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Abstract: Universities offering courses in the field of analyzing, configuring and safeguarding computer networks, 
provide specific software and hardware resources to students for practical assignments. At distance 
universities these resources usually are not physically accessible for remote students. We initially addressed 
this issue by offering an environment which allows students to build virtual computer networks on their 
local computer. The environment consists of a preconfigured virtualized software package and is referred to 
as the virtual lab. This approach reaches its limits when students intend to perform group work similar to 
typical on-site courses. To remove this limitation, we developed an extended virtual lab, called the 
Distributed Virtual Computer Security Lab (DVCSL), in which distinct remote virtual labs can be connected 
across a connection network (e.g., the internet). The DVCSL allows remote students to perform networking 
and security exercises inside an encapsulated distributed common networking environment. The design of 
the DVCSL meets two major requirements: establishing a transparent communication path between remote 
virtual labs and assuring that non-participating systems outside the DVCSL are not affected by the 
transmitted data. In this paper we present the architecture of the DVCSL and demonstrate its functionality as 
well as its security by an example setup.  

1 INTRODUCTION 

Computer security labs are of great value in courses 
that teach security of computer systems and 
networks. The knowledge that students learn from 
textbooks, is illustrated, deepened, and anchored by 
carrying out practical exercises in such a lab. In 
addition, students usually like carrying out practical 
exercises next to studying theory, thereby improving 
their motivation and results. 

Computer security labs are nowadays quite 
common at many universities; see for instance 
(Gaspar, Langevin and Armitage, 2007) and 
(Mattord and Whitman, 2004) for an overview of 
some recent practices. Initially, a computer security 
lab was a room containing computer systems 
connected in a network, completely isolated from 
the outside world. Administration and maintenance 
of such a lab however is labor-intensive. Students 
work in the lab with super-user rights and can 

modify system configurations at will. After a 
session, it is necessary to clean up system 
configurations, which may even require reinstalling 
operating systems. Therefore, most modern 
computer security labs apply virtualization, where 
students work in virtualized environments. Cleaning 
up or reinstalling a virtual lab simply means 
reloading the virtual environments, which can even 
be an automated task. Early examples of labs 
applying virtualization have been reported in 
(Bullers, Burd and Seazzu, 2006), (Hay and Nance, 
2006) and (O'Leary, 2006). 

Isolated computer security labs at universities are 
however not suited for distance teaching, since 
students may not be able to travel to the lab due to 
restrictions on time or distance. Distance teaching is 
accommodated by providing remote access to the lab 
over secure network connections. Numerous 
examples of computer security labs with remote 
access have been reported, such as in (Border, 
2007), (Hu, Cordel and Meinel, 2005), (Keller and 
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Naues, 2006), (Krishna, Sun, Rana, Li and Sekar, 
2005), and (Lahoud and Tang, 2006). Although such 
labs may be accessed remotely at any time from any 
place, they are generally not easily scalable. 
Allowing an arbitrary number of students to 
participate at the same time, requires students to 
reserve timeslots in advance for working in the lab. 
This may impose restrictions for students in distance 
education, who usually study in evening hours and 
weekends. Provisioning a remote lab for peak access 
outside office hours, may result in a largely over-
dimensioned lab with a low average degree of 
utilization and hence a waste of resources. 

Some universities recently adopted a different 
approach for providing a virtual computer security 
lab (VCSL), for instance as reported in (Vranken 
and Koppelman, 2009) and (Li, 2009). Instead of 
moving students to the lab, either physically or by 
remote access, the lab is moved to the students. The 
VCSL of the Open University of The Netherlands 
(Vranken and Koppelman, 2009) consists of an 
isolated, secured software environment, provided on 
a DVD, that each individual student can easily 
install on his/her computer. Inside the VCSL, the 
student can set up multiple virtual hosts, connect 
them into virtual computer networks, and safely 
carry out experiments related to security. The VCSL 
is used in courses on computer security, but could 
also be used in courses on operating systems, 
computer networks, distributed systems, or web 
services. In the VCSL, the student can work both as 
a hacker, preparing and launching attacks against 
systems and networks inside the VCSL, as a system 
administrator, implementing security measures to 
prevent and detect attacks, and as a regular user, 
experiencing the effects of attacks and security 
measures. 

