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Abstract: The simulation problem of very large fully asynchronous Spiking Neural Networks is considered in this 
paper. To this purpose, a preliminary accurate analysis of the latency time is made, applying classical 
modelling methods to single neurons. The latency characterization is then used to propose a simplified 
model, able to simulate large neural networks. On this basis, networks, with up to 100,000 neurons for more 
than 100,000 spikes, can be simulated in a quite short time with a simple MATLAB program. Plasticity 
algorithms are also applied to emulate interesting global effects as the Neuronal Group Selection. 

1 INTRODUCTION 

A significant class of simulated neuromorphic 
systems is represented by Spiking Neural Networks 
(SNN), in which the neural activity consists of 
spiking events generated by firing neurons (E. M. 
Izhikevich, J. A. Gally, G. M. Edelman, 2004), (W. 
Maas, 1997). In order to consider realistic models, 
the simulation of the inner dynamics of the neurons 
can be very complex and time consuming (E. M. 
Izhikevich, 2004). Indeed, accurate neuron models 
consist of complex systems of non-linear differential 
equations, so that any actual simulation is 
computationally convenient only in the case of quite 
small networks. On the other hand, only in the case 
of large networks, a number of interesting global 
effects can be investigated, as the well known 
Neuronal Group Selection, introduced by Edelman 
(G. M. Edelman, 1987). In order to consider the 
simulation of large networks, it is important to 
introduce simplified models, in which any single 
neuron be able to produce a class of firing patterns 
quite similar to those of the biological counterpart. 
In this paper, a proper SNN model will be 
introduced, based on some fundamental properties of 
neurons. The proposed model is able to simulate 
large neuromorphic maps, up to 100,000 neurons.  

A basic problem to realize realistic SNN 
concerns the apparently random times of arrival of 
the synaptic signals (G.L. Gernstein, B. Mandelbrot, 

1964). Many methods have been proposed in the 
technical literature in order to properly 
desynchronizing the spike sequences; some of these 
consider transit delay times along axons or synapses 
(E. M. Izhikevich, 2006), (S. Boudkkazi, E. Carlier, 
N. Ankri, O. Caillard, P. Giraud, L. Fronzaroli-
Molinieres and D. Debanne, 2007). A different 
approach introduces the spike latency as a neuron 
property depending on the inner dynamics (E. M. 
Izhikevich, 2007). Thus, the firing effect is not 
instantaneous, as it occurs after a proper delay time 
which is different in various cases. In this work, we 
will suppose this kind of desynchronization as the 
most effective for SNN simulation.  

Spike latency appears as intrinsic continuous 
time delay. Therefore, very little sampling times 
should be used to carry out accurate simulations. 
However, as sampling times grow down, simulation 
processes become more time consuming, and only 
short spike sequences can be emulated. The use of 
the event-driven approach can overcome this 
difficulty (D’Haene, B. Schrauwen, J. V. 
Campenhout and D. Stroobandt, 2009), since 
continuous time delays can be used and the 
simulation can easily proceed to large sequence of 
spikes. Indeed, simulations of more than 100,000 
spikes are possible by this method in a quite short 
computing time. 

In the proposed model, classical learning 
algorithms can easily be applied in order to get 
proper adjustment of the synaptic weights. In such a 
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way, adaptive neural networks can be implemented 
in which proper plasticity rules are active. In 
presence of input signals, the simulation of the 
whole network shows the selection of neural groups 
in which the activity appears very high, while it 
remains at a quite low level in the regions among 
different groups. This auto-confinement property of 
the network activity seems to remain stable, even 
when the considered input is terminated.  

The paper is organized as follows: description 
and simulation of some basic properties of the 
neuron, such as threshold and latency; introduction 
of the simplified model on the basis of the previous 
analysis, description of the network structure, 
plasticity algorithm, input structure, simulation 
results and performance tests. 

