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Abstract: This paper describes a solution to the T-joint problem in matching 2D fragments of an object. Matching 
fragments of an object is useful for solving puzzles or reassembling archaeological fragments. Many factors, 
such as the number of pieces and the complex shapes of pieces make this a difficult problem. Various 
approaches to this problem exist. This paper presents an approach to solving the T-joint problem, which 
comes up in assembling fragments. The work described in this paper starts with a 2D object that should be 
easy to extend to 3D problems. 

1 INTRODUCTION 

The assembly of fragments of an object using 
computer software has significant usages in the real 
world. Applications include reconstructing torn 
documents or fragmented pottery and artefacts while 
excavating ruins of ancient civilizations. It can be a 
challenging and formidable task reconstructing an 
entire object. A manual approach is time consuming, 
especially for a large number of fragments and 
requires direct contact with objects, which increases 
the chance to damage those artefacts. In contrast, an 
automated approach could efficiently reconstruct a 
large number of pieces. In addition, the trace of the 
reassembly can be kept in an electronic medium for 
study.   

An additional problem is that in naturally 
occurring fragmentation of objects, fragments do not 
commonly match at pairs of corners.  Most objects 
fragment in a way that forms triple junctions, such 
as T-joints.  McBride and Kimia (2003) reported that 
in samples of broken ceramic tiles, T-joints ranged 
from 70-89% of the junctions, while other triple 
junctions ranged from 6-9%, and non-triple 
junctions ranged from 5-20%.  Figure 1 shows a T-
joint. 

 
Figure 1: Two puzzle pieces showing T-joint match. 

The assembly of the fragments of 3D objects is 
complicated. This work focuses on 2D objects, 
rather than 3D. In this way, all the drawbacks in 2D 
approaches are resolved before leaping to the 3D 
world to simplify the computational complexity.  In 
section 2, previous work on matching objects is 
discussed. Section 3 introduces a method to perform 
2D curve matching for pieces with T-joints. Section 
4 describes the results of processing puzzle pieces 
with the method introduced in section 3. Section 5 
presents conclusions and future issues to explore.  

2 HISTORY REVIEW 

Numerous previous works attack matching issues in 
reconstructing fragmented objects. Most of them 
compare the boundaries of the objects, represented 
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by some sort of spline curve (Lee, Clark, & Araman, 
2003; Krebs, Korn & Wahl, 1997) or polygonal 
approximation.  The algorithms split curves at 
boundary points and then match sub curves 
(Freeman & Garder, 1964; Kong & Kimia, 2001; 
McBride & Kimia, 2003; Radack & Badler, 1982; 
Stringfellow, Simpson, Bui, Peng, & Hood, 2008; 
Weiss-Cohen, Halevi, 2005). Many approaches 
perform local shape analysis first, which results in 
ambiguous matches and require backtracking to 
resolve the mismatches (Freeman & Garder, 1964; 
Kong & Kimia, 2001; Radack & Badler, 1982; 
Stringfellow, Simpson, Bui, Peng, & Hood, 2008).   

Finding accurate matches is more often than not 
very time consuming.  Curve fitting methods often 
require a least squares fit or similar process to 
determine the associated error of each fitted curve.   
As the number of curves that require processing 
increases, the complexity of each fit becomes more 
of an issue. This is the situation that is encountered 
in the reconstruction of 2D fragmented objects.  
Each collection of N fragments, where each 
fragment has on the average M distinct edges, 
requires O((MN)2) curve fits.   Of course, problem 
specific information can be used to reduce this 
number. 

The approaches used by researchers vary based 
on the characteristics of the fragmented objects. 
These characteristics concern orientation of pieces, 
whether there are missing pieces, whether the 
exterior boundary is known beforehand (such as a 
rectangular grid), whether there is a unique solution, 
and what types of junctions between pieces are 
allowed (Kleber, 2009). Some approaches consider 
image features of the pieces, such as color and 
texture (Nielsen, Drewsen, & Hansen, 2008) and 
others consider shape of pieces (Da Gama Leitao & 
Stolfi, 2002; Freeman & Garder, 1964; Goldberg, 
Malon, & Bern, 2002; Horst & Beichl, 1996; Krebs 
et al., 1997; Kong & Kimia, 2001; Lee et al., 2003; 
McBride & Kimia, 2003; Radack & Badler, 1982; 
Stringfellow et al., 2008; Zhu, Zhou & Hu, 2008), 
while (Weiss-Cohen & Halevi, 2005; Yao & Shao, 
2003) consider both.  