The VCSL can be easily installed and run locally 
on each student’s computer. This decentralized 
approach is suited to accommodate any number of 
students, provides students the freedom to run the 
lab whenever and wherever they want, and 
eliminates the need for a central lab at the university. 
A shortcoming however is that students have to 
work on their own. It is for instance impossible to 
offer exercises on distributed attacks involving large 
botnets, or hacking games in which students are 
challenged to attack each other’s systems and 
securing their systems against attacks from fellow 
students. We therefore extended the VCSL towards 
a distributed virtual computer security lab (DVCSL). 
The DVCSL allows connecting the VCSL’s of 
multiple students into a large virtual network 
running over the internet. Traffic inside the virtual 
network is completely isolated from the outside 

world. Hence, communication between virtual hosts 
inside the DVCSL and hosts outside the DVCSL is 
impossible. Students can therefore safely carry out 
assignments related to security without any 
restrictions - even spreading malware could be 
allowed - without the risk of accidentally (or 
intentionally) attacking or infecting hosts on the 
internet. 

This paper presents the communication 
infrastructure of the DVCSL. The paper is organized 
as follows. In section 2 we give further details on the 
VCSL, the basic building stone of the DVCSL. In 
section 3 we list related work on computer security 
labs, showing the novelty of our DVCSL. In section 
4 we explain the architecture and implementation of 
the DVCSL. In section 5 we describe an example 
setup of the DVCSL, demonstrating the correct, 
secure operation of the DVCSL. In section 6 we 
shortly address future work and section 7 concludes 
the paper. 

2 VCSL 

The VCSL is a stand-alone environment, composed 
of two nested software virtualization layers, that 
each student can install on his/her computer. The 
software components to build the VCSL are 
freeware or open source, and are distributed to 
students on a DVD. 

The VCSL is composed of two virtualization 
layers, as shown in figure 1. The host machine is the 
student’s computer, which runs an arbitrary 
operating system, i.e., the host operating system. 
The first virtualization layer creates the virtual host 
machine. It consists of virtualization software such 
as VMware Player (freeware) or Oracle VM 
VirtualBox (open source), which runs on the host 
machine just like an ordinary application. Versions 
of this software are available for a large range of 
platforms. VirtualBox for instance runs on host 
machines with either Windows, Linux, Mac OS X, 
or OpenSolaris. This first virtualization layer 
therefore runs on nearly all student computers, 
regardless of the hardware and the host operating 
system. The virtual host machine runs the virtual 
host operating system. For the VCSL we selected 
Linux, since it is open source and can be distributed 
to students without licensing costs. In fact, we 
selected Knoppix, a bootable live Linux system 
containing a collection of GNU/Linux applications 
and the KDE graphical desktop environment. 

The second virtualization layer is a Linux 
application, called Netkit (Pizzonia and Rimondini, 
2008), that runs inside the virtual host machine. This 
second   virtualization   layer   allows  to  instantiate 
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Figure 1: Architecture of VCSL. 

multiple virtual machines that all run Linux. Netkit 
applies virtualization based upon User Mode Linux 
(UML). A UML virtual machine is created by 
running a Linux kernel as a user process in the 
virtual host machine (Dike, 2006). Multiple UML 
virtual machines can be run easily with minimal 
resources. The Linux file system is shared by all 
UML virtual machines using the copy-on-write 
(COW) mechanism. Hence, the file system is shared 
read-only by all UML virtual machines. Each UML 
virtual machine has a second, separate file system in 
which only the local changes to the shared file 
system are stored. This saves both disk space and 
memory, and simplifies management of multiple 
UML virtual machines. Netkit consists of a 
collection of scripts that allow to setup and 
configure UML virtual machines with virtual 
network interfaces, and to connect these into virtual 
networks. The virtual network interfaces of the 
UML virtual machines can also be connected to the 
virtual network interface of the virtual host machine, 
and even to the physical network interface of the 
host machine. 

The hardware requirements for running the 
VCSL are very modest. A few UML virtual 
machines can already be run smoothly on a PC with 
a Pentium-4 processor and 256 MB memory. The 
VCSL has been used successfully in a security 
course by more than two hundred students with only 
few minor problems.   

