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Abstract: A method is proposed for building and road detection on very high spatial resolution multispectral aerial 
image of dense urban areas. First, objects are extracted with a segmentation algorithm in order to use both 
spectral and spatial information. Second, a spectral-spatial object-level pattern is formed, and then 
classification is performed using a 3-class SVM classifier, followed by a post-processing using contextual 
information to handle conflicts. However, in the particular case where many building roofs are grey like the 
roads and have similar geometry, classification accuracy is inevitably limited. In order to overcome this 
limitation, different classifiers are combined and different patterns used, improving the accuracy of 10%.

1 INTRODUCTION 

The accurate classification of remote sensing images 
is an important task for applications such as 
development planning, emergency response or earth 
survey. Many investigations are currently done in 
order to provide both efficient and (semi-)automated 
classification algorithms. Our study deals with 
building and road extraction on very high spatial 
resolution (VHR) aerial images of dense urban 
areas. The sensor is multispectral and covers a range 
of three optic spectral channels (RGB), having a 
spatial resolution of 0.5m per pixel.  

Most of the remote sensing classification 
applications work at the pixel level, and use only 
spectral information. The first step consists generally 
in extracting pixel spectral features, then patterns are 
classified usually with the classical Gaussian 
maximum likelihood (ML) supervised classifier 
(Bishop, 2006). However, when only spectral 
information is used classified data often manifest a 
salt-and-pepper appearance (Lilesand and Kieffer, 
1994). In addition, VHR images of urban areas 
contain a significant amount of spatial information, 
which should be used to make possible the precise 
identification of small structures such as houses or 
narrow roads.  

Approaches involving Markov random fields 
(MRF) use the contextual information (Jackson, 
2002). 

A faster and more recent technique intensively 
used in hyperspectral imaging consists in building 
morphological profiles (MPs) from the original data 
to obtain (local) spatial information about size and 
shape (Palmason et al., 2005), (Fauvel, 2008), (Tuia, 
2009). Once geometrical features are extracted (the 
MPs for example) they can be concatenated with the 
spectral pattern to form a composite pattern, which 
is then classified (Fauvel, 2008). Another solution is 
to classify separately the spectral and spatial patterns 
with two (or more) different classifiers and to 
perform a decision fusion for the final class 
attribution. The decision fusion processing and 
interpretation can be performed using fuzzy (Fauvel 
et al., 2006) or probabilistic (Benediktsson, 1999), 
(Benediktsson et al., 2007) framework. The 
difficulty with these approaches is to find adequate 
source weights reflecting source reliabilities. Fusion 
can also be performed on the final decision of each 
classifier. In this case, conflicts between classes are 
handled by another classifier (Benediktsson, 1999), 
randomly or with additional information. Overviews 
of multiple classifier system (MCS) are presented in 
(Bishop, 2006), (Benediktsson et al., 2007). When 
geometrical features are considered (the MPs for 
example), the class distributions can generally not be 
assumed to be Gaussian and nonparametric 
supervised classifiers such as decision trees, K-
neirest-neighbors, neural networks (Fauvel et al., 
2006) (Benediktsson, 1999) or Support Vector 
Machines (SVMs) (Fauvel, 2008) (Tuia, 2009) are 
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generally used. These different classifiers are 
presented in (Bishop, 2006). In the context of 
multispectral images, SVMs are generally more 
effective in terms of classification accuracy than 
most of the other methods (Melgani, 2004), (Foody, 
2004). Also, the “geometric” nature of the SVMs 
enables them to handle small ratio between the 
number of available training samples and the 
number of features. Thus, even in the hyperspectral 
context they generally do not need a feature 
reduction pre-processing step (Melgani, 2004). 
However, SVMs have the drawback to be originally 
developed to solve binary classification problems, 
and multi-class SVMs are generally handled by the 
“one-against-all” or the “one-against-one” strategy 
(Bishop, 2006), (Melgani, 2004).  

Another approach to exploit spatial information 
is suggested in (Tarabalka et al., 2009). First, a 
classical pixel wise spectral classification is 
performed, and a segmentation algorithm is applied 
independently. Then, spatial information is included 
by merging the segmentation and the classification 
maps by assigning to a segmented area the 
predominant pixel class within it.  

