 
Ranking Scores  

Our system recovers probability estimates of each 
class given a test example. In addition, we have 
considered fusing the obtained probability 
distributions when many observations of a same 
object are available. A number of different 
paradigms for performing data and information 
fusion have been developed. They differ in the way 
they represent information and more concretely in 
the way they represent uncertainty (Maskell, 2008). 

In this work we used the probabilistic logical 
framework proposed by Piat and Meizel (1997). It 
allows the combination of probability distributions 
following different logical behaviors (e.g. 
disjunctive) naturally handling contradictions. In 
particular, both disjunctive and conjunctive 
behaviors are desirable for our ranking purpose, so 
we use a weighted sum of the two modes. Moreover, 
we point out that these weights could be learned 
statistically. 
The need of a ranking score arises from the 
observation that probability alone is not enough to 
do an appropriate ranking when important residual 
probabilities are present. We propose as score the 
Euclidean distance between the observed probability 
distribution and the Dirac delta distribution of the 

Table 1: Performance of the tested configurations. 

 Area under ROC curve Error rate 
satimage 
(class 4) 

isolet 
(class 2) 

satimage isolet 

A 0.711 0.836 0.1095 0.0892 
B 0.741 0.896 0.1095 0.0436 
C 0.750 0.897 0.0890 0.0449 
D 0.776 0.930 0.0870 0.0398 

query class, as it introduces a penalty in ambiguous 
cases. Empiric tests showed the relevance of this 

measure. 

3 EXPERIMENTS 

We report our system’s performance on widely used 
multiclass datasets with real (i.e. non-synthetic), 
non-sequential data, having a reasonable dimension 
(>30) and database size (>5000) compared to real-
life applications. Two datasets from the UCI 
Machine Learning Repository (Asuncion and 
Newman, 2007) satisfy our constraints: satimage 
and isolet. The first one contains 6 classes and a test 
set of 2000 elements. It has already been used in the 
context of recovering multiclass probability 
estimates (Zadrozny, 2001). The second one comes 
from measures of spoken letters. It contains 26 
classes and the test set has 1559 uniformly 
distributed elements. The elevated number of classes 
allows testing the scaling abilities of the system. 
Besides, it has already been used in the ECOC 
context (e.g. Dietterich and Bakiri, 1995). 

Here we compare 4 different configurations. In 
the first configuration (A) we have used a one-vs-all 
coding matrix and we have combined the binary 
answers of the biclass classifiers directly, without 
calibration. In the second (B) the one-vs-all answers 
are combined after calibration. The third 
configuration (C) consists of a learnt coding matrix 
with biclass predictions combined without 
calibration. Finally, the fourth configuration (D) 
corresponds to our complete framework. We are 
interested in both the classification task and the 
ranking task. As a measure of performance we have 
chosen the error rate in the first case and the area 
under the ROC curve in the second case. The ROC 
curve in the ranking task is defined by the pairs 
(recall, precision) obtained at each position of the 
rank. Thus, there is one ROC curve for each query. 
Our ROC curves are thus different from other 
benchmarks (e.g. Sebag, 2003, and Chawala, 2002). 
We show only the ROC curve of the most difficult 
class, but conclusions hold also for all other classes. 
Table 1 and Figure 2 show the achieved results. We 
can observe the improvement obtained by learning 
an appropriate matrix and calibrating the biclass 
outputs. In particular, we outperform the 0.1330 
error rate obtained by means of a spare random 
matrix on the satimage dataset (Zadrozny, 2001) 
with the advantage that our resulting matrix has 
much fewer columns (11 vs 64), with the consequent 
gain in computational cost and prediction time. 
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Figure 2: Ranking results represented by the ROC curve of the most difficult class of the dataset. On the left: the query is 
class 4 (damp grey soil) from the satimage dataset. On the right: the query is class 2 (letter B) from the isolet dataset. 

4 CONCLUSIONS 

We have presented a multiclass classification system 
which learns automatically its internal structure 
according to the provided learning data; it is able to 
select efficient algorithms in a pool of binary 
classifiers, with an optimal choice of a relevant 
coding matrix since it is computed according to the 
complexity of the various binary problems. It also 
provides generic and accurate calibration and results 
are given as probability estimates. This system does 
not need any external tuning and no user-expertise, 
but just a problem-specific performance measure. 
This makes it suitable and easy to use for any 
multiclass task needing probability estimates or 
ranking, while still successfully dealing with the 
classification task, as it has proved to outperform 
empirical results on two very different datasets. This 
framework is also more generic and computationally 
efficient than existing tools like libSVM. 
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