3 RELATED WORK 

The idea of using an isolated network as 
anenvironment to perform security related tasks for 
the purpose of research or education is evident 
(Bishop and Heberlein, 1996). There are two general 
approaches to create such an environment. 

The first approach is to create or use an isolated,  

physical network with physical hosts that is 
separated from a productively used network such as 
a campus network (Bishop and Heberlein, 1996; 
Jakab, Janitor and Nagy, 2009). This isolation may 
be achieved by physical separation of the networks 
or by using components like firewalls to restrict data 
flow between network areas (Yang, Kwok-Bun, 
Liaw, Collins, Venkatraman, Achar and Sadasivam, 
2004). Within this isolated network the students can 
perform exercises and work with a real-world like 
network setup. Remote access to such a network 
may be granted by using remote access technologies 
such as VPN (Virtual Private Network).  

The second approach makes use of virtualization 
technologies to create an isolated, virtual network 
with virtual hosts. Literature refers to such an 
environment in the context of education or e-
learning usually as a virtual lab (Damiani, Frati and 
Rebeccani, 2006; Keller and Naues, 2006). This 
approach significantly reduces the amount of 
physical hardware resources (e.g., switches, routers, 
hosts), since the required resources are created by 
virtualization. 

Literature also reports two main approaches to 
provide an isolated network. In the first one, the 
environment is provided by a central authority, 
usually located at the university (Drigas, Vrettaros, 
Koukianakis and Glentzes, 2005) and students can 
get physical or remote access by using a secured 
network connection. Second, the environment is 
provided as a preconfigured, stand-alone software 
package which can be installed and used by students 
on any computer, usually their private computer (Li, 
2009; Vranken and Koppelmann, 2009). This gives 
the students the opportunity to safely carry out 
assignments wherever and whenever they want to. 
As flexible and independent this kind of 
environment is, it lacks the option to connect several 
of these stand-alone environments. It is not possible 
for remote students to cooperate in teams when 
carrying out exercises. This also means that the 
demand for real world-like scenarios that require to 
work with or against other students, is sometimes 
not fulfilled. 

In this paper, a first step is introduced to 
connect two or more local, virtualized, stand-alone 
environments to create a distributed virtual computer 
security lab. 

4 DVCSL 

In this section we outline the architecture and 
implementation of the DVCSL. Each VCSL consists 
of a number of UML virtual machines, connected by 

Host machine 

UML virtual machines 
in virtual network 

Virtual host machine 

CSEDU 2011 - 3rd International Conference on Computer Supported Education

112



 

virtual networks, and also connected to the virtual 
host machine. For building a DVCSL, a transparent 
connection between the virtual host machines of 
distinct VCSL’s is required. We therefore equip 
each VCSL with an interface, such that a point-to-
point connection can be created between two 
VCSL’s. We will outline this further in the 
remainder of this paper. A future extension is to 
connect multiple VCSL’s, which is achieved by 
adding a central authority that manages all 
connected VCSL’s and forwards data between them. 
The latter is subject of our ongoing research and is 
not included in this paper. 

4.1 Requirements 

In order to connect two VCSL’s transparently, we 
connect the VCSL’s at OSI-layer 2. We presume 
Ethernet-based networks, and hence the Ethernet 
protocol running at OSI-layer 2. Connecting two 
virtual networks at OSI-layer 2 requires that 
Ethernet frames in the first virtual network should be 
transmitted transparently to the second, remote 
virtual network and vice versa. By connecting 
VCSL’s at OSI-layer 2, the connected virtual 
networks will behave like a single broadcast domain 
(Comer, 2001). Hence, students working in the 
DVCSL have the notion of being connected to other 
students over an Ethernet LAN, although the actual 
connection is by a WAN using the public internet 
involving the entire TCP/IP protocol-stack. This is 
in contrast with conventional network operation, 
where LAN-frames are converted into WAN-packets 
at the network perimeter by gateways, preserving the 
original payload of the upper OSI layers. Our 
approach also differs from VPN’s, where tunneling 
is generally done at OSI-layer 3 (e.g., when applying 
IPsec) or above (e.g., when applying SSL). 

