
OBSERVER-BASED ADAPTIVE SLIDING MODE CONTROL 
FOR UNCERTAIN SYSTEMS WITH DEAD-ZONE INPUT 

Yu-Ting Kuo and Kuo-Ming Chang 
Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan 

Keywords: Extension state observer, Adaptive control, Sliding mode control, Dead-zone, External disturbance. 

Abstract: In this paper, an adaptive sliding mode control is proposed to address the tracking control objective of 
uncertain nonlinear system preceded by an unknown dead-zone and with unmeasurable system state. Based 
on the extension state observer, sliding mode control, and adaptive dead-zone inverse techniques, a robust 
observer-based adaptive sliding mode control scheme is developed without available system state. The 
proposed control scheme can ensure global stability of the controlled system subject to unknown nonlinear 
function and external disturbance and achieve the tracking control objective satisfactorily.  

1 INTRODUCTION 

Generally, due to physical constraints of the 
dynamical systems, it may exist some non-smooth 
nonlinear characteristics in the control input, such as 
backlash, saturation, dead-zone, which can severely 
limit system performance or even result in system 
unstability. Hence, the nonlinear effects should be 
considered and compensated in analysis or 
realization of a control system. Recently, non-
smooth nonlinearitites have been drawn much 
attention in the control community.   

Dead-zone is one of the most important non-
smooth nonlinearities arisen in actuator, such as 
servo valves and DC servo motors. In recent years, 
dead-zone has been extensively discussed in the 
literature. In most practical motion systems, the 
dead-zone is usually unknown. To handle systems 
with unknown dead-zone, Tao and Kokotovic (1994; 
1995) proposed continuous- and discrete-time 
adaptive dead-zone inverses for linear systems with 
unmeasurable dead-zone outputs to improve the 
tracking performance by using dead-zone inverse. 
Without constructing the dead-zone inverse, Wang 
et al. developed a new robust adaptive approach of a 
class of nonlinear system preceded by a dead-zone. 
Ma and Yang further exploded an adaptive output 
feedback control without the dead-zone inverse for 
uncertain nonlinear system with an unknown non-
symmetric dead-zone. The considered system is 
dominated by a triangular system without zero 
dynamics satisfying polynomial growth in 

unmeasurable states. Selmic and Lewis employed 
neural networks to construct a dead-zone 
precompensator, which is used to improve the 
tracking performance of motion system in the 
presence of unknown dead-zone. For controlling a 
class of uncertain multi-input multi-output nonlinear 
state time-varying delay systems with unknown 
nonlinear dead-zone and gain signs, an adaptive 
neural control is proposed by Zhang and Ge. This 
control is designed based on the intuitive concept 
and piecewise description of dead-zone and the 
principle of sliding mode control and such this 
control scheme can guarantee that all signals are 
semi-globally uniformly ultimately bounded. Liu 
and Zhou used the universal approximation property 
of the fuzzy-neural networks to approximate 
unknown nonlinear function and then presented an 
observer-based adaptive fuzzy-neural control for a 
class of uncertain nonlinear systems with unknown 
dead-zone input to improve the control performance. 

In this paper, an observer-based adaptive sliding 
mode control approach for uncertain systems with 
unknown dead-zone is proposed to achieve the 
tracking control objective in the presence of 
unknown system nonlinear function and external 
disturbance. The paper is organized as follows: 
Section 2 gives some descriptions of the system; 
Section 3 presents the controller design based on 
adaptive control, sliding mode control and extension 
state observer techniques; The stability of the 
controlled system is proved in Section 4 and 
conclusions are made in Section 5. 
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2 SYSTEM DESCRIPTIONS 

Consider a class of n th-order single-input and 
single-output uncertain nonlinear system with a 
dead-zone function, which is described in the 
following dynamical equation 

)()(),,,,( )1()( tdtwtxxxfx nn ++= −  (1) 

where x  is the system output, f  is an unknown 
system nonlinear function, )(td  is an external 
disturbance, and )(tw  is a dead-zone nonlinear 
function. The dead-zone function with input )(tu  
and output )(tw  is graphically shown in Fig. 1 for 
some unknown constants rlrl mmbb ,,,0 <  

∞< . 

 
Figure 1:  Dead-zone function. 

As shown in Figure 1, the dead-zone function 
can be described mathematically by 
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Define a system state vector as 

[ ]Tn txtxtxt )()()()( )1( −=X  
nT

n Rtxtxtx ∈= )]()()([ 21  (3) 

Then, the system in (1) can be expressed by a 
state space representation 

21 xx =  

32 xx =  
                           

nn xx =−1  

)(( tdtwtfxn ++= ))( ，X  

)(ta=  (4) 

In this paper, the following assumptions, which 
specify the class of uncertain nonlinear systems are 
made as follows: 
Assumption 1. Uncertain external disturbance )(td  
is a bounded function. It means that there exists one 
positive constant 1c  such that 1|)(| ctd ≤ . 
Assumption 2. Nonlinear function )(ta  is assumed 
to be differentiable with respect to time and its 
derivative with respect to time is bounded, i.e. 

