
A DISTRIBUTED VIRTUAL COMPUTER SECURITY LAB

Harald Vranken
Open Universiteit, School of Computer Science, P.O. Box 2960, 6401 DL Heerlen, The Netherlands

Jens Haag, Tobias Horsmann, Stefan Karsch
Cologne University of Applied Sciences, Faculty of Computer Science and Engineering Science

Steinmüllerallee 1, 51643 Gummersbach, Germany

Keywords: Distance education, e-Learning, Distributed virtual computer security lab, Virtual lab.

Abstract: Universities offering courses in the field of analyzing, configuring and safeguarding computer networks,
provide specific software and hardware resources to students for practical assignments. At distance
universities these resources usually are not physically accessible for remote students. We initially addressed
this issue by offering an environment which allows students to build virtual computer networks on their
local computer. The environment consists of a preconfigured virtualized software package and is referred to
as the virtual lab. This approach reaches its limits when students intend to perform group work similar to
typical on-site courses. To remove this limitation, we developed an extended virtual lab, called the
Distributed Virtual Computer Security Lab (DVCSL), in which distinct remote virtual labs can be connected
across a connection network (e.g., the internet). The DVCSL allows remote students to perform networking
and security exercises inside an encapsulated distributed common networking environment. The design of
the DVCSL meets two major requirements: establishing a transparent communication path between remote
virtual labs and assuring that non-participating systems outside the DVCSL are not affected by the
transmitted data. In this paper we present the architecture of the DVCSL and demonstrate its functionality as
well as its security by an example setup.

1 INTRODUCTION

Computer security labs are of great value in courses
that teach security of computer systems and
networks. The knowledge that students learn from
textbooks, is illustrated, deepened, and anchored by
carrying out practical exercises in such a lab. In
addition, students usually like carrying out practical
exercises next to studying theory, thereby improving
their motivation and results.

Computer security labs are nowadays quite
common at many universities; see for instance
(Gaspar, Langevin and Armitage, 2007) and
(Mattord and Whitman, 2004) for an overview of
some recent practices. Initially, a computer security
lab was a room containing computer systems
connected in a network, completely isolated from
the outside world. Administration and maintenance
of such a lab however is labor-intensive. Students
work in the lab with super-user rights and can

modify system configurations at will. After a
session, it is necessary to clean up system
configurations, which may even require reinstalling
operating systems. Therefore, most modern
computer security labs apply virtualization, where
students work in virtualized environments. Cleaning
up or reinstalling a virtual lab simply means
reloading the virtual environments, which can even
be an automated task. Early examples of labs
applying virtualization have been reported in
(Bullers, Burd and Seazzu, 2006), (Hay and Nance,
2006) and (O'Leary, 2006).

Isolated computer security labs at universities are
however not suited for distance teaching, since
students may not be able to travel to the lab due to
restrictions on time or distance. Distance teaching is
accommodated by providing remote access to the lab
over secure network connections. Numerous
examples of computer security labs with remote
access have been reported, such as in (Border,
2007), (Hu, Cordel and Meinel, 2005), (Keller and

110 Vranken H., Haag J., Horsmann T. and Karsch S..
A DISTRIBUTED VIRTUAL COMPUTER SECURITY LAB.
DOI: 10.5220/0003343801100119
In Proceedings of the 3rd International Conference on Computer Supported Education (CSEDU-2011), pages 110-119
ISBN: 978-989-8425-49-2
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Naues, 2006), (Krishna, Sun, Rana, Li and Sekar,
2005), and (Lahoud and Tang, 2006). Although such
labs may be accessed remotely at any time from any
place, they are generally not easily scalable.
Allowing an arbitrary number of students to
participate at the same time, requires students to
reserve timeslots in advance for working in the lab.
This may impose restrictions for students in distance
education, who usually study in evening hours and
weekends. Provisioning a remote lab for peak access
outside office hours, may result in a largely over-
dimensioned lab with a low average degree of
utilization and hence a waste of resources.

