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In this paper, an adaptive sliding mode control is proposed to address the tracking control objective of

uncertain nonlinear system preceded by an unknown dead-zone and with unmeasurable system state. Based
on the extension state observer, sliding mode control, and adaptive dead-zone inverse techniques, a robust
observer-based adaptive sliding mode control scheme is developed without available system state. The
proposed control scheme can ensure global stability of the controlled system subject to unknown nonlinear
function and external disturbance and achieve the tracking control objective satisfactorily.

1 INTRODUCTION

Generally, due to physical constraints of the
dynamical systems, it may exist some non-smooth
nonlinear characteristics in the control input, such as
backlash, saturation, dead-zone, which can severely
limit system performance or even result in system
unstability. Hence, the nonlinear effects should be
considered and compensated in analysis or
realization of a control system. Recently, non-
smooth nonlinearitites have been drawn much
attention in the control community.

Dead-zone is one of the most important non-
smooth nonlinearities arisen in actuator, such as
servo valves and DC servo motors. In recent years,
dead-zone has been extensively discussed in the
literature. In most practical motion systems, the
dead-zone is usually unknown. To handle systems
with unknown dead-zone, Tao and Kokotovic (1994;
1995) proposed continuous- and discrete-time
adaptive dead-zone inverses for linear systems with
unmeasurable dead-zone outputs to improve the
tracking performance by using dead-zone inverse.
Without constructing the dead-zone inverse, Wang
et al. developed a new robust adaptive approach of a
class of nonlinear system preceded by a dead-zone.
Ma and Yang further exploded an adaptive output
feedback control without the dead-zone inverse for
uncertain nonlinear system with an unknown non-
symmetric dead-zone. The considered system is
dominated by a triangular system without zero
dynamics satisfying polynomial growth in
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unmeasurable states. Selmic and Lewis employed
neural networks to construct a dead-zone
precompensator, which is used to improve the
tracking performance of motion system in the
presence of unknown dead-zone. For controlling a
class of uncertain multi-input multi-output nonlinear
state time-varying delay systems with unknown
nonlinear dead-zone and gain signs, an adaptive
neural control is proposed by Zhang and Ge. This
control is designed based on the intuitive concept
and piecewise description of dead-zone and the
principle of sliding mode control and such this
control scheme can guarantee that all signals are
semi-globally uniformly ultimately bounded. Liu
and Zhou used the universal approximation property
of the fuzzy-neural networks to approximate
unknown nonlinear function and then presented an
observer-based adaptive fuzzy-neural control for a
class of uncertain nonlinear systems with unknown
dead-zone input to improve the control performance.

In this paper, an observer-based adaptive sliding
mode control approach for uncertain systems with
unknown dead-zone is proposed to achieve the
tracking control objective in the presence of
unknown system nonlinear function and external
disturbance. The paper is organized as follows:
Section 2 gives some descriptions of the system;
Section 3 presents the controller design based on
adaptive control, sliding mode control and extension
state observer techniques; The stability of the
controlled system is proved in Section 4 and
conclusions are made in Section 5.

317

OBSERVER-BASED ADAPTIVE SLIDING MODE CONTROL FOR UNCERTAIN SYSTEMS WITH DEAD-ZONE INPUT.

DOI: 10.5220/0003440203170322

In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2011), pages 317-322

ISBN: 978-989-8425-74-4

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)



ICINCO 2011 - 8th International Conference on Informatics in Control, Automation and Robotics

2 SYSTEM DESCRIPTIONS

Consider a class of p th-order single-input and
single-output uncertain nonlinear system with a
dead-zone function, which is described in the
following dynamical equation

X = £, %, e, X", O) + w(t) + d(f) M

where x is the system output, £ is an unknown
system nonlinear function, d(s) is an external
disturbance, and w(s) is a dead-zone nonlinear
function. The dead-zone function with input y(z)
and output w(f) is graphically shown in Fig. 1 for
some unknown constants ( < b Lbom,,m

ro r

< 0 .

w(?)

A
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Figure 1: Dead-zone function.

As shown in Figure 1, the dead-zone function
can be described mathematically by

m [u(t)—b,], if u(t) > b,
w(t) = 0, if —b, <u(t)<b, 2)
m,[u(t)+b,], if u(t) <-b,

Define a system state vector as

X =) 50 - 2]
=[x@ x0) x,)]" eR" 3)

Then, the system in (1) can be expressed by a
state space representation

5‘1 2
X, =X
xnfl = xn
x,=f(X, )+w(t)+d(t)
=a() )
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In this paper, the following assumptions, which
specify the class of uncertain nonlinear systems are
made as follows:

Assumption 1. Uncertain external disturbance ()
is a bounded function. It means that there exists one
positive constant ¢, such that | 4(¢)|<c,.