2 LATENCY 
CHARACTERIZATION 

Different kinds of neurons can be considered in 
nature, with special and peculiar properties (S. 
Ramon y Cajal, 1909-1911). On the other hand, 
many models have been introduced and compared in 
terms of biological plausibility and computational 
cost. Antipodes are the Integrated and Fire (L. 
Lapicque, 1907) and the Hodgkin-Huxley Model 
(A.L. Hodgkin, A.F. Huxley, 1952), the first one 
characterized by low computational cost and low 
fidelity, while the second is a quite complete 
representation of the real case. 

In the latter case, the model consists of four 
differential equations describing membrane 
potential, activation of Na+ and K+ currents, and 
inactivation of Na+ current (E. M. Izhikevich, 2007). 
From an electrochemical point of view, the neuron 
can be characterized by its membrane potential Vm.  

In the simulation starting case, the neuron lies in 
its resting state, i.e. Vm = Vrest (Resting Potential), 
until an external excitation is received. 

The membrane potential varies by integrating the 
input excitations. Since contributions from outside 
are constantly added inside the neuron, a significant 
accumulation of excitements may lead the neuron to 
cross a threshold, called firing threshold TF (E. M. 
Izhikevich, 2007), so that an output spike can be 
generated. 

However, the output spike is not immediately 
produced, but after a proper delay time called 
latency (R. FitzHugh, 1955). Thus, the latency is the 
delay time between exceeding the membrane 
potential threshold and the actual spike generation. 

From a physiological point of view, such a delay 
time is usually attributed to the slow charging of the 
dendritic tree, as well as to the action of the A-
current, namely the voltage-gated transient K+ 
current with fast activation and slow inactivation. 
The current activates quickly in response to a 
depolarization and prevents the neuron from 
immediate firing. With time, however, the A-current 
inactivates and eventually allows firing (E. M. 
Izhikevich, 2007). This phenomenon is affected by 
the amplitudes and widths of the input stimuli and 
thus rich dynamics of latency can be observed, 
making it very interesting for the global network 
desynchronization. 

It is quite evident that latency concept strictly 
depends on an exact definition of the threshold level. 
However, strictly speaking, the true threshold is not 
a fixed value, as it depends on the previous activities 
of the neuron, as shown by the Hodgkin-Huxley 
equations (A.L. Hodgkin, A.F. Huxley, 1952). 
Indeed, a neuron is similar to a dynamical system, in 
which any actual state depends on the previous ones. 

The first work addressing the threshold from a 
mathematical point of view was FitzHugh (R. 
FitzHugh, 1955), who defined the Quasi Threshold 
Phenomenon (QTP). A finite maximum latency is 
defined, but neither a true discontinuity in response 
nor an exact threshold level are considered. Indeed, 
with reference to the squid giant axon model, it has 
been pointed out that the membrane fluctuations for 
experimental observations or insufficient accuracy 
for the simulators, make not possible to establish an 
exact value of the threshold. To this purpose, in 
figures 1a and 1b, it is shown that the neuron 
behaviour is very sensitive with respect to small 
variations of the excitation current. 

Nevertheless, in the present work, an appreciable 
maximum value of latency will be used. This value 
is determined by simulation and applied to establish 
a reference threshold point. When the membrane 
potential becomes greater than the threshold, the 
latency appears as a function of Vm. To this purpose, 
proper simulations have been carried out for single 
neurons. 

3 SINGLE NEURON 
SIMULATIONS 

Significant latency properties will be analysed in this 
section. To this purpose, the NEURON Simulation 
Environment (http://www.neuron.yale. edu/neuron/) 
has been used, a tool for quick development of  
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Figure1: Change of membrane potential, caused by two 
current pulses of 0.01 ms applied to the initial resting state 
at t = 0. The amplitudes are 0.64523 nA (fig. 1a) and 
0.64524 nA (fig. 1b). The behaviours, obtained by the 
simulator NEURON, appear very sensitive with respect to 
the current amplitude and justify the name “All-Or-None 
law”, adopted in neuroscience in these cases. 

