
BYTE SLICING GRØSTL
Optimized Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grøstl

Kazumaro Aoki1∗, Günther Roland2, Yu Sasaki1 and Martin Schläffer2
1NTT Corporation, Tokyo, Japan

2IAIK, Graz University of Technology, Graz, Austria

Keywords: Hash function, SHA-3 competition, Grøstl, Software implementation, Byte slicing, Intel AES new instruc-
tions, 8-bit AVR.

Abstract: Grøstl is an AES-based hash function and one of the 5 finalists of the SHA-3 competition. In this work we
present high-speed implementations ofGrøstl for small 8-bit CPUs and large 64-bit CPUs with the recently
introduced AES instructions set. SinceGrøstl does not use the same MDS mixing layer as the AES, a direct
application of the AES instructions seems difficult. In contrast to previous findings, ourGrøstl implemen-
tations using the AES instructions are currently by far the fastest known. To achieve optimal performance
we parallelize each round ofGrøstl by taking advantage of the whole bit width of the used processor. This
results in implementations running at 12.2 cylces/byte forGrøstl -256 and 18.6 cylces/byte forGrøstl -512.

1 INTRODUCTION

In 2007, NIST has initiated the SHA-3 competi-
tion (National Institute of Standards and Technology,
2007) to find a new cryptographic hash function stan-
dard. 51 interesting hash functions with different de-
sign strategies have been accepted for the first round.
Many of these SHA-3 candidates are AES-based and
might benefit from the Intel AES new instructions set
(AES-NI) (Gueron and Intel Corp., 2010) to speed
up their implementations. In (Benadjila et al., 2009)
those candidates which use the AES round transfor-
mation as a main building block have been analyzed
and implemented using AES-NI. In that work, the au-
thors claim that algorithms which use a very different
MDS mixing matrix (than AES) are too distant from
AES and that there is no easy way to benefit from
AES-NI.

Since December 2010,Grøstl (Gauravaram et al.,
2011) is one of 5 finalists of the SHA-3 competition
and uses the same S-box as AES but a very differ-
ent MDS mixing matrix. In this work we show that
it is still possible to efficiently implementGrøstl
using AES-NI. Moreover, our AES-NI implementa-
tion of Grøstl is the fastest known implementation
of Grøstl so far. Furthermore, we present a self-byte
sliced implementation strategy which allows to imp-
∗Parts of this work were done while the author stayed at

TU Graz.

lementGrøstl very efficiently on both 8-bit and 128-
bit platforms. We achieve very good performance for
larger bit widths by optimizing the MDS mixing ma-
trix computation ofGrøstl and by computing mul-
tiple columns in parallel. The parallel computation
of the wholeGrøstl round is possible and if parallel
AES S-box table lookups (using AES-NI or the vpaes
implementation of (Hamburg, 2009)) are available.

The paper is organized as follows. In Section 2,
we give a short description ofGrøstl . In Section 3,
we describe requirements and general optimization
techniques of our byte sliced implementations. In
Section 4, we show how to minimize the computa-
tional requirements forMixBytes, the MDS mixing
layer of Grøstl . In Section 5, we present the spe-
cific details of the 8-bit and 128-bit implementations.
Finally, we conclude in Section 6.

2 DESCRIPTION OF GRØSTL

The hash functionGrøstl was designed by Gau-
ravaram et al. as a candidate for the SHA-3 compe-
tition (Gauravaram et al., 2011). In January 2011,
Grøstl has been tweaked for the final round of the
competition and we only consider this variant here. It
is an iterated hash function with a compression func-
tion built from two distinct permutationsP and Q,
which are based on the same principles as the AES

124 Aoki K., Roland G., Sasaki Y. and Schläffer M..
BYTE SLICING GRØSTL - Optimized Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grøstl.
DOI: 10.5220/0003515701240133
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2011), pages 124-133
ISBN: 978-989-8425-71-3
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

round transformation (National Institute of Standards
and Technology, 2001).Grøstl is a wide pipe de-
sign with security proofs for the collision and preim-
age resistance of the compression function (Fouque
et al., 2009). In the following, we describe theGrøstl
hash function and the permutations ofGrøstl -256
andGrøstl -512 in more detail.