Assumption 2. Nonlinear function g(¢) is assumed

to be differentiable with respect to time and its
derivative with respect to time is bounded, i.e.
la(t)|< e, with ¢, > 0.

Let the desired state vector be

X, =[x,(6) %, - x"OF

=[xu) x,0) - x, O] R’ (5)
Then, define the tracking error as
E(n=X(0)-X,0)

=le® &) - €O (6)
In this paper, the control objective is to design an
observer-based adaptive sliding mode control to
achieve E(f)— 0 as ¢ — oo under the condition that

the system states are not available during the control
process.

3 OBSERVER-BASED ADAPTIVE
SLIDING MODE CONTROL

In this section, an observer-based adaptive sliding
mode control scheme will be developed to achieve
the state tracking control objective. Because system
states are not available, a so-called extension state
observer is constructed to obtain estimated system
states. On the constructing process of extension state
observer, an augmented state vector is given as
follows:

X, O=[x@0 x@ x, (0 a®]

=[x @) x,(0) X0 x,,01 (7)
Then, we have
X=X
Xy = X3
X‘nfl = xn
x, =a(t)
X, = at) (8)

In this paper, the extension state observer is
given in the following form
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X =%, — Lk (X, —x))

A A 2 A
X, =% =Lk, (X%, —x,)

)én—l =X, _Lnilkn—l (%, —x,)
)én =X, — L'k, (% —x))
By =L (R ) ©)

n+l T

where L is a design positive constant, constants
k,k,,--- k,, are chosen according to the pole

assignment method. Define a state error vector
between the estimated augmented system state and
augmented system state as

X,0=X,0-X,0
=[x @) %0 P )%,H] (t)]r =[x @) x, () © X (t)]T
:[)NCI ) )?2(t) ;C‘)H] (l)]T (10)

where Xa (¢) is the estimated state of the augmented

n+l

system state. From (8) and (9), we can obtain the
dynamic equation of state error expressed by

5 Lk, 1 0 - O[% 0
X, Ik, 01 - 0| 5% 0
HES : : o+ (11)
X, L'k, 00 - 1| % 0
;n+1 _Lnﬂkwl 00 -0 55)1+1 —a()
or
X,(=A4X,()+F () (12)
~Lk, 1 0 - 0 0
Wher -k, 01 -0 and 0
A=| : F(o=
“L'k, 0 0 - 1 0
-I'%,, 0 0 - 0 —a(t)

From the equation |sI—A|=0, it yields that the
characteristic equation of matrix A4 is given by

s+ Lks" + Ckys"™ ++ L'k,s+ Lk, =0 (13)
Both sides of (13) are divided by "', then we have
L™ 4 Ls" + L ks ++ Lk,s+k,, =0 (14)
Define a variable as

s,=L"s (15)
From (15), Eq. (14) can be further represented as

n+l

s ks A hys 4wk s, 4k =0 (16)

INPUT

To yield that all the zero locations of (16) lie on
the left-hand plane of s plane, constants

kl,kz,... k

,k,., can be given appropriately by using the
pole assignment method. Setting suitable values

ki ky, ok implies that all the eigenvalues of

n+l
matrix A lie on the left-hand plane of s plane.
Because all the eigenvalues of matrix 4 lie on the
left-hand plane of s plane, it can be concluded that
the error dynamic system in (12) is asymptotically
stable. The solution of (12) is obtained as follows:

X,0=e"X,0)+] ;e*‘“*’F(r)dT (17)

Without loss of generality, we can set )?a 0)=0

in the design process. Hence, it yields from Eq. (17)
and Assumption 2 that

X0 = " F(pdr (18)

and
|

where ¢, is a positive constant. To design a sliding

X, @)= H [ 0 " OF(r)dr

<e

mode controller, a sliding function formed in the
space of state error can be defined as

S())=TE(r) (19)

where r=[y, 7,

While an appropriate control law is applied and the
sliding mode is occurred in finite time, the error
dynamics in the sliding mode can be defined by

e, +7,€++re=0 (20)

7,, 1]1s a constant vector.

