
A KNOWLEDGE SHARING SYSTEM FOR SOFTWARE
DEVELOPERS

Takayuki Shibata, Kazuyuki Nakamura, Takanobu Sato
Graduate Department of Information Technologies and Project Management, University of Aizu

Aizu-Wakamatsu City, Fukushima, 965-8580, Japan

Rentaro Yoshioka
Graduate Department of Computer and Information Systems, University of Aizu

Aizu-Wakamatsu City, Fukushima, 965-8580, Japan

Keywords: Knowledge sharing, Program reuse, Software development, Knowledge acquisition.

Abstract: Knowledge sharing is a key factor for increasing productivity of programmers and also in maintaining the
quality of programs in companies. However, programmers tend to resort to outside resources for solving
their problems. This paper proposes a system to facilitate active sharing of program related knowledge
among a group of programmers in a company. The system introduces a flexible unit to define the target
knowledge, defines a set of function tags to describe its functionality from a programming point of view,
and a set of project tags to describe its environmental aspects. We illustrate the rigid structure and
classification of the tags and how this approach can decrease the work load of programmers in registering
and retrieving knowledge along with a few examples. In addition, a simple evaluation tests have been
performed with an experimental implementation of the proposed system.

1 INTRODUCTION

When a programmer comes across problems during
coding, where does he/she turn for help? Prying
through documents, looking up the index of a
favorite book, or running a search on the Internet,
there are often many sources to choose from. There
is a study that reports that, among professional
programmers, the most preferred source to seek
advice is (1) the Internet, (2) books, and (3)
colleagues/supervisors (Kurata, 2003). Although this
order might vary depending on whom you ask,
definitely these are everyone’s favorites. To a
company engaged in software development, it is of
great interest whether their programmers solve their
problems efficiently and with sufficient quality. For
instance, books can be considered as a relatively
reliable source, considering the process it goes
through before getting printed. On the other hand,
books on more recent or evolving technologies can
take some time until they get printed and must be
properly replaced with old versions to be fully

useful. As for efficiency, books are well organized
and are fast when you are looking for something that
is listed in the index but you might need to spend
time to skim some chapters if it is not. Asking a
colleague or boss, or any other knowledgeable
person, about a coding problem is often a simple
solution. It is possible to immediately receive advice
but the quality of the answer could depend on the
time your colleague can spare. Especially in
companies, the fact that one person spends time to
help another could be considered as undermining the
efficiency of the organization as a whole. Compared
to the two sources of knowledge we have just
considered, the Internet has features that
complement their drawbacks. The amount of
resource available on the Internet is vast and covers
a wide range of information which is usually
updated at a much higher speed than books.
Obviously, searching the Internet does not influence
any other colleague’s time so it is a promising
candidate as an ideal source for increasing the
productivity of programmers. Still, it is quite far
from being perfect.

499
Shibata T., Nakamura K., Sato T. and Yoshioka R. (2010).
A KNOWLEDGE SHARING SYSTEM FOR SOFTWARE DEVELOPERS.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 499-503
DOI: 10.5220/0003005704990503
Copyright c© SciTePress

General search engines, such as Google and Yahoo,
provide full-text search of resources available on the
Internet. The problem with using general search
engines is that its efficiency is unpredictable. Often,
it takes much more time than expected to find
anything useful and requires sufficient knowledge
and experience to come up with the right keywords
that will produce the expected search results.
Moreover, although there is great amount of
resources to search from, those with sufficient
quality are much less. There are search engines
devoted to specific fields of interest. For example,
DBCLS is a search engine specialized in life science
(Codase, 2010). Also there are web sites dedicated to
code sharing, called code search engines (CSE) sites,
such as, Google Code Search (Google, 2010),
Koders, Codase (Koders, 2010). CSE sites allow
users to post programs along with tags that represent
the type of programming language, additional user
specified tags (keywords) and text and are
customized for sharing programs. However, other
than the tag that represents language types, they
basically perform a text search on the tags, text, and
program and suffer from the same efficiency/quality
problem of general search engines. There is a type of
CSEs that collect programming knowledge in the
form of code snippets (DZone, 2010) (Snipplr,
2010). These sites allow users to share small parts of
programs and to retrieve them as templates for
coding. However, even these sites do not provide
any additional means for supporting a more efficient
search.

We propose a system in which knowledge related
to program development can be shared efficiently
among a group of developers. The aim of the system
is to increase the productivity of program
development by providing access to a shared
repository of knowledge useful for developers. This
repository stores knowledge in units of logical
fragments. A logical fragment can represent varying
sizes of knowledge, from a few lines of code to a
few files of programs. The knowledge is not limited
to program code and can represent configuration
files, documents, etc. A logical fragment is annotated
by a set of tags that describe its function, called the
function tag, and a tag describing its environmental
attributes, called the project tag.