2|)(| cta ≤  with 02 >c . 
Let the desired state vector be 

Tn
dddd txtxtxt )]()()([)( )1( −=X  

nT
dndd Rtxtxtx ∈= )]()()([ 21

 (5) 

Then, define the tracking error as 

)()()( ttt dXXE −=  
T

n tetete )]()()([ 21=  (6) 

In this paper, the control objective is to design an 
observer-based adaptive sliding mode control to 
achieve 0)( →tE  as ∞→t  under the condition that 
the system states are not available during the control 
process.  

3 OBSERVER-BASED ADAPTIVE 
SLIDING MODE CONTROL 

In this section, an observer-based adaptive sliding 
mode control scheme will be developed to achieve 
the state tracking control objective. Because system 
states are not available, a so-called extension state 
observer is constructed to obtain estimated system 
states. On the constructing process of extension state 
observer, an augmented state vector is given as 
follows:  

T
na tatxtxtxt )]()()()([)( 21=X  

T
nn txtxtxtx )]()()()([ 121 +=  (7) 

Then, we have 

21 xx =  

32 xx =  

 

nn xx =−1  

)(taxn =  

)(1 taxn =+
 (8) 

In this paper, the extension state observer is 
given in the following form 

lb−  

lm  
rb  

)(tw  

rm  

)(tu
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)ˆ(ˆˆ 11121 xxLkxx −−=  
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where L  is a design positive constant, constants 
121 ,,, +nkkk  are chosen according to the pole 

assignment method. Define a state error vector 
between the estimated augmented system state and 
augmented system state as 

)()(ˆ)(~ ttt aaa XXX −=  
T

n
T

n txtxtxtxtxtx ])()()([])(ˆ)(ˆ)(ˆ[ 121121 ++ −=  
T

n txtxtx ])(~)(~)(~[ 121 +=  (10) 

where )(ˆ taX  is the estimated state of the augmented 
system state. From (8) and (9), we can obtain the 
dynamic equation of state error expressed by 
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(11) 

or 

)()(~)(~ ttt aa FXAX +=  (12) 

Wher 
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From the equation 0|| =− AIs , it yields that the 
characteristic equation of matrix A  is given by 

01
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2
2

1
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+−+
n

n
n

nnnn kLskLskLsLks  (13) 

Both sides of (13) are divided by 1+nL , then we have 
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2
)1(
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nn
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Define a variable as 

sLs 1
1

−=  (15) 

From (15), Eq. (14) can be further represented as 

011
1

1211
1

1 =+++++ +
−+

nn
nnn ksksksks  (16) 

To yield that all the zero locations of (16) lie on 
the left-hand plane of 1s  plane, constants 

121 ,,, +nkkk  can be given appropriately by using the 
pole assignment method. Setting suitable values 

121 ,,, +nkkk   implies that all the eigenvalues of 
matrix A  lie on the left-hand plane of s  plane. 
Because all the eigenvalues of matrix A  lie on the 
left-hand plane of s  plane, it can be concluded that 
the error dynamic system in (12) is asymptotically 
stable. The solution of (12) is obtained as follows: 

τττ deet
t t

a
t

a )()0(~)(~
0

)( FXX AA ∫ −+=  (17) 

Without loss of generality, we can set 0)0(~ =aX  
in the design process. Hence, it yields from Eq. (17) 
and Assumption 2 that 

τττ det
t t

a )()(~
0

)( FX A∫ −=  (18) 

and  

30

)( )()(~ cdet
t t

a <= ∫ − τττ FX A  

where 3c  is a positive constant. To design a sliding 
mode controller, a sliding function formed in the 
space of state error can be defined as 

)()( ttS ΓE=  (19) 

where ]1[ 121 −= nγγγΓ  is a constant vector. 
While an appropriate control law is applied and the 
sliding mode is occurred in finite time, the error 
dynamics in the sliding mode can be defined by 

01111 =+++ −− eee nnn γγ  (20) 

In (19), positive constants 121 ,,, −nγγγ  should 

be chosen such that 1
1

1

1 −
−

=

− ∑+ i
n

i
i

n λγλ  is a Hurwitz 

polynomial.  
Because the system state is not available, the 

sliding function cannot be constructed by the system 
state. In this paper, a so-called almost sliding 
function is given as 
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where ]01[ 121 −= nγγγΛ . 
Substituting  (18) into (22), it yields that 
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From (23), the derivative of function Ŝ  with respect 
to time is given by 
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Define a constant and a constant vector, respectively 
as 
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]0[ 1141 −−−= nc γγΓ  (27) 