In (19), positive constants y,,y,,--, , , should

be chosen such that /1"71+n217,i 21 is a Hurwitz
i=l
polynomial.

Because the system state is not available, the
sliding function cannot be constructed by the system
state. In this paper, a so-called almost sliding
function is given as

S@)=TE®)
=I[X()-X, ()] (21)
where X(1)=[%,(1) %,() - £,0]" -
Then, we have
S=S-5+8
n—l1
=@, -e)+ 2 rG-e)+S
i=1
—AX,(1)+S (22)
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where A=[y, y, - ¥, 1 0]
Substituting (18) into (22), it yields that

& L A(t-1)

S = Ajoe F(r)dr+S (23)
From (23), the derivative of function § with respect
to time is given by

§ = AA[ " IF(D)dr + AF +§ (24)

Then, from (23) we can obtain

S = AAJ'Ote”’"”)F(r)dr +AF +§-S5+8§

' n-1 . n-1 .
=AA j JETIF@dT+ AF 46,43 78+ 1,0 - %)

i=1 i=l

n-1 . n-1
= AAI;eA(”’)F(r)dr +AF+é,+ ) ye - 7%,
]

i=1
n—1
+) 7.8 k% 25)
i=1

Define a constant and a constant vector, respectively
as

n-1

= re'k (26)

i=1

rl :[c4 _71 o _7/1171 O] (27)
Then, from (26) and (27), (25) can be represented by

S = AAJ‘;eA(”’)F(r)dr +AF +é,+ Zyiéi +IX, (28)
It follows that from (18)
S = AA[ [ OF @)z + T [ O (0)dr+ AF
+é,+ ﬂi?’ié
pan
= AAI;eA(H)F(T)dz' +T, J-OteA(H)F(z') dr+ AF

n-1 .
+fHwrd—X,+ Y 78 (29)
i=1

Suppose that J.teA(H)F(T)d‘[=0 and AF=0, a so-
0
called equivalent nonlinear input () can be
obtained from §=0 in (29)
n-1 .
WD) ==2 16+ 5, —(f +d) (30
i=1
In addition the equivalent nonlinear input, for

approaching the sliding surface, a switching
nonlinear input is given as
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: N
w0 =—k[,S—77mt[g] &)
where , and 7 are two design positive constants, ¢
is a sufficient small positive constant, and saz(-) is a
saturation function, which is represented by

L, il
g A

sat(Dy =12, ir-1<2 <1
& &

Hence, the ideal nonlinear input can be obtained
in the following form.

Wy () = w, () +w, (1)

:_"z_ly,.éﬁxdn —(f+d)—kd§'—77sat[sj (32)

i=1 &

In (32), since f and 4 are two unknown

functions, we can not obtain the ideal nonlinear
input in the practical control. From (1), the above
input can be expressed as

nl . q
wdi(t) = _Z7iéi + Xy, —(x(") —w) _de _nsat[sj (33)
&

i=1

Then, it yields that the desired nonlinear input can
be designed in the following form

ISR . . R S
w, ()= —Z;/,e,. + Xy =X Wy —de—nsat[gj (34)
i=l

where %, is the estimated value of x, which is
obtained from the extension state observer and vy ' is

a filtered signal, which is given by
W, ==V, +Sw, (35)

where ¢ is a design positive constant. Hence, the
following result can be achieved.

limlimw, =w, =w

t—0 >0

Because the considered system contains an

unknown dead zone in this paper, an adaptive dead
zone inverse is proposed. The objective of the dead
zone inverse is to cancel the dead zone so that
w(t) = w,(t) for any w,(£) which is the desired
nonlinear input to the system. If dead zone
parameters b, b, m,, m, are known, we can

cancel the dead-zone effect. Mathematically, the
relation between y(7) and (£ which specifies the

dead zone inverse, is defined as follows:
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Ya D i (60
u(t) = 0, if w,(£)=0 (36)
Lmlbl’ i w,(t)<0
mn

Define some constant vectors as
Nz[nr nl]’ Mz[mr ml]T’
0= [mrbr mb, ]T = [01 0, ]T

where ,, _ L oifw,>0 and ,, _ Loifw, <0,
" 10, otherwise 0, otherwise

Then, (36) can be represented by
1
u(t) = N—M(wd +NO) 37

While we use the above dead zone inverse, it has
a problem that the parameters p b, m,, m, are

unknown. In this section, the adaptive dead zone
inverse based on the estimates to produce the control
input is represented in the following form.