Performing practical exercises on networking 
and IT-security introduces an additional 
requirement: network data that is transported inside 
a DVCSL must not harm non-participating systems 
also connected the WAN. It should be absolutely 
assured that non-participating systems, such as the 
host systems on which the VCSL’s run and any 
other hosts in the internet, are not affected by the 
transmitted data. Hence, traffic inside the DVCSL 
should be completely isolated from the world 
outside the DVCSL. 

To connect virtual networks, we first examine 
the virtual networking architecture of Netkit. Netkit 
consists of a collection of scripts which configure 
and deploy UML. As mentioned, UML is a Linux-
kernel executed as a user application. UML can run 
its own processes inside its kernel environment. An 

UML-kernel does not interact directly with the 
hardware, but with the system call interface of the 
underlying Linux-kernel (Rimondini, 2007), which 
we referred to as the virtual host operating system in 
figure 1. Netkit allows to easily configure and set-up 
UML virtual machines, and building and using local 
virtual networks. Virtual networks are created by the 
so-called UML-Switch, a tool providing network 
logic that comes with the UML-Utilities tools in 
UML.  

User Mode Linux (UML)

NetKit-Scripts

Logical View Technical View

UML-Switch

UML-
Kernel

UML-
Kernel

Virtual 
Network

Virtual 
Host

Virtual 
Host

 
Figure 2: Architecture of Netkit. 

Figure 2 shows the architecture of Netkit and 
provides a logical and a technical view of its 
components. The logical view shows two virtual 
hosts which are connected in a virtual network. In 
the technical view, the virtual hosts are UML-
kernels that communicate with each other using the 
service provided by a UML-Switch.  

As the name implies, a UML-Switch connects 
two or more virtual hosts with switch-like behavior. 
A network switch establishes a logical point-to-point 
connection between hosts in a network that are 
connected to the ports of the switch. 

The UML-Switch can also be configured to 
behave like a hub (Dike, 2006). Virtual hosts that are 
connected in a virtual network with hub-like 
behavior can be considered to be connected in the 
same network segment (Schreiner, 2009). In a 
network segment, a host receives all data sent by 
other hosts in the network segment, even if the host 
is not the designated receiver of the data. Netkit uses 
the UML-Switch with this hub-like behavior, which 
offers users the opportunity to analyze data 
transmitted from any virtual host in the virtual 
network. 

In  the  DVCSL,  we c onnect two remote virtual 

A DISTRIBUTED VIRTUAL COMPUTER SECURITY LAB

113



 

networks by extracting data at a local UML-Switch 
and sending it across a connection network to a 
remote UML-Switch where the extracted data is then 
injected, and vice versa. In this way two virtual 
networks can be connected. Implementing this 
approach is done by two subtasks: 
• Subtask A: extracting and injecting network 

data at a UML-Switch. 
• Subtask B: sending and receiving the extracted 

network data across a network. 

4.2 Subtask A: Extracting 
and Injecting 

We examine the technical implementation of a 
virtual network as shown in figure 2 in which the 
UML-Switch is involved. For each virtual network, 
an instance of the UML-Switch is running, which in 
fact uses a UNIX-Socket to communicate with the 
virtual hosts. A UNIX-Socket is a system resource 
which serves as a communication endpoint and can 
be used for remote communication or local inter-
process communication (Stevens, Fenner and 
Rudoff, 2006).  

The UML-Switch attaches itself to a UNIX-
Socket, and listens for incoming data sent by the 
virtual hosts to the UNIX-Socket. The UML-Switch 
reads the network data from the UNIX-Socket and 
writes the data to all other connected virtual hosts, 
which creates the hub-like behavior of the UML-
Switch. 

UML-Switch
UNIX-Socket

VHVH

Virtual
Network

 
Figure 3: Construction of a virtual network. 

Figure 3 shows the architecture of a virtual 
network. For simplicity, only two virtual hosts 
(VH’s) are shown, but multiple VH’s can be 
connected to the virtual network. The VH’s are 
connected to the UNIX-Socket. Communication 
over the virtual network is realized by the VH’s 
sending data to the UNIX-Socket, and the UML-
Switch forwarding this data to all other connected 
VH’s in the same virtual network. 