 
Figure 2: Instantaneous variation of ΔVm for an impulsive 
current injected Iext. 

realistic models for single neurons, on the basis of 
Hodgkin-Huxley equations. 

In the field over the threshold level, the latency 
can directly be related to input current pulses, 
received as stimuli from spikes generated by afferent 
neurons. Since the instantaneous variations of 
membrane potential (ΔVm) appear almost linear 
with respect to the related current pulses, the latency 
can also be represented as a function of the 
membrane potential. Note that, starting from the 
resting state (Vrest = -65 mV), an excitatory pulse of 
1 nA (0.01 ms time width) corresponds to ΔVm = 10 
mV . 

Three significant cases have been simulated, 
using the integration step of 0.00125 ms and the 
current pulse width of 0.01 ms. 
α) Case of Single Excitatory Current Pulses 
Starting from the resting state, an input current pulse 
of proper amplitude, able to cause output spike after 

a proper latency time, has been applied. Simulating a 
set of examples, with current pulses in the range [ 
0.64524 ÷ 10 ] nA , the latency as a function of the 
pulse amplitude, or else of the membrane potential 
Vm , has been determined. The latency behaviour is 
shown in Fig. 3, in which it appears decreasing, with 
an almost hyperbolic shape. The threshold level 
corresponds to the pulse amplitude equal to 0.64524 
nA , with the maximum latency of 10.6313 ms . 
Pulses with less amplitudes are under the threshold 
level, so that no output spikes are more obtained in 
these cases. 

 
Figure 3: Latency as a function of the membrane potential 
(or else of the current amplitude Iext , equivalently). 

β) Case of Two Excitatory Current Pulses 
Starting from the resting state, after a first input 
current pulse, able to cause an output spike, a second 
pulse has been applied in the latency interval, in 
order to analyse the corresponding latency speed up 
in the firing process. As the first pulse is of fixed 
amplitude (equal to 0.64524 nA), the overall latency 
is a function of the second pulse amplitude (varying 
in the range [ 0.001 ÷ 5 ] nA) and of the time interval 
Δ, between the two excitatory current pulses. 

In fig. 4, the behaviours of the overall latency 
time, i.e. the time between the first pulse and the 
output spike, in function of the second pulse 
amplitude, are shown, for different values of Δ. Note 
that the overall latency always decreases with the 
second pulse amplitude. However, while the effect 
of the second pulse is quite relevant for low values 
of Δ, it becomes almost irrelevant when Δ is high, 
i.e. almost equal to the value of the latency 
corresponding to the first pulse only.  
γ) Case of a First Excitatory and a Second 
Inhibitory Current Pulse. 
Starting from the resting state, after a first input 
current pulse, able to cause an output spike, a second 
pulse has been applied in the latency interval, after 
the time interval Δ. The second pulse is negative, so 
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Figure 4: Set of behaviours corresponding to excitatory-
excitatory stimuli. Each curve represents the overall 
latency in function of the second stimulus amplitude, for a 
fixed time interval Δ between the two stimuli. The effect is 
greater in the case of low values of Δ. 

that an inhibitory effect is produced. As the first 
pulse is of fixed amplitude (equal to 3.0 nA, which 
ensures that the membrane potential is carried quite 
over the threshold), the second one is of varying 
amplitude (from -0.01 nA, until it be still possible to 
appreciate the output spike). 

Once the second pulse is applied, the main effect 
is the generation of an action potential delay 
increment, caused by the inhibitor pulse. The more 
the inhibitor pulse is strong, the greater the delay 
resulted in the generation of action potential. In 
addition, more the inhibitor pulse is timely, greater 
is the latency produced. Even in this case, the overall 
latency is a function of the second pulse amplitude 
(fig.5). It is worth to emphasize that, as the interval 
between the two pulses becomes relatively large, the 
influence of the inhibitor is cancelled. 