2.1 TheGrøstl Hash Function

The input messageM is padded and split into blocks
M1,M2, . . . ,Mt of ℓ bits with ℓ= 512 forGrøstl -256
andℓ = 1024 forGrøstl -512. The initial valueH0,
the intermediate hash valuesHi, and the permutations
P andQ are of sizeℓ as well. The message blocks
are processed via the compression functionf , which
accepts two inputs of sizeℓ bits and outputs anℓ-bit
value. The compression functionf is defined via the
permutationsP andQ as follows:

f (H,M) = P(H⊕M)⊕Q(M)⊕H.

The compression function is iterated withH0 = IV
and Hi ← f (Hi−1,Mi) for 1 ≤ i ≤ t. The output
Ht of the last call of the compression function is
processed by an output transformationg defined as
g(x) = truncn(P(x)⊕ x), wheren is the output size of
the hash function and truncn(x) discards all but the
least significantn bits of x. Hence, the digest of the
messageM is defined ash(M) = g(Ht).

2.2 TheGrøstl -256 Permutations

As mentioned above, two permutationsP andQ are
defined forGrøstl -256. Both permutations operate
on a 512-bit state, which can be viewed as an 8×
8 matrix of bytes. Each permutation ofGrøstl -256
consists of 10 rounds, where the following four AES-
like round transformations are applied to the state in
the given order:

• AddRoundConstant (AC) XORs a constant to one
row of the state forP and to the whole state forQ.
The constant changes for every round.

• SubBytes (SB) applies the AES S-box to each
byte of the state.

• ShiftBytes (SH) cyclically rotates the bytes of
rows to the left by{0,1,2,3,4,5,6,7} positions
in P and by{1,3,5,7,0,2,4,6} positions inQ.

• MixBytes (MB) is a linear diffusion layer, which
multiplies each column with a constant 8×8 cir-
culant MDS matrix.

2.2.1 MixBytes

As theMixBytes transformation is the most run-time
intensive part ofGrøstl in our case, we will describe
this transformation in more detail here. TheMixBytes

transformation is a matrix multiplication performed
on the state matrix as follows:

A← B×A,

where A is the state matrix andB is a
circulant MDS matrix specified as B =
circ(02,02,03,04,05,03,05,07) or by the following
matrix:

B =



























02 02 03 04 05 03 05 07
07 02 02 03 04 05 03 05
05 07 02 02 03 04 05 03
03 05 07 02 02 03 04 05
05 03 05 07 02 02 03 04
04 05 03 05 07 02 02 03
03 04 05 03 05 07 02 02
02 03 04 05 03 05 07 02



























.

The multiplication is performed in a finite field
F256 defined by the irreducible polynomialx8⊕ x4⊕
x3⊕ x⊕ 1 (0x11B). As the multiplication by 2 only
consists of a shift and a conditionalXOR in binary
arithmetic, we will calculate all multiplications by
combining multiplications by 2 and additions (XOR),
e.g. 7 · x = (2 · (2 · x))⊕ (2 · x)⊕ x.

For more details on the round transformations we
refer to theGrøstl specification (Gauravaram et al.,
2011).

2.3 TheGrøstl -512 Permutations

The permutations used inGrøstl -512 are of sizeℓ=
1024 bits and the state is viewed as an 8×16 matrix
of bytes. The permutations use the same round trans-
formations as inGrøstl -256 except forShiftBytes:
Since the permutations are larger, the rows are shifted
by {0,1,2,3,4,5,6,11}positions to the left inP. In Q
the rows are shifted by{1,3,5,11,0,2,4,6} positions
to the left. The number of rounds is increased to 14.

3 BYTE SLICED
IMPLEMENTATIONS OF
GRØSTL

In this section, we describe some requirements for the
efficient parallel computation of theGrøstl round
transformations. Due to the fact thatMixBytes ap-
plies the same algorithm to every column of the state

BYTE SLICING GRØSTL - Optimized Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grøstl

125

we can ’byte slice’Grøstl . In other words, we apply
the same computations for every byte-wise column of
the Grøstl state. On platforms with register sizes
larger than 8-bit we can parallelize every transforma-
tion by placing several bytes of one row (of the state)
inside one register. One column of the state is then
distributed over 8 different registers (see Figure 1).