Some universities recently adopted a different
approach for providing a virtual computer security
lab (VCSL), for instance as reported in (Vranken
and Koppelman, 2009) and (Li, 2009). Instead of
moving students to the lab, either physically or by
remote access, the lab is moved to the students. The
VCSL of the Open University of The Netherlands
(Vranken and Koppelman, 2009) consists of an
isolated, secured software environment, provided on
a DVD, that each individual student can easily
install on his/her computer. Inside the VCSL, the
student can set up multiple virtual hosts, connect
them into virtual computer networks, and safely
carry out experiments related to security. The VCSL
is used in courses on computer security, but could
also be used in courses on operating systems,
computer networks, distributed systems, or web
services. In the VCSL, the student can work both as
a hacker, preparing and launching attacks against
systems and networks inside the VCSL, as a system
administrator, implementing security measures to
prevent and detect attacks, and as a regular user,
experiencing the effects of attacks and security
measures.

The VCSL can be easily installed and run locally
on each student’s computer. This decentralized
approach is suited to accommodate any number of
students, provides students the freedom to run the
lab whenever and wherever they want, and
eliminates the need for a central lab at the university.
A shortcoming however is that students have to
work on their own. It is for instance impossible to
offer exercises on distributed attacks involving large
botnets, or hacking games in which students are
challenged to attack each other’s systems and
securing their systems against attacks from fellow
students. We therefore extended the VCSL towards
a distributed virtual computer security lab (DVCSL).
The DVCSL allows connecting the VCSL’s of
multiple students into a large virtual network
running over the internet. Traffic inside the virtual
network is completely isolated from the outside

world. Hence, communication between virtual hosts
inside the DVCSL and hosts outside the DVCSL is
impossible. Students can therefore safely carry out
assignments related to security without any
restrictions - even spreading malware could be
allowed - without the risk of accidentally (or
intentionally) attacking or infecting hosts on the
internet.

This paper presents the communication
infrastructure of the DVCSL. The paper is organized
as follows. In section 2 we give further details on the
VCSL, the basic building stone of the DVCSL. In
section 3 we list related work on computer security
labs, showing the novelty of our DVCSL. In section
4 we explain the architecture and implementation of
the DVCSL. In section 5 we describe an example
setup of the DVCSL, demonstrating the correct,
secure operation of the DVCSL. In section 6 we
shortly address future work and section 7 concludes
the paper.

2 VCSL

The VCSL is a stand-alone environment, composed
of two nested software virtualization layers, that
each student can install on his/her computer. The
software components to build the VCSL are
freeware or open source, and are distributed to
students on a DVD.

The VCSL is composed of two virtualization
layers, as shown in figure 1. The host machine is the
student’s computer, which runs an arbitrary
operating system, i.e., the host operating system.
The first virtualization layer creates the virtual host
machine. It consists of virtualization software such
as VMware Player (freeware) or Oracle VM
VirtualBox (open source), which runs on the host
machine just like an ordinary application. Versions
of this software are available for a large range of
platforms. VirtualBox for instance runs on host
machines with either Windows, Linux, Mac OS X,
or OpenSolaris. This first virtualization layer
therefore runs on nearly all student computers,
regardless of the hardware and the host operating
system. The virtual host machine runs the virtual
host operating system. For the VCSL we selected
Linux, since it is open source and can be distributed
to students without licensing costs. In fact, we
selected Knoppix, a bootable live Linux system
containing a collection of GNU/Linux applications
and the KDE graphical desktop environment.

The second virtualization layer is a Linux
application, called Netkit (Pizzonia and Rimondini,
2008), that runs inside the virtual host machine. This
second virtualization layer allows to instantiate

A DISTRIBUTED VIRTUAL COMPUTER SECURITY LAB

111

Figure 1: Architecture of VCSL.

multiple virtual machines that all run Linux. Netkit
applies virtualization based upon User Mode Linux
(UML). A UML virtual machine is created by
running a Linux kernel as a user process in the
virtual host machine (Dike, 2006). Multiple UML
virtual machines can be run easily with minimal
resources. The Linux file system is shared by all
UML virtual machines using the copy-on-write
(COW) mechanism. Hence, the file system is shared
read-only by all UML virtual machines. Each UML
virtual machine has a second, separate file system in
which only the local changes to the shared file
system are stored. This saves both disk space and
memory, and simplifies management of multiple
UML virtual machines. Netkit consists of a
collection of scripts that allow to setup and
configure UML virtual machines with virtual
network interfaces, and to connect these into virtual
networks. The virtual network interfaces of the
UML virtual machines can also be connected to the
virtual network interface of the virtual host machine,
and even to the physical network interface of the
host machine.