 
Figure 5: Set of behaviours corresponding to excitatory-
inhibitory stimulation. Each curve represents the latency in 
function of the inhibitory stimulus amplitude, for a fixed 
time interval Δ between the two stimuli. The latency 
variation is greater in the case of low values of Δ. 

4 SIMPLIFIED NEURON MODEL 
IN VIEW OF LARGE NEURAL 
NETWORKS 

In the simplified model, a number of normalized and 
simplified quantities are introduced, to represent 
their physical counterpart. The membrane potential 
is represented by a normalized real positive number 
S , said the inner state of the neuron, defining the 
value S = 0 as the resting state. The firing threshold 
corresponds to the value S0 , so that the activity of 
the neuron can properly be classified, as passive 
mode if S < S0 , and active mode if S > S0. 

In active mode, the neuron is ready to fire, and 
the latency is modelled by a real positive quantity tf, 
called time-to-fire . To this purpose, a bijective 
correspondence between the state S and tf is 
introduced, called the firing equation. A simple 
choice for the normalized firing equation is the 
following one: 

tf = 1 / ( S - 1 ) , for S > S0 (1)

In the model, tf is a measure of the latency, as it 
represents the time interval in which the neuron 
remains in the active state. Thus, time-to-fire 
decreases with time and, as it gets to zero, the firing 
event occurs. If the normalized firing threshold S0 is 
chosen such that  

S0 = 1 + ε   (2)

the maximum value of time-to-fire is equal to  

tf,max = 1 / ε (3)

Equation (1) is a simplified model of the 
behaviour shown in section 3, fig. 3. Indeed, as the 
latency is a function of the membrane potential, 
time-to-fire is dependent from the state S, with a 
similar shape, like a rectangular hyperbola. The 
simulated and the denormalized firing equation 
behaviours are compared in fig. 6. 

 
Figure 6: Comparison between the latency behaviour and 
that of the denormalized firing equation. The two 
behaviours present a shape similar to a rectangular 
hyperbola. 

ACCURATE LATENCY CHARACTERIZATION FOR VERY LARGE ASYNCHRONOUS SPIKING NEURAL
NETWORKS

119



 

In a similar way, it could easily be proved that 
also the behaviours shown in fig.s 4 and 5 can 
correctly be modelled by the proper use of the firing 
equation. Indeed, it is important to stress that 
equation (1) must be applied as a bijective relation. 
Thus, in the case of more input pulses, the following 
steps must be considered. 

a) As the appropriate first input is applied, the 
neuron enters in active mode, with a proper state SA 
and a corresponding time-to-fire tf A. 

b) According to the bijective firing equation, as 
time goes on, tf A decreases to the value tf B = tf A - Δ 
and the corresponding inner state SA increases to the 
new value SB , until the second input is received. 

c) After the interval Δ, the second input is 
received. It is clear that now the new state SB is to be 
considered. The state SB is now affected by the input 
and, the greater is Δ (in the interval 0 < Δ < tf A ), the 
greater the corresponding value of SB . Thus, the 
effect of the second input pulse becomes irrelevant 
for great values of Δ. 

This peculiar property proves the good validity 
of the proposed model. 

In the model, the firing event consists in the 
generation of the output signal. When the firing 
event occurs in a certain neuron, it is said a firing 
neuron. The firing event consists of the following 
steps. 

A) Transmission of the firing signals through the 
output synapses connected to the receiving neurons, 
said burning neurons. In the proposed model, the 
transmission is considered instantaneous, thus the 
transmitted signals are impulses of amplitude equal 
to the presynaptic weight, Pr.  

B) Resetting the inner state S to the rest state S = 
0. 

C) For each directly connected burning neuron k, 
modification of its inner state Sk as  

Sk = Sk + Pr Pw (4)

in which Pw is the related postsynaptic weight of the 
considered synapse. 

 
Figure 7: Proposed model for the neuron. 

It is evident that the model introduces a 
modulated delay for each firing event. This delay 
strictly depends on the inner dynamics of the neuron. 

