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Abstract: This paper shows the application of Wang’s Recurrent Neural Network with the 'Winner Takes All' (WTA) 
principle in a soft version to solve the Traveling Salesman Problem. In soft WTA principle the winner 
neuron is updated at each iteration with part of the value of each competing neuron and some comparisons 
with the hard WTA are made in this work with instances of the TSPLIB (Traveling Salesman Problem 
Library). The results show that the soft WTA guarantees equal or better results than the hard WTA in most 
of the problems tested. 

1 INTRODUCTION 

This paper shows the application of Wang’s 
Recurrent Neural Network with the ‘Winner Takes 
All’ (WTA) principle to solve the classical problem 
of Operations Research called the Traveling 
Salesman Problem. The upgrade version proposed in 
this paper for the WTA is called soft, because the 
winner neuron is updated with only part of the 
activation values of the other competing neurons.  

The problems of the TSPLIB (Reinelt, 1991) 
were used to compare the soft with the hard WTA 
version and they show improvement in the results 
when using the soft WTA version. 

The implementation of the technique proposed in 
this paper uses the parameters of Wang’s Neural 
Network for the Assignment problem (Wang, 1992; 
Hung & Wang, 2003) using the WTA principle to 
form Hamiltonian circuits (Siqueira et al. 2007) and 
can be used both in symmetrical and asymmetrical 
TSP problems. 

Other heuristic techniques have been recently 
developed to solve the TSP and the work of 
Misevičius et al. (2005) shows the use of the ITS 
(iterated tabu search) technique with a combination 
of intensification and diversification of solutions for 
the TSP. This technique is combined with the 5-opt 
and errors are almost zero in almost all problems 
tested from the TSPLIB. The work of Wang et al. 
(2007) shows the use of Particle Swarm to solve the 
TSP with the use of the quantum principle to better 
guide the search for solutions. 

In the area of Artificial Neural Networks an 
interesting technique can be found in Massutti & 
Castro (2009), where changes in the RABNET 
(Real-Valued Antibody Network) are shown for the 
TSP and comparisons made with the problems 
presented in TSPLIB and solved with other 
techniques show better results than the original 
RABNET. Créput & Kouka (2007) show a hybrid 
technique called Memetic Neural Network 
(MSOM), with self-organizing maps (SOM) and 
evolutionary algorithms to solve the TSP. The 
results of this technique are compared with the CAN 
(Co-Adaptive Network) technique developed by 
Cochrane & Beasley (2003), where both have results 
that are regarded as satisfactory. The efficient and 
integrated Self-Organizing Map (eISOM) was 
proposed by Jin et al. (2003), where a SOM network 
is used to generate a solution where the winner 
neuron is replaced by the position of the midpoint 
between the two closest neighboring neurons. The 
work of Yi et al. (2009) shows an elastic network 
with the introduction of temporal parameters, 
helping neurons in their motion towards the 
positions of the cities. Comparisons with the 
problems in the TSPLIB solved with the traditional 
elastic network show that it is an efficient technique 
to solve the TSP, with less error and less 
computational time. In Li et al. (2009) a Lotka-
Volterra’s class of neural networks is used to solve 
the TSP with the application of global inhibitions. 
The equilibrium state of this network corresponds to 
a solution for the TSP. 
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This paper is divided into 4 sections, including 
this introduction. In section 2 are shown Wang’s 
Recurrent Neural Network and the soft 'Winner 
Takes All' technique applied to the TSP. Section 3 
shows the comparative results and in Section 4 the 
conclusions are made. 

2 WANG'S NEURAL NETWORK 
WITH THE SOFT WTA 

The mathematical formulation for the TSP is the 
same of the problem of Assignment with the 
additional constraint (5) that ensures that the route 
starts and ends in the same city.  
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 xij  {0, 1}, i, j = 1,…, n  (4)
 x~ forms a Hamiltonian circuit (5)

 

The objective function (1) minimizes costs. The 
set of constraints (2) and (3) ensures that each city 
will be visited only once. Constraints (4) guarantee 
the condition of integrality of the xij binary variables. 
Vector x~  represents the sequence of the TSP’s 
route.  