P Q

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

Figure 1: For the AES-NI implementation, theGrøstl -256
state is stored row-wise in xmm registers to compute each
column 16 times in parallel.

3.1 Transposing the State

Unfortunately, the byte mapping inGrøstl is exactly
the opposite of this requirement. The state is mapped
to a byte sequence column-wise. Therefore we have
to transpose each input state to get bytes of the same
row into one register.

Once this realignment is done we can apply the
same operations on each column (or byte) stored in
the row registers at once. EvenSubBytes which only
reorders the bytes of one row, is easier to implement
this way, because no data has to be moved between
registers.

3.2 AddRoundConstant

In AddRoundConstant a constant isXORed to the
state. This constant is different forP and Q and
changes every round. When using large registers,
these constants can be precomputed andXORed row-
by-row and in parallel to each column of the state.

3.3 SubBytes

In order to improve the performance of theSubBytes
layer, we need to compute as many parallel S-box
lookups as possible.

In general, there is no easy way to lookup and re-
place each byte of a register using generic instructions
on large platforms. For this reason the T-table based
implementations are currently still the fastest on most
bigger platforms. However, the AES new instruc-
tions set gives us the possibility of 16 parallel S-box
lookups within only one instruction (see Section 5).

Another approach for parallel AES S-box table
lookups is to use small Log tables to efficiently com-
pute the inverse of the AES S-box using the vpaes
implementation presented in (Hamburg, 2009).

3.4 ShiftBytes

ShiftBytes is generally simple to implement on any
platform if the state is stored in row ordering. Only
byte shufflings, bitshifts andXORs, or addressing dif-
ferent state bytes (or words) is necessary.

3.5 MixBytes

As stated above,MixBytes is the transformation that
benefits most from byte slicing.MixBytes is com-
puted using a large number ofXORs and multiplica-
tions by two inF256. The multiplication in the finite
field F256 will be simplified to simple multiplications
by two and additions inF256 (XORs).

For the multiplication by two we only need to shift
each byte to the left by one bit. To keep the result
in F256 we have to observe the carry bit (MSBbefore
the shift operation). If the carry bit is zero the re-
sult is already correct (still inF256), if the carry bit is
one we have to reduce by the irreducible polynomial
(i.e. XOR 0x11B).

There are many strategies to reduce the number of
XORcomputations forMixBytes and we discuss two
optimization strategies in detail in Section 4.

4 OPTIMIZING THE MIXBYTES
COMPUTATION

The MDS matrix multiplication is the most complex
operation ofGrøstl . Without optimizations all bytes
of a column have to be multiplied by 2,3,4,5 and 7
and then summed up according to the following ma-
trix multiplication:




















b0

b1

b2

b3

b4

b5

b6

b7





















=





















2 2 3 4 5 3 5 7

7 2 2 3 4 5 3 5

5 7 2 2 3 4 5 3

3 5 7 2 2 3 4 5

5 3 5 7 2 2 3 4

4 5 3 5 7 2 2 3

3 4 5 3 5 7 2 2

2 3 4 5 3 5 7 2





















·





















a0

a1

a2

a3

a4

a5

a6

a7





















If we use only multiplications by 2 as described
above we can rewrite the same equations with factors
of only 2 and 4. See Listing 1. Without optimization,
the total number ofXORs is 13·8= 104 and we need
16 multiplications by 2 (if we can store the results).

SECRYPT 2011 - International Conference on Security and Cryptography

126

Note that a multiplication by 2 is usually about 3-5
times more expensive than anXORoperation.

4.1 Using Temporary Results

In this section, we show aMixBytes computation
which tries to minimize the number ofXORs and the
used registers while keeping the minimum number of
16 multiplications by 2. This strategy is used for the
Intel AES-NI implementation in Section 5.1.