Then, from (26) and (27), (25) can be represented by 
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It follows that from (18)  
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Suppose that 0)(
0

)( =∫ −t t de τττ FA  and 0=ΛF , a so-

called equivalent nonlinear input )(twe
 can be 

obtained from 0ˆ =S  in (29) 
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In addition the equivalent nonlinear input, for 
approaching the sliding surface, a switching 
nonlinear input is given as 
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where 
dk  and η are two design positive constants, ε  

is a sufficient small positive constant, and )(⋅sat  is a 
saturation function, which is represented by 
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Hence, the ideal nonlinear input can be obtained 
in the following form. 
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In (32), since f  and d  are two unknown 
functions, we can not obtain the ideal nonlinear 
input in the practical control.  From (1), the above 
input can be expressed as 
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Then, it yields that the desired nonlinear input can 
be designed in the following form 
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where 1ˆ +nx  is the estimated value of )(nx , which is 
obtained from the extension state observer and dŵ  is 
a filtered signal, which is given by  

ddd www δδ +−= ˆˆ  (35) 

where δ  is a design positive constant. Hence, the 
following result can be achieved. 

www ddt
==

∞→∞→
ˆlimlim

δ
 

Because the considered system contains an 
unknown dead zone in this paper, an adaptive dead 
zone inverse is proposed. The objective of the dead 
zone inverse is to cancel the dead zone so that 

)()( twtw d=  for any )(twd  which is the desired 
nonlinear input to the system. If dead zone 
parameters rlrl mmbb ,,,  are known, we can 
cancel the dead-zone effect. Mathematically, the 
relation between )(tu  and )(twd , which specifies the 
dead zone inverse, is defined as follows:  
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Define some constant vectors as 
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Then, (36) can be represented by 
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While we use the above dead zone inverse, it has 
a problem that the parameters rlrl mmbb ,,,  are 
unknown. In this section, the adaptive dead zone 
inverse based on the estimates to produce the control 
input is represented  in the following form. 
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where [ ]Tlr mmM ˆˆˆ =  and Tθθθ ]ˆˆ[ˆ
21=  are the 

estimates of M  and θ , respectively. Define 
parameter error, slope ratio, and estimated slope 
ratio, respectively as 
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Then, we have the estimate error of the slope ratio as 
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Define a function as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−=

ε
εε

SsatSS
ˆˆ  (43) 

The adaptation laws are given by 
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where α  and β are positive constants to determine 
the adaptation rate. Since )()( twtw d= , we have 
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Then, from (29) and (47), it yields that 
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Substituting (38) into (48), it is obtained that 
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4 STABILITY ANALYSIS 

Consider a Lyapunov function candidate as 
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Then, the time derivative of function V  is given by 
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1. As ε<|ˆ| S , from (43), we have 0=εS . It follows 
that 0=V . 

2. As ε≥|ˆ| S , from (43), we have SS ˆ=ε . 
From (44), (45), and (49), it is obtained that  
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From (51) and (52), we obtain 
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where 
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6c , 
7c , and 

8c  are given positive constants. 
When design parameters 

dk , η , andε  in (31) are 
chosen and satisfy the following condition. 

ηεηηη +≤+++ dkc8321
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From (53) and (54), it yield that 

02 ≤−≤ εSkV d
 (55) 

From the above analysis, it can be concluded 
that 0≤V  for all time. Therefore, V  is an non-
increasing function so that εS , θ̂ , and φ̂  are 
bounded, i.e. 

εS , θ̂ , and 
∞∈ Lφ̂ . From (55), we have 
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The above inequality means 
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According to Barbalat Lemma, it is concluded that 
0)(lim =
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t ε
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a bounded signal and within bounded by 

ε<|| )(ˆ tS      for all 1tt > , 01 >t . 

The above inequality means that )(ˆ tX  can 
asymptotically follow reference signal )(tX d

 and 
also implies that system state )(tX  can 
asymptotically follow reference signal )(tX d

 by 
using extension state observer.  

5 CONCLUSIONS 

Without the requiqement of available system state, 
the main contribution of this paper is to develop an 
observer-based adaptive sliding mode control 
scheme to achieve the tracking control objective for 
an uncertain system which is preceded by an unknown 
dead-zone and subject to unknown system nonlinear 
function and external disturbance. In this paper, it is 
proved that the proposed control scheme can ensure 
global stability of the controlled system and can 
achieve the tracking control objective satisfactorily.  
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