Extracting data from the UML-Switch and 
injecting data from a remote virtual network into the 
UML-Switch, relies on the hub-like behavior of the 

UML-Switch. We developed a new software 
component, that is applied in the virtual host 
operating system and that connects itself to the 
UNIX-Socket of the virtual network. This 
component can be considered as a ghost host in the 
virtual network because it is completely transparent 
to the other components. With this ghost host it is 
possible to extract all Ethernet frames from the 
UNIX-Socket, as well as to inject frames received 
from a remote virtual network. Compared to a 
normal virtual host, the ghost host is not jailed in the 
Netkit environment. The ghost host can therefore 
communicate with the outside world, which cannot 
be done by a normal virtual host. The UML-Switch 
with hub-like behavior guarantees that network data 
received from a remote virtual network is distributed 
to all other locally connected virtual hosts. 

UML-Switch

VHVHNet
Kit

Guest
OS GHUNIX-Socket

 
Figure 4: Virtual network with ghost host. 

Figure 4 shows the construction of the virtual 
network in figure 3. The figure also shows the 
logical layers of the virtual network. The virtual 
hosts are located and jailed within the Netkit layer. 
The implementation of the virtual network is 
realized in the virtual host operating system, which 
may also be referred to as the guest OS. In the guest 
OS layer a ghost host (GH) is located which realizes 
subtask A. The ghost host can extract all data that is 
sent over the virtual network and can forward the 
data to a destination outside the guest OS (cloud). 
Incoming data from outside (cloud) can be injected 
in the UNIX-Socket using the ghost host. 

Hence, the ghost host provides an interface to the 
virtual network, where Ethernet frames can be 
extracted and injected without the need to modify 
any existing components of Netkit or UML.  

4.3 Subtask B: Sending and Receiving 

Subtask B consists of sending the extracted Ethernet 
frames from one ghost host to another ghost host in 
a remote system. Ethernet frames cannot be sent 
directly over the internet or a WAN (Comer, 2001), 
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since those networks require a network protocol 
which runs on OSI-layer 3, presumably the Internet 
Protocol (IP). To resolve this issue, the Ethernet 
frames are sent over a remote bridge which is 
established between two ghost hosts. 

A remote bridge can connect two distant 
networks by using a connection network 
(Schürmann, 2004). A benefit of the remote bridge 
is that the connection network and the distant 
networks can use different protocols. Even if the 
protocols of the connection network and the distant 
networks are equal, the remote bridge ensures that 
the distant networks cannot intercommunicate with 
the connection network. The remote bridge consists 
of two remote bridge endpoints which connect two 
networks at OSI-layer 2. Such an endpoint 
encapsulates an Ethernet frame of the local 
environment in a transport protocol, and sends the 
data to the remote endpoint where the transport 
protocol is removed and the OSI-layer 2 data is 
injected in the remote environment. 

We extended the ghost host component and 
added functionality of a remote bridge endpoint. The 
Ethernet frames that are extracted by the ghost host, 
are first encapsulated in the IP protocol (acting as 
transport protocol), and next sent to the remote 
bridge endpoint of a fixed distant destination. For 
incoming data, the IP protocol is removed by the 
ghost host and the Ethernet frames are sent into the 
local network, respectively the local UNIX-Socket.  

4.4 Building the DVCSL 

With subtask A and B in place, we can connect two 
distant virtual networks by interfacing to a remote 
bridge between the virtual networks. Extracted data 
of one virtual network is encapsulated by the remote 
bridge endpoint into a transport protocol, and sent to 
a distant remote bridge endpoint where the data is 
unpacked and injected into the local virtual network. 

Figure 5 shows an example of two virtual 
networks. Each virtual network has two virtual hosts 
(VH) and a ghost host (GH) offering a remote bridge 
endpoint (RBE), attached to the UNIX-Socket. The 
Ethernet frames that are extracted from a virtual 
network are sent across a transport network (cloud) 
encapsulated into a transport protocol. As transport 
protocol TCP/IP or UDP/IP is assumed. 

