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Abstract: This paper focuses on the Fuzzy Frequency Response: Definition and Analysis for Uncertain Dynamic Sys-
tems. In terms of transfer function, the uncertain dynamic system is partitioned into several linear sub-models
and it is organized into Takagi-Sugeno (TS) fuzzy structure. The main contribution of this approach is demon-
strated, from aTheorem, that fuzzy frequency response is a boundary in the magnitude and phase Bode plots.
Low and high frequency analysis of fuzzy dynamic model is obtained by varying the frequencyω from zero
to infinity.

1 INTRODUCTION

The design of control systems is currently driven by
a large number of requirements posed by increas-
ing competition, environmental requirements, energy
and material costs, the demand for robust and fault-
tolerant systems. These considerations introduce ex-
tra needs for effective process control techniques. In
this context, the analysis and synthesis of compen-
sators are completely related to each other. In the
analysis, the characteristics or dynamic behaviour of
the control system are determined. In the design,
the compensators are obtained to attend the desired
characteristics of the control system from certain per-
formance criteria. Generally, these criteria may in-
volve disturbance rejection, steady-state erros, tran-
sient response characteristics and sensitivity to pa-
rameter changes in the plant.

Test input signals is one way to analyse the dy-
namic behaviour of real world system. Many test sig-
nals are available, but a simple and useful signal is the
sinusoidal wave form because the system output with
a sinusoidal wave input is also a sinusoidal wave, but
with a different amplitude and phase for a given fre-
quency. This frequency response analysis describes
how a dynamic system responds to sinusoidal inputs
in a range of frequencies and has been widely used in
academy, industry and considered essential for robust
control theory (Serra and Ferreira, 2010).

The frequency response methods were devel-
oped during the period 1930− 1940 by Harry

Nyquist (1889− 1976) (Nyquist, 1932), Hendrik
Bode (1905− 1982) (Bode, 1940), Nathaniel B.
Nichols(1914−1997) (James et al., 1947) and many
others. Since, frequency response methods are among
the most useful techniques and available to analyse
and synthesise the compensators. In (Jr, 1973), the
U.S. Navy obtains frequency responses for aircraft
by applying sinusoidal inputs to the autopilots and
measuring the resulting position of the aircraft while
the aircraft is in flight. In (Lascu et al., 2009), four
current controllers for selective harmonic compensa-
tion in parallel Active Power Filters (APFs) have been
compared analytically in terms of frequency response
characteristics and maximum operational frequency.
Most real systems, such as circuit components (in-
ductor, resistor, operational amplifier, etc.) are often
formulated using differential/integral equations with
uncertain parameters (Kolev, 1993). The uncertain
about the systems arises from aging, temperature vari-
ations, etc. These variations do not follow any of
the known probability distributions and are most of-
ten quantified in terms of boundaries. The classical
methods of frequency response do not explore these
boundaries for uncertain dynamic systems. To over-
come this limitation, this paper proposes the defini-
tion of Fuzzy Frequency Response (FFR) and its ap-
plication for analysis of uncertain dynamic systems.
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2 FORMULATION PROBLEM

This section presents some essentials concepts for the
formulation and development of this paperFuzzy Fre-
quency Response for Uncertain Dynamic Systems.

2.1 Uncertain Dynamic Systems

In terms of transfer function, the general form of an
uncertain dynamic systems is given by Eq. 1, as de-
picted in Fig.1.
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Figure 1: TS fuzzy model.

G(s,ν) =
Y(s,ν)
X(s)

=

bα(ν)sα +bα−1(ν)α−1+ . . .+bα(ν)sα +b1(ν)s+b0(ν)
sβ +aβ−1(ν)sβ−1+ . . .+a1(ν)s+a0(ν)

(1)

where: X(s) andY(s,ν) represents the input and the
output of uncertain dynamic systems;a∗(ν) andb∗(ν)
are the varying parameters;ν(t) is the time varying
scheduling variable;s is the Laplace operator;α and
β are the orders of the numerator and denominator of
the transfer function, respectively (withβ ≥ α). The
scheduling variableν belongs to a compact setν ∈V,
with its variation limited by|ν̇| ≤ dmax, with dmax≥ 0.
This formulation is very efficient and the fuzzy fre-
quency response of (1) can be used for stability anal-
ysis and robust control design.

