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Abstract: Tumour motion is an essential source of error for treatment planning in radiation therapy. This motion is 
mostly due to patient respiration. To account for tumour motion, we propose a solution that is based on the 
biomechanical modelling of the respiratory system. To compute deformations and displacements, we use 
continuous mechanics laws solved with the finite element method. In this paper, we propose a preliminary 
study of a complete model of the respiratory system including lungs, chest wall and a simple model of the 
diaphragm. This feasibility study is achieved by using the data of a “virtual patient”. Results are in 
accordance with the anatomic reality, showing the feasibility of a complete model of the respiratory system. 

1 INTRODUCTION 

Patients internal motions have large implications in 
different domains such as imaging and treatment 
(chirurgical operations or radiation therapy). 
Thereby the respiratory motion reduces the 
efficiency of radiotherapy benefits. Indeed, thoracic 
and abdominal tumours can move and deform due to 
respiration. It is then essential to know their position 
and shape deformation to be able to optimize the 
dose to tumour and healthy tissues. Lung tumours 
are particularly concerned by this motion (Mori et 
al, 2007; Seppenwoolde et al., 2002). Several 
management strategies including breath holding 
(Gagel et al, 2007; Wong et al, 1999), beam gating 
(Ozhasoglu and Murphy, 2002) and tracking have 
been discussed in the literature to account for 
tumour displacement (Giraud et al, 2006). A 
disadvantage of breath holding and beam gating is 
that, part of the time, the beam is off. Another 
disadvantage is that they do not take into account 
some irregularities in the breathing cycle. Indeed, 
both methods deduce tumour position from an 
external breathing parameter (spirometry, abdominal 
or thoracic height...). Ozhasoglu and Murphy (2002) 

demonstrated that respiratory compensation 
strategies that use an external breathing signal to 
infer tumour position lack the ability to detect and 
adapt to continuously changing characteristics of 
respiratory motion during treatment. Other studies 
(Shirato et al, 2006) show that the respiratory motion 
has some non-reproducible aspects that need to be 
taken into account during radiotherapy. This non-
reproducibility will be explained later in the 
anatomy part. Tracking fiducial markers implanted 
inside the tumour or tracking the tumour using the 
CyberKnife® robotic radiosurgery system are 
techniques that take into account the non-
reproducibility of the breathing cycle. While the 
implantation of fiducial markers is an intrusive 
method that may lead to medical complications such 
as pneumothorax (Jiang, 2006), the CyberKnife® 
system has also some inconveniences such like the 
long treatment time requirement and the irradiation 
of the patient by the tracking device. 

Alternatively we propose a model based solution 
that takes into account the non-reproducible aspects 
of breathing motion: a biomechanical modelling of 
the respiratory system monitored by at least two 
external parameters (Thoracic motion and 
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spirometry). Ribs and diaphragm displacements can 
be computed out of thorax outer-surface motion and 
spirometry measurements. Lungs deformations, and 
then tumour displacements, can be deduced 
considering the organ interactions. All deformations 
and displacements are calculated using continuous 
mechanics laws, solved with the finite element 
method. 

Another requirement, particularly important in 
the context of hadrontherapy, is the ability to predict 
not only tumour motion but also motions, 
deformations and density changes of any tissue 
traversed by the beam. 

Our group has been active in the biomechanical 
modelling of the respiratory system (Villard et al, 
2005, Didier et al, 2007, 2009) and the 
transformation of biomechanical data into 4D-CT 
data (Villard et al, 2006). Previously, we have 
validated a chest wall model based on rib kinematics 
that enables the computation of rib displacements 
out of thorax outer-surface motion (Didier et al, 
2009). In this paper, we develop a feasibility study 
of a diaphragm model. First, we summarize previous 
studies concerning the biomechanical modelling of 
the respiratory system. Then we expose a complete 
model of the respiratory system, using a "virtual 
patient" data, and the preliminary results on the 
diaphragm and lung motions. 