The hardware requirements for running the
VCSL are very modest. A few UML virtual
machines can already be run smoothly on a PC with
a Pentium-4 processor and 256 MB memory. The
VCSL has been used successfully in a security
course by more than two hundred students with only
few minor problems.

3 RELATED WORK

The idea of using an isolated network as
anenvironment to perform security related tasks for
the purpose of research or education is evident
(Bishop and Heberlein, 1996). There are two general
approaches to create such an environment.

The first approach is to create or use an isolated,

physical network with physical hosts that is
separated from a productively used network such as
a campus network (Bishop and Heberlein, 1996;
Jakab, Janitor and Nagy, 2009). This isolation may
be achieved by physical separation of the networks
or by using components like firewalls to restrict data
flow between network areas (Yang, Kwok-Bun,
Liaw, Collins, Venkatraman, Achar and Sadasivam,
2004). Within this isolated network the students can
perform exercises and work with a real-world like
network setup. Remote access to such a network
may be granted by using remote access technologies
such as VPN (Virtual Private Network).

The second approach makes use of virtualization
technologies to create an isolated, virtual network
with virtual hosts. Literature refers to such an
environment in the context of education or e-
learning usually as a virtual lab (Damiani, Frati and
Rebeccani, 2006; Keller and Naues, 2006). This
approach significantly reduces the amount of
physical hardware resources (e.g., switches, routers,
hosts), since the required resources are created by
virtualization.

Literature also reports two main approaches to
provide an isolated network. In the first one, the
environment is provided by a central authority,
usually located at the university (Drigas, Vrettaros,
Koukianakis and Glentzes, 2005) and students can
get physical or remote access by using a secured
network connection. Second, the environment is
provided as a preconfigured, stand-alone software
package which can be installed and used by students
on any computer, usually their private computer (Li,
2009; Vranken and Koppelmann, 2009). This gives
the students the opportunity to safely carry out
assignments wherever and whenever they want to.
As flexible and independent this kind of
environment is, it lacks the option to connect several
of these stand-alone environments. It is not possible
for remote students to cooperate in teams when
carrying out exercises. This also means that the
demand for real world-like scenarios that require to
work with or against other students, is sometimes
not fulfilled.

In this paper, a first step is introduced to
connect two or more local, virtualized, stand-alone
environments to create a distributed virtual computer
security lab.

4 DVCSL

In this section we outline the architecture and
implementation of the DVCSL. Each VCSL consists
of a number of UML virtual machines, connected by

Host machine

UML virtual machines
in virtual network

Virtual host machine

CSEDU 2011 - 3rd International Conference on Computer Supported Education

112

virtual networks, and also connected to the virtual
host machine. For building a DVCSL, a transparent
connection between the virtual host machines of
distinct VCSL’s is required. We therefore equip
each VCSL with an interface, such that a point-to-
point connection can be created between two
VCSL’s. We will outline this further in the
remainder of this paper. A future extension is to
connect multiple VCSL’s, which is achieved by
adding a central authority that manages all
connected VCSL’s and forwards data between them.
The latter is subject of our ongoing research and is
not included in this paper.

4.1 Requirements

In order to connect two VCSL’s transparently, we
connect the VCSL’s at OSI-layer 2. We presume
Ethernet-based networks, and hence the Ethernet
protocol running at OSI-layer 2. Connecting two
virtual networks at OSI-layer 2 requires that
Ethernet frames in the first virtual network should be
transmitted transparently to the second, remote
virtual network and vice versa. By connecting
VCSL’s at OSI-layer 2, the connected virtual
networks will behave like a single broadcast domain
(Comer, 2001). Hence, students working in the
DVCSL have the notion of being connected to other
students over an Ethernet LAN, although the actual
connection is by a WAN using the public internet
involving the entire TCP/IP protocol-stack. This is
in contrast with conventional network operation,
where LAN-frames are converted into WAN-packets
at the network perimeter by gateways, preserving the
original payload of the upper OSI layers. Our
approach also differs from VPN’s, where tunneling
is generally done at OSI-layer 3 (e.g., when applying
IPsec) or above (e.g., when applying SSL).