2.2 Takagi-Sugeno Fuzzy Dynamic
Model

The inference system TS, originally proposed in (Tak-
agi and Sugeno, 1985), presents in the consequent a
dynamic functional expression of the linguistic vari-

ables of the antecedent. Thei
∣

∣

∣

[i=1,2,...,l ] -th rule, where

l is the rules numbers, is given by

Rule(i) :
IF x̃1 is F i

{1,2,...,px̃1}|x̃1
AND. . .AND x̃n is F i

{1,2,...,px̃n}|x̃n

THEN yi = fi(x̃) (2)

where the total number of rules isl = px̃1 × . . .×
px̃n. The vector x̃ = [x̃1, . . . , x̃n]

T ∈ ℜn contain-
ing the linguistics variables of antecedent, whereT

represents the operator for transpose matrix. Each
linguistic variable has its own discourse universe
U x̃1, . . . ,U x̃n, partitioned by fuzzy sets representing
its linguistics terms, respectively. Ini-th rule, the
variablex̃{1,2,...,n} belongs to the fuzzy setF i

{x̃1,...,x̃n}

with a membership degreeµi
F{x̃1,...,x̃n}

defined by a

membership functionµi
{x̃1,...,x̃n}

: ℜ → [0,1], with

µi
F{x̃1,...,x̃n}

∈ {µi
F1|{x̃1,...,x̃n}

,µi
F2|{x̃1,...,x̃n}

, . . . ,µi
Fp|{x̃1,...,x̃n}

},

where p{x̃1,...,x̃n} is the partitions number of the dis-
course universe associated with the linguistic vari-
ablex̃1, . . . , , x̃n. The output of the TS fuzzy dynamic
model is a convex combination of the dynamic func-
tional expressions of consequentfi(x̃), without lost of
generality for the bidimensional case, as illustrated in
Fig. 2, given by Eq. 3.
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Figure 2: Fuzzy dynamic model: A TS model can be re-
garded as a mapping from the antecedent space to the space
of the consequent parameters one.

y(x̃,γ) =
l

∑
i=1

γi(x̃) fi(x̃) (3)

whereγ is the scheduling variable of the TS fuzzy dy-
namic model. It can be observed that the TS fuzzy
dynamic system, which represents any uncertain dy-
namic model, may be considered as a class of sys-
tems whereγi(x̃) denotes a decomposition of linguis-
tic variables[x̃1, . . . , x̃n]

T ∈ ℜn for a polytopic geo-
metric region in the consequent space from the func-
tional expressionsfi(x̃).

3 FUZZY FREQUENCY
RESPONSE (FFR): DEFINITION

This section will present how a TS fuzzy model of
an uncertain dynamic system responds to sinusoidal
inputs, which in this paper is proposed as the defini-
tion of fuzzy frequency response. The response of a
TS fuzzy model to a sinusoidal input of frequencyω1
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in both amplitude and phase, is given by the transfer
function evaluated ats= jω1, as illustrated in Fig. 3.
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Figure 3: TS fuzzy transfer function.

For this TS fuzzy model,

Y(s) =

[

l

∑
i=1

γiW
i(s)

]

E(s) (4)

Consider
l

∑
i=1

γiW
i( jω) a complex number for a

givenω, as
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∣

∣

∣

l

∑
i=1

γiW
i( jω)

∣

∣

∣

∣

∣
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l

∑
i=1

γiW
i( jω)
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(5)

Then, for the case that the input signale(t) is si-
nusoidal, that is,

e(t) = Asinω1t (6)

the output signalyss(t), in the steady state, is given
by

yss(t) = A

∣

∣

∣

∣

∣

l

∑
i=1

γiW
i( jω)

∣

∣

∣

∣

∣

sin[ω1t +φ(ω1)] (7)

As result of the fuzzy frequency response defini-
tion, it is proposed the following theorem:

Theorem 3.1.Fuzzy frequency response is a region
in the frequency domain, defined by the consequent
sub-models and from the operating region of the an-
tecedent space.