2 ANATOMY OF THE 
RESPIRATORY SYSTEM 

Lungs are passive structures that inflate under 
muscles action. The increase of thoracic volume, due 
to inspiratory muscles action, induces lung 
expansion, leading to internal negative pressure and 
consequently to inspiration. Contact of the lungs 
with the ribcage and the diaphragm is maintained by 
the pleura. The pleura is composed of two 
membranes (figure 1): the first, referred to as 
parietal, covers the chest wall, the mediastinum and 
the diaphragm while the second, referred to as 
visceral, covers the outer surface of the lungs. 

The space in between the parietal and visceral 
pleura, known as the pleural space, is filled with an 
incompressible fluid which lubricates the pleural 
space and allows the lungs to easily slide against the 
chest wall and the diaphragm during their expansion. 
Lungs mainly expand under the action of the 
external intercostal muscles (EIM) and the 
diaphragm. The role of the EIM is relatively 
important in both quiet and forced respiration. They 

are inserted between the ribs from the second to the 
twelfth rib and they are responsible for the rib 
elevation during inspiration. 

 
Figure 1: Anatomy of the respiratory system. 

The diaphragm is a digastric muscle which 
separates the thoracic and abdominal cavity. It is 
composed of two domes (figure 2): the right dome 
comes up to the fourth intercostal space whereas the 
left dome remains below the fifth rib. The 
diaphragm is constituted of a peripheral part 
(muscular fibre) and a central tendon (figure 2). The 
peripheral part is linked to the lower thoracic cavity 
perimeter and has three major insertions: lumbar, 
sternum and ribs. During inspiration, the muscular 
contraction fibres bring down the central tendon. 
This lowering increases the vertical diameter of the 
thorax. As for the lungs, EIM action induces posto-
anterior and transversal inflation while the 
diaphragm action causes vertical motion. The EIM 
and the diaphragm may act independently, making 
respiration a non-reproducible and an unpredictable 
movement. Thereby, in general, lung motion cannot 
be simply predicted by a correlation with one single 
parameter. 

 
Figure 2: A mesh representation of the diaphragm (upper 
view). The central tendon is represented in yellow whereas 
the peripheral part is in blue. 
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3 BIOMECHANICAL 
MODELLING OF THE 
RESPIRATORY SYSTEM 

In the past, several studies were achieved to model 
the lung environment. A description of these studies 
can be found in (Baudet et al. 2003), Villard et al. 
(2005) and (Al-Mayah et al. 2007). Thus, we focus 
on the more recent studies. (Villard et al. 2005) used 
a patient's CT scan images to build the geometry of a 
finite element lung model. They also studied lung 
motion sensitivity to Poisson’s ratio, elastic modulus 
(Young modulus) and contact conditions at the 
pleura. It appeared that Poisson's ratio has an effect 
on the amplitude and the orientation of the 
displacements while Young modulus should be 
carefully chosen because a change in its value may 
either induce a faulty implementation of contact 
conditions or increase the computing time needs. 
(Brock et al. 2005) developed a platform to perform 
multi-organ deformable image registration using 
finite element modelling. The model was developed 
using images from magnetic resonance (MR) 
scanning. The lungs were included in this model and 
good agreement was found between the finite 
element simulation using orthogonal displacement 
(OD) and the MR data. (Didier et al. 2007) showed 
the significant role of the pleura and the necessity to 
include its effect in the model. The role of the pleura 
is simulated by applying contact conditions that 
allow sliding on the lungs surface (contact without 
friction). The results of this model were compared to 
those of the OD model and showed an improvement 
in predicting the position of the lungs while the 
computing time requirement was higher. (Al-Mayah 
et al. 2007) included the role of the pleura and two 
other nonlinearities to the model (hyperelastic 
nonlinear materials and nonlinear geometry due to 
large displacements). They also added the chest wall 
and the tumour to the model and achieved a good 
precision on lung and tumour position. An 
inconvenience of adding the nonlinearities was the 
increase in the computation time needed to complete 
the simulation. All the models mentioned above, 
focused on deformable registration of soft tissues in 
the thorax and did not invest in the bone tissues of 
the rib cage. Going from the fact that the bones of 
the rib cage can relatively be considered as rigid 
bodies, (Didier et al. 2007) introduced a rigid 
transformation that simulates the kinematic 
behaviour of the rib cage intead of simulating the 
action of each intercostal muscle. The 
transformation is based on the Finite Helical Axis 

(FHA) method. (Didier et al 2009) developped this 
method in order to build a model of the chest wall. 
This model proposed a correlation between ribs 
motion and thorax-outer surface motion and 
achieved a good precision on lungs position in the 
upper thorax. This model is essential to enable 
monitoring of lung motion out of thorax motion. 
Thus, to be able to build a complete model of the 
respiratory system and to include a second parameter 
to the monitoring process of the lungs, we introduce 
in this paper a biomechanical study of the diaphragm 
and some preliminary results concerning a finite 
element simulation of its motion. 