Ya XD i, 00
mr
w@y=1 0, if w,(6)=0
Watmbi e (5)<0
m,;
1 .
= —(w, + N@ 38
—=(w, +NO) (38)

where A7 =[m, m,] and §=[), 0,] are the
estimates of M and @ , respectively. Define

parameter error, slope ratio, and estimated slope
ratio, respectively as

0=0-6=[mb, mh]' ~[mb, mp] (39

T
o=y ¢]]T{:j" ’”} =i @

s My
T
=l &]T{”f* ’"} @1)

m, m
Then, we have the estimate error of the slope ratio as

7

F=6-0-0 4] 42)
Define a function as
. S
S =8S-¢- sat[gj (43)

The adaptation laws are given by

INPUT

0=—aSN" (44)
é=—BS.N"(w, + NO) (45)
Bt = Gjon P> J =11 (46)

where o and pgare positive constants to determine
the adaptation rate. Since w(¢) = w, ' (£) > We have

w= NMu— N6 47
Then, from (29) and (47), it yields that

S-= AA[ M OF(@)dr 4 T [ O F(2)de+ AF
n—1

+f+NMu—-NO+d %, + > 7¢, (48)
i=l1

Substituting (38) into (48), it is obtained that

§ = AA[ M O (D)dz+ I [ M OF @)dr+ AF 4 f

NM - &
+——=Ww, + NO)-NO+d—-x,+ ) veé
NM( d ) d 27

i=1
= AA| o’eA“-“F(r)dr + L[ e OF (@) dr AR +

— ~ n-l1 .
+(1+ Ng)w, + NO) - NO+d — %, + D ye,

i=1
= A4] Ote’“”’)F(r)dr + Fl.[ote"(””F(r)dr Y AF+ f

—%. W, —k,S - nsat[iJ +NO +d

+Ng (w, + NO) (49)

4 STABILITY ANALYSIS
Consider a Lyapunov function candidate as
V—1 S2+1575+i57¢7 50
207« yij (50)
Then, the time derivative of function J is given by
¢'¢

V=S5 +-070+

1
s
1. As | S |< ¢, from (43), we have §_=0. It follows
that 7 = 0.

1
a

2.As | §|> ¢, from (43), we have S, = S‘
From (44), (45), and (49), it is obtained that

V=5 [AA | ;eA(”r)F(r)dr + Fl.[;eA(”’)F(r)dr +AF
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&

+f-%,+W, —kdﬁ - nsat(SH

V<[S|[f+d-%

it T —kdf—fl+’71+772+773]—kd5§ (51)
where 7, 5, , and 5, are three given positive

constants such that H AA_[ M IF () dr
0

According to the design in (9), (34), and (35), it can
be obtained that

lim(f +d +W,) =lim#%,,, and
t—0 t—>o

sm >

<y and [aF|<

I"IJ.(:eA“’”F(T)dT

| f+d+w, =%, |<ese™ |+c; =¢ (52)
From (51) and (52), we obtain

VIS, |l — ke —n+m +m, +my]-k,S2 (53)

where ey c,s and c, are given positive constants.

When design parameters f,, 7, and¢ in (31) are

chosen and satisfy the following condition.

M+, +0; ey Sk, e+n (54)
From (53) and (54), it yield that
V<—k,8? <0 (55)

From the above analysis, it can be concluded
that ¥ <0 for all time. Therefore, ¥ is an non-
increasing function so that S, > 6, and (13 are

bounded, i.e. §_, 4, and $ e L, . From (55), we have
ko | O'Sj (t)dt <V (0) -V (£) <V (0) < oo

The above inequality means S, eL, - Since
§ =8, from (48), it follows that § er_ .
According to Barbalat Lemma, it is concluded that
lim S, () = 0 and then it yields from (43) that §(r) is
a bounded signal and within bounded by

|S()|<e forall >z, 1 >0.

The above inequality means that X(;) can
asymptotically follow reference signal x ,(r) and
also implies that system state x(r) can
asymptotically follow reference signal x (r) by

using extension state observer.
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5 CONCLUSIONS

Without the requigement of available system state,
the main contribution of this paper is to develop an
observer-based adaptive sliding mode control
scheme to achieve the tracking control objective for
an uncertain system which is preceded by an unknown
dead-zone and subject to unknown system nonlinear
function and external disturbance. In this paper, it is
proved that the proposed control scheme can ensure
global stability of the controlled system and can
achieve the tracking control objective satisfactorily.
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