In this paper another strategy is suggested, 
exploiting the fact that in VHR images our two 
classes of interest (road and building) are objects 
with specific geometry. The idea consists in building 
object (global) geometric features. First, extraction 
of interest objects is performed with a segmentation 
algorithm applied to the image. Second, a composite 
object pattern is formed with geometrical and 
spectral features, then this pattern is classified into 
class “road”, building” or “other”. The method 
provides good classification accuracy with most 
rural, peri-urban and urban areas. However, in this 
paper we focus on the difficult case of dense urban 
areas containing many building roofs of similar 
spectral signature (and geometry) than the roads. 
Whatever the classifier used, this leads to a 
systematic problem of false alarms for the class 
“road” and of bad detections for the class “building” 
(many buildings are classified as roads). In this case 
the building heights would have been useful to 
discriminate the classes, but with a single image we 
have no access to this information. In order to 
compensate this lack of information about the 
features, we suggest combining several classifiers in 
a way to exploit simultaneously the ability of all of 
them to recognize buildings. The paper is organized 
as follows. The classification technique with a single 
classifier is presented in part 2. Part 3 deals with the 
suggested classifier combinations. Finally, part 4 is 
the conclusion. 

2 CLASSIFICATION 
TECHNIQUE 

2.1 Data Specifications 

Figure 1 shows a part of multispectral VHR aerial 
image of dense urban area (2833x2618 pixels). In 
can be seen that with this example the spectral 
characteristics of many buildings are similar to the 
one of the roads. Also, many roads are very narrow, 
often because partially occluded by houses.  

 
Figure 1: Part of a color aerial image (Brussels center, 
Belgium) with a spatial resolution of 0.5m.  

2.2 Object Extraction with 
Segmentation 

The aim of this part is to extract coherent regions 
corresponding to actual image objects such as roads, 
buildings or others. The literature provides many 
segmentation algorithms divided into three 
categories: edge-based, region-based and clustering. 
Some of them are Graph-Cut, region growing, 
watersheds (Debeir et al., 09), K-means (Bishop, 
2006), EM (Bishop, 2006) and mean shift 
(Comaniciu and Meer, 02). The mean shift algorithm 
was chosen for the following reasons: 

- it was designed for vector processing and thus is 
adapted to process multispectral images, 

- the integration of the spatial coherence property 
is straightforward, 

- it is robust with respect to spectral noise because 
based on a smoothing process, 

- no assumption has to be done about the feature 
space (number of clusters, underlying distri-
bution). 

- There is only one parameter to tune: the 
segmentation resolution. 
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The limitation is that if the dimension is high it 
can suffer from the curse of dimensionality. In our 
application, a 5-dimensional spectral-spatial feature 
space is built. In this space, a pixel corresponds to a 
vector whose components are its three spectral 
values, and its two spatial coordinates. The mean 
shift operates on this space by estimating in an 
iterative way the local maxima of the underlying 
nonparametric spectral distribution. At each 
iteration, the components of each vector are replaced 
by the means of the components of all the vectors 
situated in a spectral-spatial neighborhood (we use a 
flat kernel). The convergence toward the local 
maxima is ensured (Comaniciu and Meer, 02). Then, 
the pixels having converged toward the same 
maximum are grouped together to form an object. 
After observation of the image of figure 1, it has 
been noticed that our actual objects of interest have 
always an area upper than one hundred pixels. Thus, 
an additional step merges (with the other objects) all 
the mean shift objects smaller than this threshold. 
The parameter of the mean shift is (in case of a flat 
kernel) the radius of the spectral-spatial 
neighborhood. Because this radius is different in 
spectral than in spatial (the neighborhood is a hyper-
ellipsoid), there are in fact two regularization 
parameters. However, results are not very sensitive 
with respect to the spatial radius (Comaniciu and 
Meer, 02), and it can be fixed to an a priori suitable 
value. In our application it is fixed to seven pixels. 
The spectral radius is manually tuned in order to find 
a good compromise between under and over 
segmentation. With the image of figure 1, a value of 
20 is visually optimal. It can be seen in the figure 2 
that roads and buildings are generally precisely 
extracted. Also, there are very few under and over 
segmentation. It is an advantage with respect to the 
watershed algorithm, which generally suffer from 
important over segmentation (Debeir et al., 2009). 