Many of the approaches have problems. Freeman 
and Garder (1964) repeatedly search all pieces and 
the best matches are merged to form new pieces 
until only one piece is left.  Insufficient constraints 
result in mismatches and require backtracking. The 
algorithm by Goldberg et al. (2002)  is efficient, but 
not fully automated and only works on pieces with 
four corners. Yao and Shao (2003) present no 
method to solve for triple junctions.  

Kong and Kimia (2001) McBride and Kimia 
(2003) and Zhu et al. (2008) present two-step 
approaches to solving reconstruction of fragmented 
objects. In both, the first step finds likely candidate 
pairs of pieces by computing affinity measures using 
polygonal approximation of pieces. In Kong and 
Kimia (2001) McBride and Kimia (2003) triples that 
arise from generic junctions (Y- and T-joints) are 
formed from this rank-ordered list of the top-ten 
pairings.  Their second step compares these 
candidate pieces at a finer level. If a match, the 
pieces are merged and removed from the piece list 
and the merged piece is inserted.  The results show 
some mismatches, probably due to issues in the 
second matching step.  In Zhu et al. (2008) the 
second step uses a confidence number assigned to 
each pair and then maximizes the consistency until 
the confidence reaches one. This creates the 
advantage of overall checking of joins to decide on 
matches or false positives. However, it only results 
20-30 percent matches.  

Stringfellow et al. (2008) present a method that 
works on pieces with discrete closed boundaries, 
represented by points (not curves or polygonal 
approximations).  It does not require pieces to fit a 
grid.  It does not match pieces with T-joints, but 
pieces may “join” a puzzle, if an adjacent edge 
without a T-joint is matched to another different 
piece. It does require a very small amount of user 
interactions to verify automated results. 

3 METHOD 

This paper builds on the work of Stringfellow et al. 
(2008) to solve the T-joint problem. The approach, 
which is now a 2-step matching process is briefly 
described. 

First, boundary points representing outlines are 
extracted from scanned images of puzzle pieces.  
Then the convex corner points are detected using a 
non-parameterized algorithm (Staples & Hood, 
2008).  In order to match curve segments of pieces, a 
fitness function is introduced to determine whether 
two curve segments are candidates for matching. 
Figure 2 shows the curve segment is divided into 
four small segments. It also shows the start points 
and end points for the four sub-segments. The 
middle point of a segment is chosen to divide the 
segment into sub-segments. The distance lengths of 
the sub-segments are denoted d1 - d4, respectively. 
The four sub-segments form three angles Ө1, - Ө3. 
The distance of a segment is computed in two ways: 
the number of pixels between start and end points 
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denoted as PD and the straight line distance between 
start and end points and is denoted as D. The fitness 
value, F(Si,Sj), is calculated using absolute or 
relative differences between the nine criteria.  The 
smaller the fitness value, the better chance the two 
segments are actually a match. If the fitness is too 
large, then the pair is rejected as a candidate pair.  

 
Figure 2: Break down of a curve segment in order to 
calculate its fitness value. 

Other tests are applied to determine if the mid-
points and quarter points of segment Si and segment 
Sj are close to each other after a rotation and a 
translation are performed. If they are too far away 
from each other, then the fitness F(Si,Sj) is set to a 
large value (not a candidate for matching pair.) 
Figure 2 shows two original segments and the 
segments after a rotation and a translation. 

 
Figure 3: Si and Sj and their sub-segments before and after 
a rotation and translation. 

Next, the algorithm (shown in Figure 4) uses a 
local approach to match curves. The algorithm 
selects a puzzle piece with four or more corners. If 
there is no piece with four or more corners, the 
algorithm selects just any piece. However, the more 
corners a piece has, the better the matching pool 
generated.  Next, pieces with the matches for the 
piece’s curve segments are found and the adjacent 
pieces are pushed onto a stack. The next piece out of 
the stack is popped and the best match for its curve 
segments is found. The process is repeated until the 
stack is empty. 