Performing practical exercises on networking
and IT-security introduces an additional
requirement: network data that is transported inside
a DVCSL must not harm non-participating systems
also connected the WAN. It should be absolutely
assured that non-participating systems, such as the
host systems on which the VCSL’s run and any
other hosts in the internet, are not affected by the
transmitted data. Hence, traffic inside the DVCSL
should be completely isolated from the world
outside the DVCSL.

To connect virtual networks, we first examine
the virtual networking architecture of Netkit. Netkit
consists of a collection of scripts which configure
and deploy UML. As mentioned, UML is a Linux-
kernel executed as a user application. UML can run
its own processes inside its kernel environment. An

UML-kernel does not interact directly with the
hardware, but with the system call interface of the
underlying Linux-kernel (Rimondini, 2007), which
we referred to as the virtual host operating system in
figure 1. Netkit allows to easily configure and set-up
UML virtual machines, and building and using local
virtual networks. Virtual networks are created by the
so-called UML-Switch, a tool providing network
logic that comes with the UML-Utilities tools in
UML.

User Mode Linux (UML)

NetKit-Scripts

Logical View Technical View

UML-Switch

UML-
Kernel

UML-
Kernel

Virtual
Network

Virtual
Host

Virtual
Host

Figure 2: Architecture of Netkit.

Figure 2 shows the architecture of Netkit and
provides a logical and a technical view of its
components. The logical view shows two virtual
hosts which are connected in a virtual network. In
the technical view, the virtual hosts are UML-
kernels that communicate with each other using the
service provided by a UML-Switch.

As the name implies, a UML-Switch connects
two or more virtual hosts with switch-like behavior.
A network switch establishes a logical point-to-point
connection between hosts in a network that are
connected to the ports of the switch.

The UML-Switch can also be configured to
behave like a hub (Dike, 2006). Virtual hosts that are
connected in a virtual network with hub-like
behavior can be considered to be connected in the
same network segment (Schreiner, 2009). In a
network segment, a host receives all data sent by
other hosts in the network segment, even if the host
is not the designated receiver of the data. Netkit uses
the UML-Switch with this hub-like behavior, which
offers users the opportunity to analyze data
transmitted from any virtual host in the virtual
network.

In the DVCSL, we c onnect two remote virtual

A DISTRIBUTED VIRTUAL COMPUTER SECURITY LAB

113

networks by extracting data at a local UML-Switch
and sending it across a connection network to a
remote UML-Switch where the extracted data is then
injected, and vice versa. In this way two virtual
networks can be connected. Implementing this
approach is done by two subtasks:
• Subtask A: extracting and injecting network

data at a UML-Switch.
• Subtask B: sending and receiving the extracted

network data across a network.

4.2 Subtask A: Extracting
and Injecting

We examine the technical implementation of a
virtual network as shown in figure 2 in which the
UML-Switch is involved. For each virtual network,
an instance of the UML-Switch is running, which in
fact uses a UNIX-Socket to communicate with the
virtual hosts. A UNIX-Socket is a system resource
which serves as a communication endpoint and can
be used for remote communication or local inter-
process communication (Stevens, Fenner and
Rudoff, 2006).

The UML-Switch attaches itself to a UNIX-
Socket, and listens for incoming data sent by the
virtual hosts to the UNIX-Socket. The UML-Switch
reads the network data from the UNIX-Socket and
writes the data to all other connected virtual hosts,
which creates the hub-like behavior of the UML-
Switch.

UML-Switch
UNIX-Socket

VHVH

Virtual
Network

Figure 3: Construction of a virtual network.

Figure 3 shows the architecture of a virtual
network. For simplicity, only two virtual hosts
(VH’s) are shown, but multiple VH’s can be
connected to the virtual network. The VH’s are
connected to the UNIX-Socket. Communication
over the virtual network is realized by the VH’s
sending data to the UNIX-Socket, and the UML-
Switch forwarding this data to all other connected
VH’s in the same virtual network.