 

Figure 2: Mean shift segmentation results on a zoom of the 
image of figure 1. 

2.3 Spectral-spatial Object Pattern 

The aim of this part is to establish an object pattern 
able to separate the “building”, “road” and “other” 
classes. It exists many geometrical, spectral or 
textural features to characterize an area. In our 
application, the features were selected by observing 
the mean shift areas in figures such as the figure 2. 
An idea to discriminate our classes was to use the 
specific polygonal geometries assumed for roads and 
buildings. However, the boundaries of mean shift 
areas are often too jagged to fit suitably polygonal 
models. The area (size) and eccentricity (shape) 
descriptors are retained because of their abilities to 
discriminate roads. The eccentricity (the ratio of the 
lengths of the two main inertia axis of the area) is 
estimated by computing the ratio of the two 
eigenvalues of the (spatial) pixel vector covariance 
matrix. Textural features are not retained, because 
the mean shift objects are generally low textured, 
especially in urban area. Some man-made objects 
have sometimes some kinds of texture, but it is 
exception (chimneys on a roof) or perturbations 
(cars on a road). In addition, the image is filtered 
before feature computation in order to limit the noise 
effect and other small perturbations or occlusions, 
decreasing also the texture. The spectral features 
retained are the means of the multispectral (RGB) 
vector computed on the area. It discriminates the 
classes “road” and “other”. The buildings are 
generally grey or brown-red. Also a building is often 
divided into two parts, the sun part and the shadow 
part.  Another color space is tested, the (L*, a*, b*), 
because it corresponds better to human visual 
perception.  In summary, we suggest testing two 
spectral-spatial mean shift object patterns: {area, 
eccentricity, mean of the RGB vector}, and {area, 
eccentricity, mean of the L*a*b* vector}. Each 
component is normalized to work in Euclidean 
space. The main limitation is that some buildings 
have both similar geometry and color than roads. It 
exists many automatic feature reduction techniques 
intensively used in hyperspectral imagery before 
applying the classification (Fauvel, 2008) (Tuia, 
2009)  (Melgani, 2004). They are not considered 
here for the following reasons: feature selection has 
been done above by observing mean shift areas, five 
dimensions is a low dimensional problem and 
redundancy is low with these features, feature 
reduction is seldom justified with the SVM classifier 
used in part 2.4 (Melgani, 2004). 
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2.4 Object Classification with SVM 

Among the numerous existing supervised 
nonparametric classification methods, the compact 
kernel SVM classifier was chosen because of its 
superiority in terms of classification accuracy in the 
context of remote sensing images, and its ability to 
handle the curse of dimensionality (Bishop, 2006), 
(Fauvel, 2008), (Melgani, 2004), (Foody, 2004). The 
SVM algorithm is a 2-class classifier. We consider 
the general case of a training set of two overlapping 
classes. First, a nonlinear kernel function is applied 
on the input space in order to obtain a higher 
dimensional feature space having a better class 
separability. The Gaussian kernel provides often the 
best results, and is used in this paper. Second, the 
parameters of the hyperplan linear model are 
estimated according to the maximal margin criterion 
and by penalizing the classification errors. The SVM 
algorithm with Gaussian kernel has two 
regularization parameters: the misclassification 
penalty term and the Gaussian width. In this paper, 
these parameters are optimized using cross-
validation, by minimizing the false classification rate 
over a 2D-grid of ten thousand couples of values for 
the two tuned parameters. This is costly but ensures 
to find the global minimum. In order to have a very 
high precision, this procedure is repeated three times 
in a coarse to fine scheme. Finally, the optimal 
values are used to learn the classifier on the entire 
training set. In our application we have three classes 
(“road”, “building” and “other”), and the “one-
against-all” multiclass SVM strategy is used. It 
consists in using three binary SVM classifiers 
independently, one for each class. During the 
learning of one class, the elements of the training set 
of the considered class are opposed to the elements 
of the two other classes. This technique can provide 
unbalanced training sets. However, in our 
application this phenomenon is limited because we 
have only three classes, and the training set is 
composed of four hundred buildings, four hundred 
roads and two hundred others. This training set was 
built by manually assigning to a class some mean 
shift areas situated outside the classification part 
(outside the image of figure 1). It can be noted that 
such a training set is designed only to classify parts 
of the considered aerial image, and not parts of other 
images with different illuminations. In fact, in our 
application for each aerial image a training set is 
built on parts of it, and the other parts are classified. 