5 EXAMPLE SETUP 

Figure 6 shows an example setup of a DVCSL for 
two students (Student A and Student B). It is

RBE UML-Switch

VH VH

UNIX-Socket
RBE

IP
TCP /
UDP

Transport Layer
Network Layer

Ethernet
Link Layer

GHGH
UML-Switch

VH VH

UNIX-Socket

 
Figure 5: Connecting two virtual networks. 

presumed that each student uses his/her own 
computer connected via a local or wide area network 
(LAN/WAN). In the example setup, Student A is at 
public IP address 192.168.2.102 and can reach 
Student B at IP address 192.168.2.101, and vice 
versa. Each student locally runs a VCSL, but a 
student may also run a native Linux operating 
system, thereby eliminating the need for running the 
first virtualization layer shown in figure 1. In the 
example, each student sets up a Netkit environment 
consisting of two virtual hosts (VH) connected in a 
local virtual network. 

For example, Student A starts VH1 by issuing 
the following commands: 
#Start VH1 connected to network netA 
vstart VH1 --eth0=netA 
#Setup network interface on VH1 
ifconfig eth0 192.168.2.200 netmask 
255.255.255.0 up 
 

In a similar way, Student A starts VH2, and 
Student B starts VH3 and VH4 connected to netB. 
The local networks are connected as a distributed 
local subnet by using the approach presented in 
section 4. Student A connects to the remote bridge 
endpoint of Student B, using the user application 
named plug as follows: 
#Start remote connection to Student B 
plug --source-ip 192.168.2.102 \ 
--source-port 53838 \ 
--destination-ip 192.168.2.101 \ 
--destination-port 32000 \ 
--uml-switch-socket \ 
/path/to/vhub_USERNAME_netA.cntc 

Student B will do the same, connecting to 
theremote bridge endpoint of Student A. From now 
on, netA and netB are connected with each other, 
and all four virtual hosts can reach each other. 

In the following, we provide two scenarios that 
demonstrate the correct and secure operation of the 
DVCSL  shown  in  figure  6.  In these scenarios, we 
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Figure 6: Example setup. 

use Ping, a well-known tool for testing the 
connectivity between two computer systems by 
sending an echo requests and receiving an echo 
reply. We use Wireshark (www.wireshark.org), a 
tool for network protocol analysis, to visualize the 
recorded network data. 

5.1 Scenario 1 

Scenario 1 demonstrates that virtual host VH1 of 
student A can communicate with virtual host VH4 of 
student B. Moreover, scenario 1 shows that the 
virtual hosts of student A and B act as if they 
wereconnected in the same network segment (hub-
like behavior). 

Student A runs Ping on VH1, trying to connect to 
VH4. The expected result is that VH1 first sends an 
address resolution request, using ARP (Address 

Resolution Protocol), to obtain the Media Access 
Control (MAC) address of VH4. This procedure is 
common for IP/Ethernet-based networks to obtain 
the Ethernet address of a host when only its IP 
address is known. Once the MAC address of VH4 is 
obtained, VH1 sends an echo request which is 
answered by an echo reply. The network data which 
is sent between the Linux operating systems should 
be encapsulated in a transport protocol. 

Figure 7 shows the network data captured at 
virtual network interface eth0 of VH1. As expected, 
an ARP request is sent to obtain the MAC address of 
virtual host VH4 (No. 1). Receiving the ARP reply 
indicates that both hosts are in the same local subnet 
(No. 2). Afterwards, the echo request is sent which 
is replied by VH4 (No. 3-4). The IP addresses of the 
virtual network interfaces of VH1 and VH4 are 
correctly shown as source and destination addresses. 

Figure 8 shows the network data that is sent 
between VH1 and VH4, captured at the network 
interface of the underlying Linux operating system 
on student A’s computer. Due to the encapsulation 
of the network data in a transport protocol (shown as 
UDP), the IP addresses of the Linux operating 
systems are correctly shown as source and 
destination addresses. The payload of the first UDP 
packet has a size of 42 bytes which corresponds to 
the size of the ARP request as seen in figure 7. 

 

 
Figure 7: Wireshark capture inside the virtual lab (scenario 1). 

 
Figure 8: Wireshark capture outside the virtual lab (scenario 1). 
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Figure 9: Wireshark capture inside the virtual lab (scenario 2). 

 
Figure 10: Wireshark capture outside the virtual lab (scenario 2). 

We conclude that the virtual hosts of the two 
students are capable of communicating with each 
other  and that the network data is sent encapsulated 
in a transport protocol. 