The paper is organized as follows: the next
section presents the background and direction of our
approach. The following section describes the
specific method used to register and retrieve
knowledge in our system. The final section provides
summary and presents future work.

2 BACKGROUND

This research is concerned with knowledge
management within an organization to support
software engineering. We are especially interested in
increasing the productivity of programmers while
increasing the quality of the code that they produce.
Knowledge management is a means of solving
business challenges and many methods have been
practiced (Alavi and Leider, 2001). The first
generation systems were focused on the documents
created by users. The second generation systems
focused on the people who possess knowledge.
These systems were realized as web sites that
provide a public place where questions on particular
topics could be posted and people with the
knowledge could answer. A particular group of web
sites that support interaction and exchange of
knowledge between people sharing common
interests (Social Networking Sites) were also
introduced. The first generation systems suffered
from the high-cost of accumulating information and
the second generation systems suffered the difficulty
of evaluating the effects since effects were difficult
to visualize. In more recent attempts, methods that
try to evaluate the contents that each user possesses
and to connect them have also emerged.

Existing CSEs can be classified into two types.
In the first type, the system parses various files,
which were registered as one set of files related to a
project, and performs searches. In the second type,
lines of code are registered individually as snippets.
In both types, in addition to the code, additional
information provided by users and the system are
subject to search. For example, types of
programming languages or licenses are used by
some systems. Based on a finding that many
programmers perform search related to API
(application programming interface),
troubleshooting, implementation, development tools,
language syntax and semantics, a system to assist
problem solving by automatically collecting and
extracting significant information from web pages
with sample codes, Java archive (JAR) files, Java
documents (JavaDoc) pages has been proposed
(Thummalapenta and Xie, 2007). There are also
many approaches related to component-based
software engineering that aim at solving the problem
with programming efficiency and quality by reusing
software as components (Heineman and Councill,
2001).

Compared to current CSEs, the system we
propose introduces a greater structure to the format
in which programs and related information are

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

500

registered. This structure allows the system to better
understand and manipulate the knowledge when
performing searches and presenting the results to
users. The fundamental policy is to extract as much
knowledge as possible from the person registering it.
Instead of simply allowing the user to register a file,
the system will ask the user to specify which lines
are important and what they represent. This brings
up another important point that our system does not
use free-word tags but introduces a predefined set of
tags. Tags are often sources of ambiguity and causes
searches to return unrelated information. In some
social networking sites (SNS), folksonomy is used to
bring some kind of order to freely defined tags
(Golder and Huberman, 2006). It is possible to
create a hierarchical structure from these tags by
creating clusters but the quality of the resulting
classification depends on the number of tags and
usually requires a huge set (Niwa, Doi, Honiden,
2006). We prefer to use a well organized set of tags,
where each tag represents some range of meaning so
that we do not need to prepare a tag for everything.
The impreciseness can be supplemented by using
multiple tags and intelligent user interfaces
technologies. The main framework supporting our
idea is described in the next section.

3 KNOWLEDGE
REPRESENTATION METHOD

This system aims at managing two types of
knowledge. The first type is the knowledge related
to programming of software (in other words,
coding). This is the practical knowledge required for
developing software systems, such as, syntax of
programming languages, logics of specific
algorithms, usage of specific libraries, etc. These are
the knowledge that becomes useful in developing
programs. The second type is the knowledge related
to project management. This is the knowledge
related to managerial aspects, such as, system design
documents, project balance sheets, schedule, etc.
These are the knowledge that becomes useful in
planning projects and creating similar documents in
the future. Since there are many existing approaches
in sharing the second type of knowledge, our main
focus is on how to effectively share the first type of
knowledge. Our approach to dealing with
programming related knowledge is based on “logic
fragments” and “tag-based retrieval”.

3.1 Logic Fragments

A “logic fragment” (LF) is a unit of knowledge
representing some meaningful function within a
program. Each LF consists of more than one file
(usually a program) and a set of line numbers that
specify a region of interest (RI). Figure 1 depicts the
simplest form of LF. In the figure, the code to be
shared is marked as an RI by the line numbers.

Figure 1: Logic Fragment and Region of Interest.