With the “one-against-all” approach, the final 
decision can be taken by applying the “winner-take-
all” to the binary classifier probabilities (Melgani, 

2004). Another possibility is to consider the final 
binary classifier decisions (binary word) (Bishop, 
2006). In that case, for three classes there are eight 
possibilities and the five conflict situations (multiple 
assignments) are generally handled by choosing 
randomly one of the classes. In our application, it is 
possible to handle conflicts by using a priori 
knowledge and contextual information. In dense 
urban area, the classes “building” and “road” are 
largely predominant and have priority in case of 
conflicts with the class “other”. Also, it has been 
noticed by visualizing the “building” and “road” 
conflict areas that contextual information can be 
advantageously used. For example, if buildings (or 
roads) mainly surround a conflict area, most of the 
time it is a building (or a road). It would be 
interesting in further work to compare this approach 
with the one using the binary classifier probabilities 
(Melgani, 2004). Also, combining contextual 
information with probabilities would certainly be 
optimal. 

2.5 Classification Accuracy 

Figure 3 shows the SVM classification results for 
the image of figure 1, with the pattern {area, 
eccentricity, mean of the RGB vector}. On the top: 
superimposition of the binary SVM results. Detected 
roads, buildings, and others are respectively drawn 
in yellow, green and black. The “building” and 
“road” conflict areas are shows in red. It can be 
noticed that there are few conflicts. On the middle: 
3-class SVM results after handling the previous 
conflicts with contextual information. Conflicts were 
generally well handled. Bottom: ground truth built 
by visual interpretation. The red on the ground truth 
corresponds to areas where it was visually difficult 
to discriminate roads and buildings, and road or 
building detection on these areas are considered as 
exact. Computing the 3x3 confusion matrix (in terms 
of pixels) between the classified image (an example 
is in the middle of figure 3) and the ground truth 
assesses classification accuracy. Some descriptive 
measures computed from the confusion matrix are in 
table 1. 

Table 1: Classification accuracy measures. 

 3-class SVM, pattern {a,e,R,G,B} 
Overall accuracy 0.60 
Producer’s accuracy road 0.66 
Producer’s accuracy building 0.58 
Producer’s accuracy other 0.59 
User’s accuracy road 0.47 
User’s accuracy building 0.86 
User’s accuracy other 0.35 
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As expected with a dense urban area containing 
similar spectral and spatial “road” and “building” 
objects, results are poor. It can be seen in table 1 that 
the false alarm rate is high for both the classes 
“road” and “other”, in the detriment of the class 
“building” having a high bad detection rate. In fact, 
many grey building roofs are classified roads. This is 
because the class “road” contains only grey elements 
(pure class) and the class “building” contains both 
grey and brown-red elements. Some other classifiers 
were tested and without surprise the same  problem  

 
 

 
 

 
Figure 3: Top: superimposition of the binary SVM results, 
with the pattern {area, ecc., meanRGB}. Yellow: roads; 
green: buildings; black: other; red: building and road 
conflicts. Middle: 3-class SVM results. Bot.: ground truth. 

occurs, with even worse results than the SVM 
classifier. In order to overcome this problem, a finer 
class definition could be used. For example the class 
“building” can be divided into two sub-classes, one 
for the grey buildings and the other for the brown-
red ones. Another idea consists in increasing the 
number of features. However, it is not ensured at all 
that much better classification accuracy will be 
obtained. In this paper, another strategy is suggested. 
It consists in combining the decisions of different 
classifiers and is the topic of part 3. 