Extracting data from the UML-Switch and
injecting data from a remote virtual network into the
UML-Switch, relies on the hub-like behavior of the

UML-Switch. We developed a new software
component, that is applied in the virtual host
operating system and that connects itself to the
UNIX-Socket of the virtual network. This
component can be considered as a ghost host in the
virtual network because it is completely transparent
to the other components. With this ghost host it is
possible to extract all Ethernet frames from the
UNIX-Socket, as well as to inject frames received
from a remote virtual network. Compared to a
normal virtual host, the ghost host is not jailed in the
Netkit environment. The ghost host can therefore
communicate with the outside world, which cannot
be done by a normal virtual host. The UML-Switch
with hub-like behavior guarantees that network data
received from a remote virtual network is distributed
to all other locally connected virtual hosts.

UML-Switch

VHVHNet
Kit

Guest
OS GHUNIX-Socket

Figure 4: Virtual network with ghost host.

Figure 4 shows the construction of the virtual
network in figure 3. The figure also shows the
logical layers of the virtual network. The virtual
hosts are located and jailed within the Netkit layer.
The implementation of the virtual network is
realized in the virtual host operating system, which
may also be referred to as the guest OS. In the guest
OS layer a ghost host (GH) is located which realizes
subtask A. The ghost host can extract all data that is
sent over the virtual network and can forward the
data to a destination outside the guest OS (cloud).
Incoming data from outside (cloud) can be injected
in the UNIX-Socket using the ghost host.

Hence, the ghost host provides an interface to the
virtual network, where Ethernet frames can be
extracted and injected without the need to modify
any existing components of Netkit or UML.

4.3 Subtask B: Sending and Receiving

Subtask B consists of sending the extracted Ethernet
frames from one ghost host to another ghost host in
a remote system. Ethernet frames cannot be sent
directly over the internet or a WAN (Comer, 2001),

CSEDU 2011 - 3rd International Conference on Computer Supported Education

114

since those networks require a network protocol
which runs on OSI-layer 3, presumably the Internet
Protocol (IP). To resolve this issue, the Ethernet
frames are sent over a remote bridge which is
established between two ghost hosts.

A remote bridge can connect two distant
networks by using a connection network
(Schürmann, 2004). A benefit of the remote bridge
is that the connection network and the distant
networks can use different protocols. Even if the
protocols of the connection network and the distant
networks are equal, the remote bridge ensures that
the distant networks cannot intercommunicate with
the connection network. The remote bridge consists
of two remote bridge endpoints which connect two
networks at OSI-layer 2. Such an endpoint
encapsulates an Ethernet frame of the local
environment in a transport protocol, and sends the
data to the remote endpoint where the transport
protocol is removed and the OSI-layer 2 data is
injected in the remote environment.

We extended the ghost host component and
added functionality of a remote bridge endpoint. The
Ethernet frames that are extracted by the ghost host,
are first encapsulated in the IP protocol (acting as
transport protocol), and next sent to the remote
bridge endpoint of a fixed distant destination. For
incoming data, the IP protocol is removed by the
ghost host and the Ethernet frames are sent into the
local network, respectively the local UNIX-Socket.

4.4 Building the DVCSL

With subtask A and B in place, we can connect two
distant virtual networks by interfacing to a remote
bridge between the virtual networks. Extracted data
of one virtual network is encapsulated by the remote
bridge endpoint into a transport protocol, and sent to
a distant remote bridge endpoint where the data is
unpacked and injected into the local virtual network.

Figure 5 shows an example of two virtual
networks. Each virtual network has two virtual hosts
(VH) and a ghost host (GH) offering a remote bridge
endpoint (RBE), attached to the UNIX-Socket. The
Ethernet frames that are extracted from a virtual
network are sent across a transport network (cloud)
encapsulated into a transport protocol. As transport
protocol TCP/IP or UDP/IP is assumed.