Proof. Considering that the parameterν(t) is uncer-
tain and can be represented by linguistic terms, once
known its discurse universe, as shown in Fig. 4, the
activation degrees,hi(ν̃)|i=1,2,...,l , are also uncertain,
since it dependes of the dynamic system:
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Figure 4: Functional description of the linguistic variables:
linguistic terms, discurse universes and membership de-
grees.

hi(ν̃) = µi
Fν̃∗1

⋆µi
Fν̃∗2

⋆ . . . ⋆µi
Fν̃∗n

(8)

whereν̃∗{1,2,...,n} ∈U ν̃{1,2,...,n}
, respectively, and⋆ is

a fuzzy logic operator.
So, the normalized activation degrees

γi(ν)|i=1,2,...,l , are also uncertain, as shown in:

γi(ν̃) =
hi(ν̃)

l

∑
r=1

hr(ν̃)
(9)

This normalization implies

l

∑
k=1

γi(ν̃) = 1 (10)

The output of the TS fuzzy model is a weighted
sum of the consequent functional expression, e.g.,
a linear convex combination of the local functions
fi(ν̃), and is given by

y(ν̃) =
l

∑
i=1

γi(ν̃) fi(ν̃) (11)

Let F(ν̃) a vectorial space of transfer functions
with degree≤ l and f 1(s), f 2(s), . . . , f l (s) transfer
functions which belongs to this vectorial space. A
transfer functionf (s) ∈ F(ν̃) must be a linear convex
combination of the vectorsf 1(s), f 2(s), . . . , f l (s). So

f (s) = γ1 f 1(s)+ γ2 f 2(s)+ . . .+ γl f l (s) (12)

f (s) =
l

∑
i=1

γi(ν̃) fi(ν̃) (13)

The TS fuzzy model must attend the polytope
property. So, the sum of the normalized activation
degree must be equal to 1, as shown in Eq (10). To
satisfy this property, each rule must be singly acti-
vated. This condition is called boundary condition. In
this way, the following results are obtained:

If just the rule 1 is activated, it has(γ1 = 1,γ2 =
0,γ3 = 0, . . . ,γl = 0). Hence,
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f (s) = 1 f 1(s)+0 f 2(s)+ . . .+0 f l(s) = f 1(s)

(14)

From (5), it has

f ( jω) =
∣

∣ f 1( jω)
∣

∣∠ f 1( jω) (15)

If just the rule 2 is activated, it has(γ1 = 0,γ2 =
1,γ3 = 0, . . . ,γl = 0). Hence,

f (s) = 0 f 1(s)+1 f 2(s)+ . . .+0 f l(s) = f 2(s)

(16)

From (5), it has

f ( jω) =
∣

∣ f 2( jω)
∣

∣∠ f 2( jω) (17)

If just the rulel is activated, it has(γ1 = 0,γ2 =
0,γ3 = 0, . . . ,γl = 1). Hence,

f (s) = 0 f 1(s)+0 f 2(s)+ . . .+1 f l (s) = f l (s)

(18)

From (5), it has

f ( jω) =
∣

∣

∣
f l ( jω)

∣

∣

∣
∠ f l ( jω) (19)

Note that
∣

∣ f 1( jω)
∣

∣∠ f 1( jω) and
∣

∣

∣
f l ( jω)

∣

∣

∣
∠ f l ( jω) define a boundary region. Under

such circumstances, it seems plausible that the fuzzy
frequency response for uncertain dynamic systems
converges to a boundary in the frequency response,
as shown in Fig.5.

4 CONCLUSIONS

The Fuzzy Frequency Response: Definition and Anal-
ysis for Uncertain Dynamic Systems is proposed in
this paper. It was shown that the fuzzy frequency re-
sponse is a region in the frequency domain, defined
by the consequent linear sub-modelsGi(s), from op-
erating regions of the uncertain dynamic system, ac-
cording to the proposedTheorem 3.1. This formula-
tion is very efficient and can be used for robust stabil-
ity analysis and control design for uncertain dynamic
systems.
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Figure 5: Fuzzy frequency response: mapping from the
consequent space to the region in the frequency domain.
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