Time-to-fire and firing equation are basic 
concepts to make asynchronous the whole neural 
network. Indeed, if the firing equation is not 
introduced, and time-to-fire is always equal to zero, 
the fire event would be produced exactly when the 
state S becomes greater than S0, and this would 
happen at the same time for all the neurons reaching 
their active modes. Thus, the behaviour of the whole 
network would be synchronous. The definition of 
time-to-fire as a continuous variable let the firing 
process dependent on the way by which each firing 
neuron has reached its active mode. 

In the classical neuromorphic systems, neural 
networks are composed by excitatory and inhibitory 
neurons. In our model, the presynaptic weight Pr are 
chosen positive for excitatory and negative for 
inhibitory neurons. 

5 NETWORK STRUCTURE 

The connection map of the neurons is defined 
establishing for each firing neuron (in which the 
firing event is produced) the burning neurons 
directly connected to it by proper synapses, through 
proper postsynaptic weights. It is evident that the 
difference between firing and burning neurons is 
only considered to define the related synapses and 
the network topology. Indeed, any neuron can be 
minded either firing or burning, whether it generates 
or receives a spiking signal. The whole synapse 
distribution can be stored in a general N x N matrix [ 
Pw ] , in which N is the total number of neurons. 
Each entry of this matrix represents the post-
synaptic weight corresponding to a firing vs. a 
burning neuron. If such a synapse is not present, the 
entry is zero, and thus, as the synaptic connection 
net among neurons is usual quite not complete, the 
matrix [ Pw ] will be sparse. Moreover, for large 
number of neurons, the complete N x N matrix 
cannot easily be stored. Thus, proper sparse matrix 
technique has been applied in the simulation 
program, in order to optimise the memory 
requirements. 

Many network topologies could be implemented 
by this technique. In the proposed simulation 
program, the simple case of local like connections is 
considered, as in the case of Cellular Neural 
Networks (L.O.Chua, L.Yang, 1988) . Each firing 
neuron is directly connected to a number of burning 
neurons belonging to a proper neighbourhood. The 
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local connection maps are shown in fig.s 8 and 9, 
where grids of excitatory (en) and inhibitory (in) 
neurons are indicated. The following classes of 
synapse kinds are defined: see , sei , sie , while 
synapses sii are never present (the subscript e stands 
for excitatory neuron, and i for inhibitory neuron).  

 
Figure 8: Map of synapses see , and sie ; xn stands for 
excitatory or inhibitory firing neuron, while en for 
excitatory burning neurons.  

As shown in the literature, greater 
neighbourhood is applied for inhibitory neurons (G. 
M. Edelman, 1987). Therefore, in the case of 
synapses sei, inhibitory burning neurons are not 
neighbouring to the related excitatory firing 
counterpart. Note that fig.s 8 and 9 refer to the case 
of minimum neighbourhood. 

 
Figure 9: Map of synapses sei ; en stands for excitatory 
firing neuron, while in for inhibitory burning neurons. 

6 PLASTICITY RULES 

Plasticity consists in the proper variation of the post-
synaptic weights Pw, according to the neuron 
dynamics. All the Pw weights are bounded from a 

minimum to a maximum value, and are always 
positive quantities. The classical Hebb rule was 
proved not to be quite suitable to properly model the 
complex plasticity behaviour of natural nervous 
system. In this paper, three plasticity effects have 
been implemented, according to (G. M. Edelman, 
1987). 

Exponential decay: all postsynaptic weights are 
decreased to the minimum value in an exponential 
way with proper time constant.  

Heterosynaptic enhancement: when a burning 
event occurs from a certain synapse, the 
postsynaptic weight is increased to the maximum 
value, in function of previous burnings on the same 
neuron, in a specified time window (heterosynaptic 
window) from other synapses. 

Homosynaptic enhancement: when a burning 
event occurs from a certain synapse, the 
postsynaptic weight is increased to the maximum 
value, in function of previous burnings on the same 
neuron and from the same synapse, occurred in a 
specified time window (homosynaptic window). 