 
Figure 4: Regular curve matching algorithm (Stringfellow 
et al., 2008). 

After regular curve matching, T-joint matching 
is performed. The unmatched segments are sorted 
(by length) into a list. The T-joint algorithm (shown  
in Figure 5) starts with a unmatched pair of 
segments selected from the sorted segment list.  It 
calculates a sub-segment in the longer segment equal 
in length to the shorter segment starting at the start 
point of the longer segment and applies the matching 
criteria to see if they are a match.  If not, it 
calculates a sub-segment in the long segment 
starting at the finish point and determines if they are 
a match.  If a match is found (from either end point), 
it subdivides the long segment into a matched (sub) 
segment and a leftover (sub) segment.  The leftover 
segment is inserted into the sorted segment list for 
future consideration.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: T-joint matching algorithm. 

push piece [i] in the stack  
while the stack is not empty 
    pop (current_piece ) 
    for every segment of current_piece  
         find the best fit segment 
         if there is a match and the adjacent piece  
             with the best fit is not in the stack already 
                   move adjacent piece to new position  
                push the adjacent piece onto the stack

  1:  Get distance of short segment. 
2: Find sub-segment in long segment that is equal 

length to short segment starting at the start 
point of long segment. 

3: The new sub-segment is separated into 4 (equal) 
segments: calculate the midpoint and quarter 
points and other matching criteria. 

4:  Compare the sub-segment to the short segment to 
see if they match using the criteria. 

5:  If they match by a certain fitness value, then 
compute the left over part of the long segment.  

6:  If segments do not match, create a sub-segment 
from the long segment with same distance as 
short segment starting at finish point of long 
segment. 

7:  Perform Steps 3-5 for this sub-segment. 
8:  If either of the sub-segments of the long segment 

match the short segment, compute the left over 
segment of the long segment. 

9.  The matched sub-segment is removed from the 
segment list and the leftover segment is inserted 
in the sorted segment list.
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The criteria for determining if segments are 
matches in regular matching and T-joint matching 
are essentially the same, except segment length 
criteria is disregarded in the overall fitness value  for 
T-joint matching (since the segments compared are 
made to be the same length).  The tolerance values 
for the criteria can be made different for T-joint 
matching, but with these puzzles they were left the 
same.  Only the overall fitness value was decreased 
in the T-joint matching (to compensate for the 
segment length criteria). 

Overall, regular and T-joint matching is O(S2), 
where S is the number of segments in all the pieces. 
Some efficiency is gained in regular matching, by 
only comparing segments to segments of other 
pieces, as long as those segments are within its 
neighbourhood in the sorted list. (A neighbourhood 
is size 10.)  In addition, if the differences between 
two segments in one of the nine criteria are too 
large, then no other comparison calculations are 
performed. When a pair of segments is matched, a 
piece gets attached to the puzzle, and that piece 
becomes the current piece for further matching.  If a 
piece has none of its segments match, the algorithm 
goes back to a previous piece and checks its 
remaining unmatched segments.  It is possible to 
join an N-piece puzzle with O(N) segment matches.  
The worst case scenario is that no pieces match, and 
O(S2) segments are compared.  After regular 
matching is performed, the unmatched segments are 
stored in a sorted unmatched segment list – this 
takes O(S).  The T-joint algorithm, worst case, 
would need to compare every unmatched segment to 
every other unmatched segment twice – taking 
O(S2), but if regular matching found most of the 
matches, there would be fewer unmatched segments 
in the sorted list to compare.  

4 RESULTS 

The application was developed using C# within the 
Microsoft Visual Studio.Net 2005 platform. Puzzle 
pieces were scanned in using a HP ScanJet 5200C 
scanner, several pieces at a time. RGB format is 
transformed to greyscale and then the images are 
converted to a binary format, so all pixels are either 
black or white. Boundaries are extracted and corner 
points are detected, then regular matching is 
performed.  Figure 6 shows a puzzle put together 
after regular matching is performed.  The two pieces 
not joined only have segments with T-joints.  There 
are a few pieces joined in the puzzle that have 

segments with T-joints, but they are matched to 
other pieces using segments without T-joints.       