Since many terms (ai,2 ·ai,4 ·ai) in the computa-
tion are added to more than one result, we can save
XORs by computing temporary results (see Table 1).
For example, the term

t = 2 ·a0+2 ·a2+1 ·a5+4 ·a7+1 ·a7 (1)

needs to be added tob0, b1 andb3. This has a total
cost of 3· 5 = 15 XORs using the naive approach. If
we first compute the temporary resultt and then addt
to each ofb0, b1 andb3, we can save 15− (4+3) = 8
XORs.

There are many possibilities to compute tempo-
rary results and we used a greedy approach to find
a good sequence. In each step of this approach, we
try out all possible temporary results and compute the
number ofXORs we can save. In the first step, the
maximum number ofXORs we can save is 8. After
we remove the already added terms, we continue with

b0 = a2⊕ a4⊕ a5⊕ a6⊕ a7⊕2a0⊕2a1⊕

2a2⊕2a5⊕2a7⊕4a3⊕4a4⊕4a6⊕4a7

b1 = a0⊕ a3⊕ a5⊕ a6⊕ a7⊕2a0⊕2a1⊕

2a2⊕2a3⊕2a6⊕4a0⊕4a4⊕4a5⊕4a7

b2 = a0⊕ a1⊕ a4⊕ a6⊕ a7⊕2a1⊕2a2⊕

2a3⊕2a4⊕2a7⊕4a0⊕4a1⊕4a5⊕4a6

b3 = a0⊕ a1⊕ a2⊕ a5⊕ a7⊕2a0⊕2a2⊕

2a3⊕2a4⊕2a5⊕4a1⊕4a2⊕4a6⊕4a7

b4 = a0⊕ a1⊕ a2⊕ a3⊕ a6⊕2a1⊕2a3⊕

2a4⊕2a5⊕2a6⊕4a0⊕4a2⊕4a3⊕4a7

b5 = a1⊕ a2⊕ a3⊕ a4⊕ a7⊕2a2⊕2a4⊕

2a5⊕2a6⊕2a7⊕4a0⊕4a1⊕4a3⊕4a4

b6 = a0⊕ a2⊕ a3⊕ a4⊕ a5⊕2a0⊕2a3⊕

2a5⊕2a6⊕2a7⊕4a1⊕4a2⊕4a4⊕4a5

b7 = a1⊕ a3⊕ a4⊕ a5⊕ a6⊕2a0⊕2a1⊕

2a4⊕2a6⊕2a7⊕4a2⊕4a3⊕4a5⊕4a6

Listing 1: MixBytes computation for one column with fac-
tors 1, 2 and 4.ai are the input bytes andbi are the output
bytes.

the greedy approach until only single terms are left.
Using this approach we found a sequence of comput-
ing MixBytes which requires 58XORs and 16 multi-
plications by two. This sequence is shown by Table 1
and we use superscript numbers to denote the order of
computing temporary results.

4.2 Reusing Results of·1

In this section, we show a differentMixBytes opti-
mization technique which might be faster if more reg-
isters are available. This technique has been used for
the 8-bit AVR implementation (see Section 5.2).

In Table 2 we have separated theMixBytes com-
putation for each factorai, 2 · ai and 4· ai. We use
superscript numbers to denote the order in which we
compute temporary results again. The values marked
with letters are added to the temporary results after
computing the first (intermediate) results to further
optimize the computation,e.g.:

b1,1 = a0⊕ a3

b6,1 = b1,1 (2)

b1,1 = b1,1⊕ a6

b4,1 = b1,1

In this version the values that are multiplied by
2 are not calculated from the original inputsai but
from the results of the first part of the calculationbi,1.
While this significantly reduces the number ofXORs
the number of multiplications increases from 16 to 24:
instead of multiplying every byte of the column first
by 2 and then again by 2 to get the values multiplied
by 4, we need to multiply the intermediate values too.
Although the number of multiplications increases to
24 we only need 47XORoperations. This variant has
been used for the 8-bit implementation ofGrøstl in
Section 5.2.