5.2 Scenario 2 

Scenario 2 demonstrates that virtual host VH1 of 
student A cannot communicate with the Linux 
operating system of student B, although their IP 
addresses are located in a common subnet 
(192.168.2.0/24). The expected result for this 
scenario is that no communication between VH1 and 
the Linux operating system of student B is possible 
due to the strictly separated networks. VH1 sends 
ARP requests to obtain the MAC address of Student 
B’s Linux operating system, but these ARP requests 
will never be received by the Linux operating 
system of Student B. Instead, they are encapsulated 
and sent to the remote bridge endpoint of Student B.  

Figure 9 shows that VH1 tries to obtain the 
MAC address of the Linux operating system of 
Student B by sending ARP requests several times. 
These requests are not answered due to non existing 
connectivity to the network of the Linux operating 
systems. 

Figure 10 shows that the Linux operating system 
receives the ARP request encapsulated in the 
transport protocol. The payloads of the UDP packets 
have a size of 42 bytes which corresponds to the size 
of the ARP requests as seen in figure 9. Due to the 
encapsulation, the Linux operating system does not 
recognize the packets as ARP requests. It therefore 

does not send a reply, but sends the network data to 
the remote bridge endpoint. The virtual network of 
student B however does not contain a VH with IP 
address 192.168.2.101, and hence no echo reply will 
be sent. (This also shows that student B may add a 
VH with this IP address. Hence there is no 
restriction on the IP addresses that can be used for 
VH’s inside the DVCSL.) 

We conclude that no connectivity is possible 
between the Linux operating systems and the virtual 
hosts, although they use the same subnet. This 
shows that the DVCSL is securely isolated from the 
outside world. 

6 FUTURE WORK 

In this paper we showed that two isolated, distant, 
virtual networks can be connected in a DVCSL 
transparently and securely. For connecting to a 
remote bridge endpoint, a student needs to know the 
IP address and port of the computer where the 
remote bridge endpoint is located. A student may 
also need to do additional network configuration for 
allowing communication between the remote bridge 
endpoints. This can for example be necessary when 
network address translation (NAT) is used, which 
then requires port forwarding.  

With the point-to-point connection of two virtual 
networks, also more than two virtual networks can 
be connected. However, this requires some self 
organization by the students to avoid the appearance 
of circular flow of network data. 
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Our current research addresses these issues by 
adding a central authority that connects and manages 
multiple VCSL’s and forwards data between them. 

We showed that traffic inside the DVCSL is 
isolated from the outside world. However, a 
malicious user outside the DVCSL can monitor the 
DVCSL traffic that is sent over the internet. Such a 
malicious user can access the encapsulated OSI-
layer 2 data by using the techniques as described in 
this paper, and distribute the data outside the 
DVCSL. Access to our OSI-layer 2 traffic is 
possible only by intentional installation and 
configuration of additional software components 
which implement a remote bridge endpoint. Typical 
TCP/IP stack configurations do not contain a remote 
bridge endpoint. Despite of this we suggest to 
deploy existing encryption libraries like SSL for 
future implementations of our DVCSL in order to 
make our network traffic completely inaccessible for 
non-DVCSL systems. 

7 CONCLUSIONS 

We presented a DVCSL in which remote students 
can perform network security exercises inside an 
encapsulated common networking environment. The 
DVCSL is built by connecting distinct VCSL’s 
transparently at OSI-layer 2 across an arbitrary 
TCP/IP-based WAN infrastructure like the internet.  
To implement this connection, we designed a 
software component called ghost host with an 
interface to access local virtual network traffic. The 
ghost host can extract and inject Ethernet frames. 
We used the concept of a remote bridge endpoint to 
transport all local OSI-layer 2 traffic between remote 
ghost hosts across a TCP/IP-based WAN. As a proof 
of concept, we demonstrated an example setup 
which shows that both major goals of our effort are 
reached: the remote virtual networks are connected 
transparently at OSI-layer 2 and no intentional or 
unintentional damage can affect systems not 
participating in the DVCSL.  

Summarized our DVCSL will allow remote 
students to attend practical courses in network 
security similar to courses performed in a real 
safeguarded networking laboratory on a technical 
level. As an overall result, this is a considerable step 
towards combining the advantages of distance 
education and on-site training. 
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