The growing rates (increase, decrease) related to 
hetero and homosynaptic rules are properly chosen. 

7 SIMULATION 

The proposed neural paradigm has been 
implemented in a simple MATLAB program. The 
simulation method proceeds looking for the next 
firing event occurring in the whole network. It can 
be seen that the proposed model is not suitable for a 
classical simulation procedure based on a specified 
sampling time. Indeed, as small this sampling time is 
chosen, two contiguous firing events are likely to 
occur in the whole net, in a less time interval. Thus, 
larger networks are simulated, smaller time intervals 
can occur. Time continuity in the simulation is then 
necessary, in particular for very fast dynamics. On 
the other hand, the use of very little sampling times 
can make very slow the simulation process.  

Then, it is evident that event-driven simulation 
method is quite suitable to the proposed neural 
model. To this purpose, a proper matrix is 
introduced in which all the active neurons are stored, 
together with their time-to-fire values. Looking for 
the lower time-to-fire, the next firing event is 
identified in term of the firing neuron and the instant 
of the event. Then, the active neuron matrix is 
properly updated and the new time value is 
identified in the event driven process. Therefore, the 
simulation proceeds in a very fast way.  

Network activity is based upon two steps. 

en en en

en xn en

en en en

en en en

en xn en

en en en

in in in

in en in

in in in

in in in

in en in

in in in
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1. Searching for the active neuron with the 
minimum time-to-fire 

2. Evaluation of the effects of the firing event to 
all the burning neurons. 

A necessary condition to maintain the activity is 
that unless one neuron be active in every time. If this 
is not the case, all the neurons are passive and the 
activity is terminated. 

Burning events can be classified in four classes. 
a. Passive Burning. In this case a passive neuron 

remains still passive after the burning event, i.e. the 
inner state is always less than the threshold. 

b. Passive to Active Burning. In this case, a 
passive neuron becomes active after the burning 
event, i.e. the inner state becomes greater than the 
threshold, and the proper value of the time-to-fire 
can be evaluated. This is possible only in the case of 
excitatory firing neurons. The case α ) , analysed in 
section 3, belongs to this class of burnings. 

c. Active Burning. In this case an active neuron, 
affected by the burning event, still remains active, 
while the inner state can be increased or decreased 
and the time-to-fire is properly modified. The cases 
β ) and γ ), analysed in section 3, belong to this class 
of burnings.  

d. Active to Passive Burning. In this case an 
active neuron comes back to the passive mode. This 
is only possible in the case of inhibitor firing 
neurons. The inner state decreases and becomes less 
than the threshold. The related time-to-fire is 
cancelled. 

Since any firing event always makes passive the 
firing neuron, the frequency of burnings of classes a) 
and b) must be sufficiently high. Indeed, burnings of 
class c) only modify the time evolution, and burning 
of class d) reduces the global activity. On this basis, 
many criteria can be introduced to evaluate the 
activity level of the whole network. 

A significant parameter by which the global 
stability can be controlled is the presynaptic weight 
Pr which represents the firing signal amplitude for 
each firing neuron in the net. Indeed, lower values of 
Pr lead to the reduction of total number of firing 
neurons, up to the deadline of any activity. On the 
contrary, higher values of Pr let increase the firing 
number, up to the saturation of the system. A quite 
correct value of Pr can be chosen considering the 
number of synapses starting from a given firing 
neuron (fan-out, fo ). Since each firing event 
produces the resetting of inner state S from S0 
(normalized threshold) to 0 , the value S0 can be 
thought distributed among all the synapses outgoing 
the neuron. Thus, a useful choice is Pr = S0 / fo . This 

choice was proved quite likely to guarantee the 
network stability.  