4.3 Minimizing the Number of XORs

The previous technique leads to another method to
minimize the number of instructions inMixBytes.
Using Table 2, we can observe that for each resultbi,
manya j ⊕ a j+1 terms are needed for each factor of
1, 2 and 4. By computing temporary resultsti, xi and
yi we get the following optimizedMixBytes compu-
tation formulas withi = {0, . . . ,7}:

ti = ai + ai+1

xi = ti + ti+3 (3)

yi = ti + ti+2+ ai+6

bi = 2 · (2 · xi+3+ yi+7)+ yi+4

BYTE SLICING GRØSTL - Optimized Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grøstl

127

Table 1:MixBytes computation with 58XORs. A “•” denotes those inputs (ai, 2· ai, 4· ai) which are added to get the results
bi. Superscripts denote the order in which the temporary results are computed (1 corresponds to the temporary results of
Equation 1).

a0 a1 a2 a3 a4 a5 a6 a7

4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1

b0 − •1 − − •2 − − •1 •9 •d − − •d − •2 − •9 •1 •2 − •2 •1 •2 •1

b1 •5 •1 •5 − •a − − •1 − − •5 •b •d − − •5 − •1 − •b •a •1 − •1

b2 •5 − •5 •7 •2 •7 − •c − − •5 − − •7 •2 •5 − − •2 − •2 − •2 •c

b3 − •1 •3 •7 − •7 •3 •1 •3 − •3 − − •7 − − •3 •1 •d − − •1 − •1

b4 •d − •3 − •a •4 •3 − •3 •4 •3 •4 − •4 − − •3 − − •4 •a •d − −

b5 •d − − •6 − •4 •d •c •9 •4 − •4 •6 •4 •6 − •9 − − •4 − − •6 •c

b6 − •8 •3 •6 − − •3 − •3 − •3 •b •6 − •6 •8 •3 •8 − •b − − •6 −

b7 − •8 − − •2 •4 − − − •4 − •4 − •4 •2 •8 − •8 •2 •4 •2 − •2 −

These formulas contain a minimum number of 8·2=
16 multiplications by 2 and in total, only 8· 6 = 48
XORoperations. However, it is still an open problem to
find the smallest number ofXORs needed to compute
MixBytes of Grøstl . This strategy is also used for
the Intel AES-NI implementation in Section 5.1. Note
that this variant can also be used to improveGrøstl
on the 8-bit platform.

5 IMPLEMENTATIONS

In the following we will describe specific implemen-
tation details for both the Intel AES-NI and 8-bit AVR
platforms.

5.1 Intel AES-NI

Intel Processors based on the microarchitecture code-
name Westmere come with a new AES instructions
set (AES-NI) (Gueron and Intel Corp., 2010). This
set consists of six new instructions used for AES en-
cryption and decryption. Next to improving the per-
formance of AES they also provide more security due
to their constant-time execution by avoiding cache-
based table lookups. Furthermore, all processors with
AES-NI come with different versions of SSE which
we will also use to improve our implementations. For
more information about the instructions used in this
document we refer to the Intel Manual (Intel Corp.,
2010).

SinceGrøstl uses the same S-box as AES we can
use AES-NI to improve the performance ofGrøstl
significantly. The implementation requires the pro-
cessor to run in 64-bit mode to have access to the 16
128-bit XMM registers. This helps to avoid unnec-
essary memory accesses that would significantly re-
duce the performance. These 16 128-bit XMM reg-
isters provide enough space for the wholeGrøstl
state. Critical parts of the AES-NI implementation of

Grøstl are written in assembler. In the following, we
will discuss the main principles of the implementation
and important observations.

5.1.1 State Alignment in Registers

For optimal performance, the alignment of the state
inside the XMM registers is crucial. We have found
that the best solution forGrøstl -256 is to compute
P and Q simultaneously and put one row (64-bit) of
each state side by side in one 128-bit XMM register.
We then need 8 XMM registers to store both states.
Thanks toMixBytes having the same MDS matrix
for P and Q we can apply an optimizedMixBytes al-
gorithm to the whole XMM register and thus, to 16
columns of the state in parallel.

In Grøstl -512 we have 16 columns for each per-
mutation which perfectly fit into 16 XMM registers.
Hence, P and Q are computed separately and after
each other but the sameMixBytes algorithm can still
be used 16 times in parallel again.