Then, the original program and the line numbers
are stored as an LF. This structure, compared to
cutting out and storing only the lines that are related
to the target function, is more suitable in program
reuse since other parts of the program provides
additional information for understanding the RI. Let
us consider an example. Suppose that a programmer
wishes to share the following knowledge: “How to
extract the month and year from a formatted string
of characters”. The programmer will first open the
program file that contains this code. Then the lines
that actually correspond to that code should be
specified (Supposing that this program contains code
that performs other functions as well.). Multiple RIs
can be used within an LF. As already mentioned, an
LF can consist of multiple files so that functions that
span across multiple files can be represented. An
important rule of LF is that all LFs should be ready
for compilation and execution. This is based on the
thought that understanding of programs is better
accomplished by actually running it. So, supportive
files, such as additional programs and libraries, can
be attached to an LF.

3.2 Tag-based Retrieval

The knowledge of an LF is specified by two types of
tags: function and project. A function tag is used to
describe the functional meaning of that knowledge.
A project tag is describes the features specific to the
concrete instance of that knowledge.

A KNOWLEDGE SHARING SYSTEM FOR SOFTWARE DEVELOPERS

501

Figure 2: The top level items of function tags.

An LF represents knowledge of one or more
program-related functions. Each LF is attached at
least one function tag. Based on our analysis of past
and current methods and systems, we have opted to
predefine the possible types of functions rather than
allowing users to use free-words. In defining the
tags, a classification of functions was created by
analyzing existing knowledge from books,
programming languages, software applications, etc.
The functions tags have a hierarchical tree structure
of three levels. The top level items are shown in
Figure 2. There are 12 categories in the first level.
For example, the basic category contains functions
that directly relate to features of programming
languages, such as, variable definitions, declarations,
operators, input/output functions, etc. The user-
defined category is a special category in which
functions related to specialized knowledge may be
added. This allows groups of users (i.e. companies)
to add custom tags that are specific to their field of
activity. Since this is a newly proposed classification
of functions, it is expected that users will require
some time to understand its organization.

A project tag represents features related to the
specific environment in which the program was
intended for, such as, programming languages,
operating systems, dependent libraries and
frameworks, etc. Since these attributes are often

defined by the requirements of development projects
in companies, we have named them the project tags.
The project tags are especially useful when
retrieving knowledge registered by members of the
same project.

4 CONCLUSIONS

A knowledge representation method for a system
specialized in sharing knowledge related to program
development has been presented. This system is
aimed to be used by a group of developers (within in
a company) by registering useful program code as
reusable knowledge. In this system, fragments of
program code that implement some function are
registered. In the proposed method, a unit called
Logic Fragment (LF) and Region of Interest (RI) are
used to define the body of knowledge. Two types of
tags, called function and project, are proposed to
describe the content meaning of each LF. The
function tag is used to describe the function it
provides. The project tag is used to describe the
environmental features related to the program, such
as, programming language, dependant libraries,
operating system, etc. to supplement the retrieval
process. Users may retrieve knowledge from the
system by specifying one or more logic tags. The

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

502

search results may be sorted / filtered with the
project tags. Although the details could not be
included in this paper due to space constraints, an
experimental system was implemented and usability
tests were performed. From these tests, we have
obtained results that show that this system can be
effective in organizing program-related knowledge
and that it may contribute to increasing the
efficiency of searches and maintaining quality of
acquired knowledge.

REFERENCES

Alavi, M., Leidner, D., 2001. Review: Knowledge
Management and Knowledge Management Systems:
Conceptual Foundations and Research Issues, MIS
Quarterly Vol.25 No.1, pp.107-136.

Codase homepage. Retrieved February 1st, 2010, from
http://www.codase.com/.

Code Snippets homepage. Retrieved February 1st, 2010,
from http://snipplr.com/.

DZone Snippets home page. Retrieved February 1st, 2010,
from http://snippets.dzone.com/.

Golder, S.A., Huberman, B.A., 2006. The Structure of
Collaborative Tagging. Journal of Information
Science, 32, 198-208.pp. 101-127.

Google Code Search homepage. Retrieved February 1st,
2010, from http://www.google.com/codesearch.

Heineman, G.T., Councill, W.T., 2001. Component-Based
Software Engineering, Addison-Wesley, New Jersey.

Koders homepage. Retrieved February 1st, 2010,
http://www.koders.com/.

Kurata, Y., 2003. Questionnaire: Awareness of skills and
career development of IT engineers. Retrieved at
http://y-kurata.com/2002project.htm.

Niwa, S.,Doi, T., Honiden, S., 2006. Web Page
Recommender System based on Folksonomy Mining,
Proc. 3rd International Conference on Information
Technology: New Generations (ITNG'06), pp.388-393.

Thummalapenta, S., Xie, T., 2007. PARSEWeb: A
Programmer Assistant for. Reusing Open Source Code
on the Web, Proc. 22nd International Conference on.
Automated Software Engineering, pp.204–213.

A KNOWLEDGE SHARING SYSTEM FOR SOFTWARE DEVELOPERS

503