5 EXAMPLE SETUP

Figure 6 shows an example setup of a DVCSL for
two students (Student A and Student B). It is

RBE UML-Switch

VH VH

UNIX-Socket
RBE

IP
TCP /
UDP

Transport Layer
Network Layer

Ethernet
Link Layer

GHGH
UML-Switch

VH VH

UNIX-Socket

Figure 5: Connecting two virtual networks.

presumed that each student uses his/her own
computer connected via a local or wide area network
(LAN/WAN). In the example setup, Student A is at
public IP address 192.168.2.102 and can reach
Student B at IP address 192.168.2.101, and vice
versa. Each student locally runs a VCSL, but a
student may also run a native Linux operating
system, thereby eliminating the need for running the
first virtualization layer shown in figure 1. In the
example, each student sets up a Netkit environment
consisting of two virtual hosts (VH) connected in a
local virtual network.

For example, Student A starts VH1 by issuing
the following commands:
#Start VH1 connected to network netA
vstart VH1 --eth0=netA
#Setup network interface on VH1
ifconfig eth0 192.168.2.200 netmask
255.255.255.0 up

In a similar way, Student A starts VH2, and
Student B starts VH3 and VH4 connected to netB.
The local networks are connected as a distributed
local subnet by using the approach presented in
section 4. Student A connects to the remote bridge
endpoint of Student B, using the user application
named plug as follows:
#Start remote connection to Student B
plug --source-ip 192.168.2.102 \
--source-port 53838 \
--destination-ip 192.168.2.101 \
--destination-port 32000 \
--uml-switch-socket \
/path/to/vhub_USERNAME_netA.cntc

Student B will do the same, connecting to
theremote bridge endpoint of Student A. From now
on, netA and netB are connected with each other,
and all four virtual hosts can reach each other.

In the following, we provide two scenarios that
demonstrate the correct and secure operation of the
DVCSL shown in figure 6. In these scenarios, we

A DISTRIBUTED VIRTUAL COMPUTER SECURITY LAB

115

Figure 6: Example setup.

use Ping, a well-known tool for testing the
connectivity between two computer systems by
sending an echo requests and receiving an echo
reply. We use Wireshark (www.wireshark.org), a
tool for network protocol analysis, to visualize the
recorded network data.

5.1 Scenario 1

Scenario 1 demonstrates that virtual host VH1 of
student A can communicate with virtual host VH4 of
student B. Moreover, scenario 1 shows that the
virtual hosts of student A and B act as if they
wereconnected in the same network segment (hub-
like behavior).

Student A runs Ping on VH1, trying to connect to
VH4. The expected result is that VH1 first sends an
address resolution request, using ARP (Address

Resolution Protocol), to obtain the Media Access
Control (MAC) address of VH4. This procedure is
common for IP/Ethernet-based networks to obtain
the Ethernet address of a host when only its IP
address is known. Once the MAC address of VH4 is
obtained, VH1 sends an echo request which is
answered by an echo reply. The network data which
is sent between the Linux operating systems should
be encapsulated in a transport protocol.

Figure 7 shows the network data captured at
virtual network interface eth0 of VH1. As expected,
an ARP request is sent to obtain the MAC address of
virtual host VH4 (No. 1). Receiving the ARP reply
indicates that both hosts are in the same local subnet
(No. 2). Afterwards, the echo request is sent which
is replied by VH4 (No. 3-4). The IP addresses of the
virtual network interfaces of VH1 and VH4 are
correctly shown as source and destination addresses.

Figure 8 shows the network data that is sent
between VH1 and VH4, captured at the network
interface of the underlying Linux operating system
on student A’s computer. Due to the encapsulation
of the network data in a transport protocol (shown as
UDP), the IP addresses of the Linux operating
systems are correctly shown as source and
destination addresses. The payload of the first UDP
packet has a size of 42 bytes which corresponds to
the size of the ARP request as seen in figure 7.

Figure 7: Wireshark capture inside the virtual lab (scenario 1).

Figure 8: Wireshark capture outside the virtual lab (scenario 1).

CSEDU 2011 - 3rd International Conference on Computer Supported Education

116

Figure 9: Wireshark capture inside the virtual lab (scenario 2).

Figure 10: Wireshark capture outside the virtual lab (scenario 2).

We conclude that the virtual hosts of the two
students are capable of communicating with each
other and that the network data is sent encapsulated
in a transport protocol.