4 DIAPHRAGM 
BIOMECHANICAL MODEL 

In order to build a complete model of the respiratory 
system, the diaphragm is modeled and added to the 
thorax and the lung models. As mentioned in the 
anatomy part, the diaphragm is composed of a 
peripheral part (muscular fibre) and a central tendon. 
During inspiration, muscular fibres contract under 
the action of a force F and the ribs undergo a 
displacement Dc. Both actions cause the lowering of 
the central tendon (figure 3). 

 
Figure 3: An illustration of the diaphragm motion. 

  
Figure 4: Anatomic elements of the model. 

Since most thoracic medical imaging data cover 
only the lungs and big parts of the diaphragm are not 
included in the imaging protocol, we chose to carry 
out our study on a “virtual model” data. We chose 
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the data of a virtual patient that include surface 
meshes of the skin, the ribcage, the lungs and the 
diaphragm. Figure 4 shows the different mesh data. 

We apply on this geometrical model the 
mechanical laws and boundary conditions and 
material properties as follow. 

4.1 Mechanical Behaviour Laws 

We use continuous mechanics laws to compute the 
deformations with a non-linear behaviour law that 
allows large displacements. We considered elastic 
materials. Calculations were made in the static mode 
which means that only the initial and final states of 
deformations are computed after the application of 
boundary conditions. 

4.2 Boundary Conditions 

The boundary conditions of our model are illustrated 
in figure 5. They are the same as described in Didier 
et al (2009), but we add the boundary conditions at 
the diaphragm. Lungs are fixed near the trachea and 
the pleura behaviour is simulated by applying 
contact conditions allowing lungs surface to slide 
against the chest wall (parietal pleura). These 
contact conditions permit us to model the negative 
intra-pleural pressure, and the sliding surface 
represents the pleural fluid. According to reality, 
parietal pleura is directly linked to the ribs or fat 
tissue. A particular rigid transformation (Dc) 
computed with the finite helical axis method is 
applied to each rib. Ribs are directly linked to the fat 
tissues which are also directly linked to the skin. The 
diaphragm boundary conditions are as follow: 

4.2.1 Diaphragm / Ribcage 

As mentioned in the anatomy part, the diaphragm is 
attached to the ribcage. In our simulation, we made 
sure, in the attached region, that the corresponding 
nodes were linked together. 

4.2.2 Diaphragm / Fat tissues, Diaphragm / 
Parietal Pleura 

The diaphragm is directly linked to the fat tissues 
and to the parietal pleura. This is an approximation 
because normally the fat tissues can slide against the 
diaphragm. The soft tissues that lie under the 
diaphragm represent a resistance to the force that 
tends to lower the diaphragm. They are simply 
modelled like the fat tissues and they are affected the 
same biomechanical parameters. 

4.2.3 Contraction of the Muscular Fibres 

To mimic the contraction, we apply the force F 
illustrated on figure 5. This force should be parallel 
to muscle orientation. In a first approximation, we 
apply vertical (cranio-caudal) forces that are 
oriented downwards. These forces are applied on 
each node of the muscular part of the diaphragm. 
This choice was motivated by the goal of this work, 
which aims at demonstrating that it is possible to 
propose a complete model of the respiratory system 
as soon as a diaphragm model is available. 

 
Figure 5: Boundary conditions. 

4.3 Material Properties 

Table 1 illustrates the biomechanical parameters 
(Young modulus and Poisson’s ratio) of the lungs, 
ribs, fat tissues, skin and diaphragm. The diaphragm 
has two different parts (muscle and tendon) and each 
part has different mechanical properties. All 
parameters are taken from the bibliography 
(Handriks, 2001; Promayon and Baconnier, 2008). 