To obtain a first approximation for the TSP, 
Wang’s Recurrent Neural Network is applied to the 
problem of Assignment, this is, the solution satisfies 
constraints (1)-(4), which can be written in matrix 
form (Hung & Wang, 2003):  

Minimize: C = cTx (6)

Subject to: Ax = b (7)

 xij  {0, 1}, i, j = 1,…, n  (8)
 

where c is the vector with dimension n2 that contains 
all rows of the cost matrix c in sequence, vector x 
contains the n2 decision variables xij and vector b 
contains the number 1 in all positions. The matrix A 
has dimension 2n × n2 and has the following format: 
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where I is the identity matrix of order n and each 
matrix Bi has zeroes in all of its positions with the 
exception of the ith line, which has the number 1 in 
all of its positions. 

Wang’s Recurrent Neural Network is defined by 
the following differential equation (Wang, 1992; 
Hung & Wang, 2003): 
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where xij = g(uij(t)), the equilibrium state of this 
network is a solution for the problem of Assignment 
(Wang, 1997) and g is the sigmoidal function with 
parameter : 
 

g(u) = 
ue 1

1
. (10)

 

The threshold is the vector  = ATb of order n2, 
which has the number 2 in all of its positions. 
Parameters ,  and  are constant and chosen 
empirically (Hung & Wang, 2003), where  
penalizes the violations to constraints (2) and (3) and 
parameters  and  control the minimization of the 
objective function (1). Considering W = ATA, the 
matrix form of Wang’s Neural Network is the 
following: 
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The method proposed in this paper uses the 
‘Winner Takes All’ principle, which accelerates the 
convergence of Wang’s Recurrent Neural Network 
and solves problems that appear in multiple 
solutions or very close solutions (Siqueira et al., 
2008). 

The adjustment of parameter  was made using 
the standard deviation of the problem’s costs 
matrix’s rows coefficients, determining the vector: 
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where i is the standard deviation of row i of matrix 
c (Siqueira et al., 2007). 

The adjustment of parameter  uses the third 
term of Wang’s Neural Network definition (9), as 
follows: when cij = cmax, the term icij exp(t/i ) = 
ki must satisfy g(ki)  0, this is, xij will have minimal 
value (Siqueira et al., 2007); considering cij = cmax 
and i = 1/i, where i = 1, ..., n,  is defined by: 
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After a certain number of iterations, the term 
Wx(t)   of equation (10) has no further substantial 
alterations, thus assuring that constraints (2) and (3) 
are almost satisfied and the WTA method can be 
applied to determine a solution for the TSP.  

The soft WTA technique is described in the 
pseudo-code below: 

 

Choose the rmax maximum number of routes. 
{While r  rmax 

{While Wx(t)     (where 0    2): 
Find a solution x for the problem of 
Assignment using Wang’s Neural Network. 

}  
Make x  = x and m = 1; 
Choose a row k in decision matrix x ;  
Make p = k and x~ (m) = k; 
{While m  n: 

Find klx  = argmax{ kix , i = 1, …, n}; 

Do the following updates: 
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Make x~ (m + 1) = l and m = m + 1; 
To continue the route, make k = l. 

} 

Do  
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and x~ (n+1) = p; 

Determine the cost of route C; 
{If C  Cmin, then  

Make Cmin = C and x = x . 
} 
r = r + 1. 