5.2 Scenario 2

Scenario 2 demonstrates that virtual host VH1 of
student A cannot communicate with the Linux
operating system of student B, although their IP
addresses are located in a common subnet
(192.168.2.0/24). The expected result for this
scenario is that no communication between VH1 and
the Linux operating system of student B is possible
due to the strictly separated networks. VH1 sends
ARP requests to obtain the MAC address of Student
B’s Linux operating system, but these ARP requests
will never be received by the Linux operating
system of Student B. Instead, they are encapsulated
and sent to the remote bridge endpoint of Student B.

Figure 9 shows that VH1 tries to obtain the
MAC address of the Linux operating system of
Student B by sending ARP requests several times.
These requests are not answered due to non existing
connectivity to the network of the Linux operating
systems.

Figure 10 shows that the Linux operating system
receives the ARP request encapsulated in the
transport protocol. The payloads of the UDP packets
have a size of 42 bytes which corresponds to the size
of the ARP requests as seen in figure 9. Due to the
encapsulation, the Linux operating system does not
recognize the packets as ARP requests. It therefore

does not send a reply, but sends the network data to
the remote bridge endpoint. The virtual network of
student B however does not contain a VH with IP
address 192.168.2.101, and hence no echo reply will
be sent. (This also shows that student B may add a
VH with this IP address. Hence there is no
restriction on the IP addresses that can be used for
VH’s inside the DVCSL.)

We conclude that no connectivity is possible
between the Linux operating systems and the virtual
hosts, although they use the same subnet. This
shows that the DVCSL is securely isolated from the
outside world.

6 FUTURE WORK

In this paper we showed that two isolated, distant,
virtual networks can be connected in a DVCSL
transparently and securely. For connecting to a
remote bridge endpoint, a student needs to know the
IP address and port of the computer where the
remote bridge endpoint is located. A student may
also need to do additional network configuration for
allowing communication between the remote bridge
endpoints. This can for example be necessary when
network address translation (NAT) is used, which
then requires port forwarding.

With the point-to-point connection of two virtual
networks, also more than two virtual networks can
be connected. However, this requires some self
organization by the students to avoid the appearance
of circular flow of network data.

A DISTRIBUTED VIRTUAL COMPUTER SECURITY LAB

117

Our current research addresses these issues by
adding a central authority that connects and manages
multiple VCSL’s and forwards data between them.

We showed that traffic inside the DVCSL is
isolated from the outside world. However, a
malicious user outside the DVCSL can monitor the
DVCSL traffic that is sent over the internet. Such a
malicious user can access the encapsulated OSI-
layer 2 data by using the techniques as described in
this paper, and distribute the data outside the
DVCSL. Access to our OSI-layer 2 traffic is
possible only by intentional installation and
configuration of additional software components
which implement a remote bridge endpoint. Typical
TCP/IP stack configurations do not contain a remote
bridge endpoint. Despite of this we suggest to
deploy existing encryption libraries like SSL for
future implementations of our DVCSL in order to
make our network traffic completely inaccessible for
non-DVCSL systems.

7 CONCLUSIONS

We presented a DVCSL in which remote students
can perform network security exercises inside an
encapsulated common networking environment. The
DVCSL is built by connecting distinct VCSL’s
transparently at OSI-layer 2 across an arbitrary
TCP/IP-based WAN infrastructure like the internet.
To implement this connection, we designed a
software component called ghost host with an
interface to access local virtual network traffic. The
ghost host can extract and inject Ethernet frames.
We used the concept of a remote bridge endpoint to
transport all local OSI-layer 2 traffic between remote
ghost hosts across a TCP/IP-based WAN. As a proof
of concept, we demonstrated an example setup
which shows that both major goals of our effort are
reached: the remote virtual networks are connected
transparently at OSI-layer 2 and no intentional or
unintentional damage can affect systems not
participating in the DVCSL.

Summarized our DVCSL will allow remote
students to attend practical courses in network
security similar to courses performed in a real
safeguarded networking laboratory on a technical
level. As an overall result, this is a considerable step
towards combining the advantages of distance
education and on-site training.

REFERENCES

Bishop, M. and Heberlein, L. T. (1996). An Isolated
Network for Research. 19th National Information
Systems Security Conference, 22-25.

Border, C. (2007). The development and deployment of a
multi-user, remote access virtualization system for
networking, security, and system administration
classes. ACM SIGCSE Bull., 39(1), 576-580.