3 CLASSIFIER COMBINAISONS 

Our aim is to solve the false alarm problem for the 
classes “road” and “other”, and the bad detection 
problem for the class “building”. The solution 
consists in covering some road and other areas by 
building areas. However, if some roads are 
automatically eliminated, some correct roads will 
also be lost and it is not conceivable because they 
are already too divided up and cut. On the contrary, 
some other areas can be eliminated with fewer risks. 
In a dense urban area they are not numerous, and in 
addition the class “other” is by far the less 
important. Several classifiers were tested and the 
bad detection problem for the class “building” is 
recurrent to all of them. However, by observing the 
visual results it was noticed that they are 
complementary in the sense that each of them 
detects correctly a little part of grey buildings, which 
are classified roads by the others. In fact, a union of 
all the detected building will certainly leads to a 
much lower bad detection rate, without significant 
increase of the false alarms. We suggest adding the 
building areas detected by another classifier to the 
building areas of the SVM of part 2, while 
preserving its road network. This second classifier is 
a single class SVM (Tax and Duin, 2001). The 
difference between a single class and a two class 
SVM can be illustrated as follows: while the two 
class SVM attempts to separate two classes with a 
linear hyperplan, the single class SVM attempts to 
encircle the target class with a hypersphere to isolate 
it from the rest. Also, only target samples are needed 
for the training. In this paper, it uses the same 
training set and has the same parameters than the 
classical 2-class SVM. Of course the cross-
validation scheme is slightly different and the cost 
function minimized in the one suggested in (Tax and 
Duin, 2001), with equal weighting. The results can 
be seen in table 2. 

BUILDING AND ROAD EXTRACTION ON URBAN VHR IMAGES USING SVM COMBINATIONS AND MEAN
SHIFT SEGMENTATION

455



 

Table 2: Classification accuracy measures. 

 3-class SVM + buildings of the 
single class SVM while roads 
preserving, pattern {a,e,R,G,B} 

Overall accuracy 0.66 
Producer’s accuracy road 0.66 
Producer’s accuracy building 0.69 
Producer’s accuracy other 0.48 
User’s accuracy road 0.47 
User’s accuracy building 0.81 
User’s accuracy other 0.53 

Table 2 shows that such a combination of two 
classifiers improves of 6% the overall accuracy. As 
expected, the building bad detection rate is much 
lower, with just a small increase of the building false 
alarm rate. In summary, performances are better 
concerning the buildings, but not excellent. Also, the 
problems with the roads remain. Up to now, only 
one of our two patterns has been considered, but the 
same experiments were done with the pattern using 
the (L*, a*, b*) color space. There is one significant 
improvement with respect to the color space (R, G, 
B): the producer’s accuracy road increases of 11%, 
without adding many more false alarms. An idea to 
decrease both the road false alarm rate and the 
building bad detection rate is to combine this last 
classifier combination with the buildings of the 
previous classifier combination. In this last fusion, 
all the buildings are added while no road 
preservation is done. The risk is thus to loose some 
correct roads. However, despite this drawback, the 
classification accuracy is significantly better than all 
the results obtained previously, as shown in table 3. 
This four-classifier fusion improves the overall 
accuracy of 9% with respect to the SVM classifier 
used individually. The road false alarm rate is lower 
but remains high. Encouraging results concern 
mainly the “building” class with a much lower bad 
detection rate. Visual results are shown on figure 4. 
 

 
Figure 4: Classification results of the four-classifier 
combination of table 3 (ground truth on figure 3).  

Table 3: Classification accuracy measures. 

 (3-class SVM + buildings of the single 
class SVM while roads preserving, 
pattern {a,e,L*,a*,b*} ) + buildings of 
the combination of table 2 

Overall accuracy 0.69 
Producer’s accuracy road 0.67 
Producer’s accuracy building 0.76 
Producer’s accuracy other 0.42 
User’s accuracy road 0.49 
User’s accuracy building 0.80 
User’s accuracy other 0.75 

4 CONCLUSIONS 

Building and road detection on VHR images of 
dense urban areas has been investigated. The 
suggested approach contains segmentation and 
classification algorithms especially well adapted to 
multispectral data, and both spatial and spectral 
information are used at the object level. Also, 
contextual information around objects is used to 
solve the SVM conflicts between roads and 
buildings. In order to overcome the high road false 
alarm rate and the high building bad detection rate in 
the presence of similar road and building objects, 
some classifier combinations were suggested and 
different features used. Significant improvements 
are achieved in terms of accuracy. Our current 
research aims at filling road gaps and smoothing 
road borders, on the basis of straight segment 
detection. 
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