Table 1: The biomechanical properties of the different 
organs. 

 Lungs Ribs & vertebrae 

Young Modulus (MPa) 700*10-6 5000 

Poisson’s ratio 0.3 0.3 

 Fat tissues Skin 

Young Modulus (MPa) 3 3 

Poisson’s ratio 0.4 0.4 

 Diaphragm 
Muscle) 

Diaphragm 
(Tendon) 

Young Modulus (MPa) 5.32 10 

Poisson’s ratio 0.3 0.3 
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5 RESULTS 

The “virtual patient” data are available for only one 
respiratory state (we consider it arbitrarily as the 
exhalation state). Because we need at least two 
respiratory states to be able to compute rib 
kinematics parameters (Didier et al, 2009), we apply 
the rib parameters computed for a real patient in a 
previous study (Didier et al, 2009). We apply the 
force F as explained in 4.2.3, then we compare the 
diaphragm at the initial state with the diaphragm at 
the computed state to deduce its deformation and the 
displacement fields. All calculations are made using 
Code-Aster finite element software 
(http://www.code-aster.org). The results 
(deformations and displacement fields) are 
visualised using GMSH software 
(http://www.geuz.org/gmsh) and MESH (Aspert et 
al, 2002). 

Figure 6 shows the diaphragm deformations 
between the initial state (wireframe mesh) and the 
computed final state (colored mesh). We can 
observe that the central tendon goes down due to the 
action of the force applied to the muscular part. We 
observe also a lateral augmentation of the diaphragm 
diameter due to the rib motion.  

 
Figure 6: Frontal view of the diaphragm motion between 
exhalation (wireframe mesh) and computed inhalation 
state (coloured mesh). The deformations are illustrated in 
colours on the computed mesh with red representing the 
highest deformation value and blue its lowest value. The 
colour scale is proportional to the motion amplitude. 

Figure 7 represents the displacement vectors at 
different locations on the diaphragm. The two red 
vectors represent the mean orientation of the 
displacement vectors at the level of the central 
tendon (upper view) and at the level of the lower 
muscular part (lower view). On the muscular part, 
the displacement is lateral, oriented downwards 
while the displacement on the level of the central 
tendon tends to be more vertical. Globally, these 
results are in accordance with the anatomy. Indeed, 

the central tendon is relatively rigid, and therefore 
less influenced by the ribs motion. However, after 
the contraction of the muscular part, the central 
tendon goes down while preserving the form of its 
domes. This result is in accordance with the 
bibliography and the observations made by Boriek 
and Rodarte (1997). 

 
Figure 7: Motion of the diaphragm. 

We also present the results of our model 
concerning lungs motion. Figure 8 represents the 
displacement vectors at different locations on the 
lungs. The two red vectors represent the mean 
orientation of the displacement vectors at a high 
level of the lungs (upper view) and at a low level of 
the lung near the diaphragm (lower view). On the 
upper level, the displacement is lateral, oriented 
upwards while the displacement on the lower level 
tends to be more vertical and is oriented downwards. 
These results are in accordance with the anatomy. 
Indeed, the higher parts of the lungs are influenced 
by the ribs motion (lateral motion with elevation) 
and the lower parts are more influenced by the 
motion of the diaphragm central part (downwards). 
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Figure 8: Lungs motion. 

6 CONCLUSIONS 

We have developed a complete model of the 
respiratory system built from “virtual patient” data. 
A simple model of the diaphragm, which was 
missing in our previous studies, has been introduced. 
We showed preliminary results, which are in 
accordance with the anatomical reality. The central 
part of the diaphragm tends to move downwards, 
while the muscular part motion tends to be lateral 
oriented downwards due to rib motions. In future 
works, the model should be applied on a real 
patient’s data to enable quantitative comparisons of 
the results. The applied nodal forces should be 
replaced by more appropriated formulations. In 
particular, the forces could be parallel to muscular 
fibres in agreement with anatomy and derived from 
biomechanical considerations. Last, the forces 
should be correlated to thoracic motion and air flow 
to the lungs. 
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