Bullers, W. I., Burd, S. and Seazzu, A. F. (2006). Virtual
machines - an idea whose time has returned:
application to network, security, and database courses.
Proc. SIGCSE Techn. Symp. on Computer Science
Education, 102-106.

Comer, D. E. (2001). Computer Networks and Internets,
with Internet Application (3rd ed.). New York,
Prentice Hall.

Damiani, E., Frati, F. and Rebeccani D. (2006). The Open
Source Virtual Lab: a Case Study. Proc. Workshop on
Free and Open Source Learning Environments and
Tools, 5-12.

Dike, J. (2006). User Mode Linux. New Jersey, Prentice
Hall.

Drigas, A. S., Vrettaros, J., Koukianakis, L. G., and
Glentzes, J. G. (2005). A Virtual Lab and e-learning
system for renewable energy sources. Proc. WSEAS
Int. Conf. on Educational Technologies, 149-153.

Gaspar, A., Langevin, S. and Armitage, W. D. (2007).
Virtualization technologies in the undergraduate IT
curriculum. IEEE IT Professional, 9(4), 10-17.

Hay, B. and Nance, K. L. (2006). Evolution of the
ASSERT computer security lab. Proc. Coll. for
Information Systems Security Education, 150-156.

Hu, J., Cordel, D. and Meinel, C. (2005). Virtual machine
management for Tele-Lab "IT-Security" server. Proc.
IEEE Symp. on Computers and Communications. 448-
453.

Jakab, F., Janitor, J. and Nagy, M. (2009). Virtual Lab in a
Distributed International Environment – SVC
EDINET. Proc. Int. Conf. on Networking and
Services, 576-580.

Keller, J. and Naues, R. (2006). Design of a virtual
computer security lab. Proc. IASTED Int. Conf. on
Communication, Network, and Information Security,
211-215.

Krishna, K., Sun, W., Rana, P., Li, T. and Sekar, R.
(2005). V-NetLab: a cost-effective platform to support
course projects in computer security. Proc. Annual
Coll. for Information Systems Security Education, 1-7.

Lahoud, H. A. and Tang, X. (2006). Information security
labs in IDS/IPS for distance education. Proc. Conf. on
Information Technology Education, 47-52.

Li, P. (2009). Exploring virtual environments in a
decentralized lab. ACM SIGITE Research in IT, 6(1),
4-10.

Mattord, H. J. and Whitman, M. E. (2004). Planning,
building and operating the information security and
assurance laboratory. Proc. Annual Conf. on
Information Security Curriculum Development, 8-14.

O'Leary, M. (2006). A laboratory based capstone course in
computer security for undergraduates. Proc. SIGCSE
Techn. Symp. on Computer Science Education, 2-6.

CSEDU 2011 - 3rd International Conference on Computer Supported Education

118

Pizzonia, M. and Rimondini, M. (2008). Netkit: easy
emulation of complex networks on inexpensive
hardware. Proc. Int. Conf. on Testbeds and Research
Infrastructures for the Development of Networks &
Communities, 1-10.

Rimondini, M. (2007). Interdomain Routing Policies in
the Internet: Inference and Analysis. PhD thesis.
Rome, Roma Tre University.

Schreiner, R. (2009). Computer-Netzwerke. Munich,
Hanser Verlag.

Schürmann, B. (2004). Grundlagen der Rechner-
kommunikation, Wiesbaden, Friedr. Vieweg & Sohn
Verlag.

Stevens, W. R., Fenner, B. and Rudoff, A. M. (2003).
UNIX Network Programming Volume 1: The Sockets
Networking (3rd ed.). Boston, Addision-Wesley.

Vranken, H. and Koppelman, H. (2009). A virtual
computer security lab for distance education. Proc.
IASTED Int. Conf. on Internet and Multimedia
Systems and Applications, 21-27.

Yang, T. A., Kwok-Bun, Y., Liaw, M., Collins, G.,
Venkatraman, J. T., Achar, S. and Sadasivam, K.
(2004). Design of a distributed computer security lab.
J. of Computing Sciences in College, 20(1), 332-346.

A DISTRIBUTED VIRTUAL COMPUTER SECURITY LAB

119