} 
 

In the soft WTA algorithm the following 
situations occur: when  = 0 updating of the WTA is 
nonexistent and Wang’s Neural Network updates the 
solutions for the problem of Assigment without  
interference, and when  = 1 the update is called 
hard WTA, because the winner gets all the activation 
of the other neurons, the losers become null and the 
solution found is feasible for the TSP. In other cases, 
the update is called soft WTA and the best results 

are found empirically with 0.25    0.9. The 
experiments for each problem were made 5 times 
with each of the following values for the parameter 
: 0.25, 0.5, 0.7 and 0.9. The best results were found 
the value 0.7, as shown in Tables 2 and 4. 

An improvement of the technique applied to  
results of SWTA is the application of improving of 
routes 2-opt after determining routes for SWTA. In 
pseudo-code this improvement is made before 
determining the cost of route made by SWTA. 

3 RESULTS 

The results of the technique proposed in this paper to 
solve the symmetric TSP were compared with the 
results obtained using Self-Organizing Maps for 
TSPLIB problems. These comparisons are shown in 
Table 1, where 8 of the 12 problems tested showed 
better results with the technique proposed in this 
paper, with improving of routes 2-opt technique. 

Table 1: Comparisons between the results of symmetric 
instances of the TSPLIB, the techniques Soft WTA 
(SWTA), Soft WTA with 2-opt (SWTA2), EiSOM 
(Efficient Integrated SOM), RABNET (Real-Valued 
Antibody Network), CAN (Co-Adaptive Network) and 
MSOM (Memetic SOM). 

TSP 
name 

Average error (%) 

EiSOM RABNET CAN MSOM SWTA SWTA2 

eil51 2.56 0.56 0.94 1.64 0.47 0.00 

eil101 3.59 1.43 1.11 2.07 3.02 0.16 

lin105 - 0.00 0.00 0.00 3.70 0.00 

bier127 - 0.58 0.69 1.25 3.11 0.25 

ch130 - 0.57 1.13 0.80 4.52 0.80 

rat195 - - 4.69 4.69 5.42 2.71 

kroA200 1.64 0.79 0.92 0.70 8.03 0.75 

lin318 2.05 1.92 2.65 3.48 8.97 1.89 

pcb442 6.11 - 5.88 3.57 8.76 2.79 

att532 3.35 - 4.24 3.29 9.10 1.48 

rat575 2.18 4.05 4.89 4.31 9.86 4.50 

pr1002 4.82 - 4.18 4.75 14.39 4.39 
 

The computational complexity of the proposed 
technique is O(n2 + n) (Wang, 1997), considered 
competitive when compared to the complexity of 
Self-Organizing Maps, which have complexity O(n2) 
(Leung et al., 2004).  

Table 2 shows the comparison between the Soft 
WTA and Hard WTA techniques, with the 
respective values of parameter  that represent the 
best result for each problem. Results of applying 
Wang’s Neural Network with Soft WTA with the 
routes 2-opt improving technique (SWTA2) have 
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average error ranging between 0 and 4.50%. The 
results without the application of the 2-opt technique 
vary between 0.47 and 14.39%, and are better in 
almost all problems tested when compared to the 
results obtained with the Hard WTA technique. 
Figure 1 shows a comparison between the Soft WTA 
and Hard WTA techniques applied to 12 problems 
from the TSPLIB, showing the best and worst results 
found for each technique. The worst results found by 
Soft WTA are worse than those found by Hard WTA 
on 5 symmetrical problems tested, as shown in 
Figure 1: fl417, lin318, ch130, bier127 and eil51. 

Table 2: Comparisons between the results for symmetrical 
instances of the TSPLIB with the Hard WTA (HWTA) 
and the Soft WTA (SWTA) techniques. 