7.1 Input Structure 

Input signals are considered quite similar to firing 
spikes, though depending from external events. 
Input firing sequences are connected to some 
specific neurons through proper external synapses. 
Thus, proper input burning neurons are chosen. 
External firing sequences are multiplied by proper 
postsynaptic weights in the burning process. Also 
these weights are affected by the described plasticity 
rules, thus the same inputs can be connected to 
different burning neurons, showing different effects 
in the various cases.  

7.2 Simulation Tests 

Several simulation tests have been carried out on the 
proposed neural paradigm. In many cases, random 
values for the postsynaptic weights have been 
chosen as starting point for the simulation.  

If proper input sequences are simulated, and if 
the proposed plasticity rules are active, some 
properties of the network evolution have been 
verified, in particular the selection of specific neural 
groups, in which the activity appears in a quite high 
level, while it remains lower in the regions among 
different groups. This auto-confinement property of 
the network activity seems to remain stable, even if 
the considered input is terminated.  

As an example, we propose a neural network of 
the following characteristics: 

Number of excitatory neurons  = 18060  
number of inhibitory neurons = 2021 
number of external sources  = 25 

The excitatory neurons are located in a 
bidimensional grid. The size of the grid is 140 x 129. 
Since a neighbourhood equal to 4 is chosen, a total 
number of 1,608,220 postsynaptic weights is 
implemented. As an initial choice, these weights 
have been assigned in a random way, from a 
minimum to a maximum value. In order to carry out 
a network able to show an initial activity, proper 
starting values for the states S have been assigned. 
In this way, the initial number of active neurons was 
equal to 2452.  

In fig. 10, the map of the network is represented, 
in which every neuron is shown as a point. Clearer 
points represent neurons in the cases of lower values 
of their inner states S, while darker points refer to 
the cases of higher S. 
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We present here the simulation parameters of the 
network after a number of firings equal to 22518. 
The normalized inner simulation time is equal to 
116.5, where the number of active neurons is 
reduced to 1096. The new neuron map is shown in 
fig. 11, in which the activity of the network appears 
not uniform, as that shown in fig. 10. Indeed, five 
specific groups are now present, in which the most 
of active neurons are grouped. The bounds of groups 
are quite sharp and the activity in the regions among 
them is near to zero. 

 
Figure 10: Map of the neural network used in the 
simulation test. Each point represents a single neuron. 
Brighter points stand for low values of S , darker for 
higher values. The map refers to the random initial 
configuration, before processing.  

 
Figure 11: The same map of fig. 10, after simulation. The 
Neural Group Selection clearly appears. 

The simulation parameters, involved in the 
process from the initial map of fig. 10 to that of fig. 
11, are the following ones: 

Number of firing = 22,517 
Number of burnings: 
passive    = 1,163,500 
passive-to-active = 21,020 
active    = 568,891 
active-to-passive = 1223  

The parameters involved in the plasticity rules 
are the following ones: 

Number of etherosynaptic upgrading  
= 39,469,900 

Number of homosynaptic upgrading  
= 2,341,430 

Typical time performances of the simulation test 
is about 11 minutes, on a Pentium dual core 2.5 GHz 
(ram: 2GB). 

8 CONCLUSIONS 

Neural networks based on a very simple model have 
been introduced. The model belongs to the class of 
Spiking Neural Networks in which a proper 
procedure has been applied to accounting for latency 
times. This procedure has been validated by accurate 
latency analyses, applied to single neuron activity by 
simulation methods based on classical models. The 
firing activity, generated in the proposed network, 
appears fully asynchronous and the firing events 
consist of continuous time sequences. The 
simulation of the proposed network has been 
implemented by an event-driven method, allowing 
the possibility of simulating very large network by a 
quite simple MATLAB procedure. The simulation 
shows the appearance of the well known Neuronal 
Group Selection, when proper input sequences and 
proper plasticity rules are applied. 

Future works in the field could be about the 
stability analysis of the firing activity and of the 
plasticity rules, in order to generate permanent 
functional groups in the whole network. The results 
related to the analysis of chaotic firing processes in 
single groups seem also very promising.  
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