Figure 7 shows the results after the T-joint 
matching is performed.  The bottom segment of the 
shaded piece is matched to the joined puzzle.  (There 
is a bit of round-off error in the translation and 
rotation of pieces.) 

 
Figure 6: Puzzle after regular matching performed 
(Stringfellow et al., 2008). 

 
Figure 7: Final result after T-joint matching. 

Figures 8 – 10 show a puzzle with many T-joints.  
As can be seen in Figure 11, only 2 pairs of pieces 
are matched using regular matching. After the T-
joint matching algorithm is applied, every piece is 
joined to the puzzle. 

 
Figure 8: Puzzle 2 with many T-joints. 
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Figure 9: Puzzle 2 after regular matching. 

 
Figure 10: Puzzle 2 after T-joint matching performed. 

Figures 11 and 12 show a puzzle that has pieces 
with smoother, longer curves and many T-joints.  
All pieces are matched by the T-joint matching 
algorithm.  Note that this puzzle has joints where 
two pieces match, but do not have either a start or 
end point in common (designated as a Type 3 
junction in [8]). 

 
Figure 11: Puzzle 3 after regular matching is performed. 

 
Figure 12: Puzzle 3 after T-joint matching performed. 

Figures 7, 10 and 12 show that the algorithm in 
Figure 5 is successful in putting the remaining 
puzzle pieces with T-joints together. This algorithm 
also solves the problem of type 3 junctions.  These 
joints get resolved when the piece’s segment is 
divided into a matched part (to another piece) and a 
leftover part that is then inserted into the segment 
list to be matched with a future piece.  The type 3 
joints reduce to T-joints.  In this way, the semi-
circular piece in puzzle 3 is matched to three pieces. 

The threshold values for some of the fitness 
criteria for a match were made stricter (that is, the 
difference between two segments’ criteria had to be 
smaller to be considered a match.  In puzzles 1 and 
2, the criteria had to be relaxed in order to get them 
completed. There is a trade-off between using 
stricter criteria and the number of correct matches.  
When the criteria was made more strict, fewer 
matches were made (although not much fewer), but 
it did not give fewer false matches, except in puzzle 
2.  In puzzle 3, a large number of the false T-joint 
matches were due to the semi-circular piece, which 
tended to match a lot of other arcs in other pieces’ 
segments.   

False T-joint matches are more likely than false 
regular matches, due to the fact that two criteria are 
eliminated. (The T-joint matching algorithm makes 
pixel segment length and actual segment lengths the 
same.)  Making the remaining criteria tighter, may 
result in fewer false T-joint matches, but it may also 
reduce true T-joint matches. 

5 CONCLUSIONS AND FUTURE 
WORK 

This paper proposes a method and its 
implementation for semi-automatic reconstruction of 
2D jigsaw puzzles that have pieces with T-joints. 

SOLVING THE T-JOINT PROBLEM IN RECONSTRUCTING 2-D OBJECTS

27



 

Applied to a 24 piece puzzle, the implemented 
application is able to put all 24 pieces together. 
Puzzles 2 and 3 are also entirely put together.   

Efficiency in this approach is achieved in several 
ways. First only pairs of segments nearby in the 
sorted list of segments are compared during regular 
matching, and only if they meet the other distance 
and angle criteria do they undergo more 
calculations.  T-joint matching is only performed on 
unmatched segments after all regular matching is 
done. Type 3 junctions reduce to T-joints after 
matched segments are subdivided into matched and 
leftover segments.  

The suggested approach is considered a 
successful and reliable one. This approach 
reconstructed all the pieces of a given set of objects.  
Restricting the fitness criteria may reduce the 
number of matches and increase the number of false 
matches, but it still results in successful matching. 
Future work needs to be done to base the fitness 
criteria on properties of the fragments, such as their 
size.  

Future research will also consider matching 
combined pieces. By applying this approach, there 
exists a potential to resolve any few remaining 
unmatched pieces. Applying this approach to the 
reconstruction of ancient artefacts would result in 
considerably less pieces having to be touched over 
and over again.  

Finally, for the jump to 3D, the work will likely 
follow a similar technique to Krebs et al. (1997) 
using 2D slices of 3D objects, although rather than 
using splines the approach will consider the points in 
a cloud to represent the edges or boundaries of the 
object. 
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