TSP 
name 

Optimal 
solution 

 
Average error (%) 

HWTA SWTA HWTA2 SWTA2

eil51 430 0.7 1.16 0.47 0.00 0.00 

eil101 629 0.9 3.02 3.02 0.48 0.16 

lin105 14383 0.9 4.33 3.70 0.20 0.00 

bier127 118282 0.7 4.22 3.11 0.37 0.25 

ch130 6110 0.25 5.06 4.52 1.39 0.80 

gr137 69853 0.7 9.09 6.65 2.07 0.21 

rat195 2323 0.5 5.55 5.42 3.32 2.71 

kroA200 29368 0.5 8.95 8.03 0.62 0.75 

lin318 42029 0.25 8.35 8.97 1.90 1.89 

fl417 11861 0.25 10.11 9.05 1.58 1.43 

pcb442 50783 0.5 9.16 8.76 2.87 2.79 

att532 87550 0.25 14.58 9.10 1.28 1.48 

rat575 6773 0.25 10.03 9.86 4.98 4.50 

u724 41910 0.5 16.85 10.18 6.28 4.06 

pr1002 259045 0.7 15.66 14.39 4.68 4.39 

 
Figure 2 shows the best result found with the soft 

WTA technique for the pr1002 problem of the 
TSPLIB and Figure 3 shows the best result found 
with the same technique with the routes 2-opt 
improvement. In Figures 4 and 5 are the best results 
for the fl417 problem. 

The techniques compared with the TSP’s 
asymmetric problems are described in the work of 
Glover et al. (2001). The Karp-Steele’s arcs method 
(KPS) and Karp-Steele’s general method (GKS) 
start from a cycle, removing arcs and placing new 
arcs until a Hamiltonian cycle is found. The path 
recursive contraction method (PRC) forms an initial 
cycle, removing sub-cycles to find a Hamiltonian 
cycle. The heuristic contraction of paths (COP) is a 
combination of the GKS and PRC techniques. The 
heuristic random insertion (RI) starts with 2 vertices, 
inserting a vertex not yet chosen, creating a cycle. 
This procedure is repeated until a route that contains 
all vertices has been created. 
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Figure 1: Comparison between the results of the Hard 
WTA (HWTA) and the Soft WTA (SWTA) techniques for 
the symmetrical problems of the TSPLIB. 

 

Figure 2: Example of the pr1002 problem with the 
application of Wang’s Neural Network with the soft WTA 
principle and average error of 14.39%.  

Table 3 shows that the technique proposed in this 
paper have equal or better results than the techniques 
mentioned in 11 of the 20 tested asymmetric 
problems in the TSPLIB.  

Table 4 compares the Hard and Soft WTA 
techniques applied to asymmetric problems in the 
TSPLIB, with the respective values of parameter  
that represent the best result for each problem. 
Results demonstrate that the Soft WTA technique 
exceeds or equals the Hard WTA technique in all 
problems, except for ft70. The average error of the 
Soft WTA technique varies between 0 and 10.56% 
and with the Hard WTA technique this error varies 
between 0 and 16.14%. 
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Figure 3: Example of the pr1002 problem with the 
application of Wang’s Neural Network with the soft WTA 
principle and 2-opt, with an average error of 4.39%. 

 

Figure 4: Example of the fl417 problem with the 
application of Wang’s Neural Network with the soft WTA 
principle and average error of 9.05%. 

 

Figure 5: Example of the fl417 problem with the 
application of Wang’s Neural Network with the soft WTA 
principle and 2-opt, with an average error of 1.43%. 

Figure 6 shows the comparison between the Hard 
and Soft WTA techniques showing the best and 
worst results found for each asymmetrical problem 
in the TSPLIB. The worst results found by Soft 

WTA are worse than those found by Hard WTA on 
7 asymmetrical problems tested, as shown in Figure 
6: ftv35, ftv44, ftv38, ft53, ftv70, ftv47 and ftv170. 

Table 3: Comparisons between the results of asymmetric 
instances in the TSPLIB of the techniques Soft WTA 
(SWTA), Soft WTA with 2-opt (SWTA 2opt), RI (random 
insertion), KSP (Karp-Steele path), GKS (general-Karp 
Steele path), PRC (path recursive contraction) and COP 
(contraction or path). 

TSP 
name 

Average error (%) 

 RI KSP GKS PRC COP SWTA SWTA2

br17 0 0 0 0 0 0 0 

ftv33 11.82 13.14 8.09 21.62 9.49 0 0 

ftv35 9.37 1.56 1.09 21.18 1.56 0.61 0.61 

ftv38 10.20 1.50 1.05 25.69 3.59 2.94 2.94 

pr43 0.30 0.11 0.32 0.66 0.68 0.20 0 

ftv44 14.07 7.69 5.33 22.26 10.66 2.23 2.23 

ftv47 12.16 3.04 1.69 28.72 8.73 5.29 2.82 

ry48p 11.66 7.23 4.52 29.50 7.97 2.85 0.76 

ft53 24.82 12.99 12.31 18.64 15.68 3.72 2.49 

ftv55 15.30 3.05 3.05 33.27 4.79 2.11 1.87 

ftv64 18.49 3.81 2.61 29.09 1.96 1.41 1.41 

ft70 9.32 1.88 2.84 5.89 1.90 4.10 4.10 

ftv70 16.15 3.33 2.87 22.77 1.85 1.70 1.70 

kro124p 12.17 16.95 8.69 23.06 8.79 7.27 4.36 

ftv170 28.97 2.40 1.38 25.66 3.59 10.56 10.56 

rbg323 29.34 0 0 0.53 0 3.02 0.23 

rbg358 42.48 0 0 2.32 0.26 5.76 4.73 

rbg403 9.17 0 0 0.69 0.20 3.53 0.65 

rbg443 10.48 0 0 0 0 2.98 0.85 
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Figure 6: Comparison between the results of the Hard 
WTA (HWTA) and Soft WTA (SWTA) techniques for the 
asymmetrical problems of the TSPLIB. 
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Table 4: Comparisons between the results for asymmetric 
instances in the TSPLIB of the techniques Hard WTA 
(HWTA) and Soft WTA (SWTA).  

TSP 
name 

Optimal 
solution 

 
Average error (%) 

HWTA SWTA HWTA2 SWTA2

br17 39 0.7 0 0 0 0 

ftv33 1286 0.7 0 0 0 0 

ftv35 1473 0.5 3.12 0.61 3.12 0.61 

ftv38 1530 0.9 3.73 2.94 3.01 2.94 

pr43 5620 0.7 0.29 0.20 0.05 0 

ftv44 1613 0.25 2.60 2.23 2.60 2.23 

ftv47 1776 0.9 3.83 5.29 3.83 2.82 

ry48p 14422 0.5 5.59 2.85 1.24 0.76 

ft53 6905 0.5 2.65 3.72 2.65 2.49 

ftv55 1608 0.7 11.19 2.11 6.03 1.87 

ftv64 1839 0.9 2.50 1.41 2.50 1.41 

ft70 38673 0.7 1.74 4.10 1.74 4.10 

ftv70 1950 0.5 8.77 1.70 8.56 1.70 

kro124p 36230 0.7 7.66 7.27 7.66 4.36 

ftv170 2755 0.25 12.16 10.56 12.16 10.56 

rbg323 1326 0.7 16.14 3.02 16.14 0.23 

rbg358 1163 0.7 12.73 5.76 8.17 4.73 

rbg403 2465 0.9 4.71 3.53 4.71 0.65 

rbg443 2720 0.9 8.05 2.98 2.17 0.85 

4 CONCLUSIONS 

This paper presents a modification to the application 
of the 'Winner Takes All' technique in Wang’s 
Recurrent Neural Network to solve the Traveling 
Salesman Problem. This technique is called Soft 
'Winner Takes All', because the winner neuron 
receives only part of the activation of the other 
competing neurons. 

The results were compared with the Hard 
'Winner Takes All' variation, Self-Organizing Maps 
and insertion heuristics and removal of arcs, 
showing improvement in most of the tested 
symmetric and asymmetric problems from the 
TSPLIB. 
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