5.1.2 Transposing the State

To align the column-ordered message to fit the re-
quired row-ordering, the message has to be trans-
posed after being loaded. For this purpose we use the
PUNPCKinstructions. The same has to be done with
the IV for the initialization and in reverse order for
the last chaining value before truncation. All the in-
termediate chaining values are kept in the transposed
form.

In more detail, thePUNPCKinstruction merges two
XMM registers into one XMM register by interleav-
ing the high or low bytes/words/doublewords or quad-
words of the two source registers (Intel Corp., 2010).
A simple square matrix can be transposed using only
PUNPCKinstructions (Intel Corp., 1996). As we ini-
tially have two 64-bit columns in each register, and
therefore an 8x16 matrix, we also needPSHUFBand
MOVinstructions to reorder the data correctly.

SECRYPT 2011 - International Conference on Security and Cryptography

128

Table 2: MixBytes computation separated for factor 1, 2
and 4.ai are the input andbi the output bytes. A “•” denotes
those inputs (ai, 2 · ai, 4 · ai) which are added to get the
intermediate resultsbi, j . Superscripts denote the order in
which temporary values are computed. Note that the results
for factor 2 can be computed only by multiplying the results
of factor 1 by 2 (e.g. b0,2 = 2b3,1).

1a0 1a1 1a2 1a3 1a4 1a5 1a6 1a7

b0,1 − − •0 − •2 •0 •2 •

b1,1 •1 − − •1 − • •a •

b2,1 •b •3 − − •2 − •2 •3

b3,1 •b •3 •0 − − •0 − •3

b4,1 •1 • • •1 − − •a −

b5,1 − •3 • • • − − •3

b6,1 •1 − •0 •1 • •0 − −

b7,1 − • − • •2 • •2 −

2a0 2a1 2a2 2a3 2a4 2a5 2a6 2a7 =

b0,2 • • • − − • − • 2b3,1

b1,2 • • • • − − • − 2b4,1

b2,2 − • • • • − − • 2b5,1

b3,2 • − • • • • − − 2b6,1

b4,2 − • − • • • • − 2b7,1

b5,2 − − • − • • • • 2b0,1

b6,2 • − − • − • • • 2b1,1

b7,2 • • − − • − • • 2b2,1

4a0 4a1 4a2 4a3 4a4 4a5 4a6 4a7

b0,4 − − − •0 •1 − •0 •1

b1,4 •2 − − − •1 •2 − •1

b2,4 •2 •3 − − − •2 •3 −

b3,4 − •3 •4 − − − •3 •4

b4,4 •5 − •4 •5 − − − •4

b5,4 •5 •6 − •5 •6 − − −

b6,4 − •6 •7 − •6 •7 − −

b7,4 − − •7 •0 − •7 •0 −

The details of the transpositions for each step are
shown in table form in the Appendix.

5.1.3 AddRoundConstant

AC adds a constant to the state matrix. ForP a con-
stant is only added to the first row, forQ the constant
is added to all rows. Therefore we need 8 128-bit
XORs for Grøstl -256 sinceP andQ share registers.
For Grøstl -512 we need 1XORfor P and 8 forQ.

5.1.4 SubBytes

The Intel AES instructions provide exactly the func-
tionality required for SubBytes of Grøstl since
the same AES S-box is used. The last round of
the AES encryption appliesShiftRows, SubBytes
and AddRoundKey to the state. This func-
tionality is available by theAESENCLAST instruc-

tion. To isolate SubBytes we can invert the
ShiftRows transformation (usingPSHUFB with the
mask 0x0306090c0f0205080b0e0104070a0d00) and
use an empty RoundKey. The following assembler
code shows the S-box implementation using AES-NI:
(Gueron and Intel Corp., 2010)

pshufb xmm0 , 0 x0306090c0f .. .70 a0d00
aesenclast xmm0 , 0 x0000000000 ...0000000

These instructions combined will take less than 3 cy-
cles to compute with a latency of about 6 cycles (Fog,
2010).

5.1.5 ShiftBytes

We can use thePSHUFBinstruction (SSSE3) to quickly
reorder the bytes in the XMM registers forShiftBytes.
This instruction is even faster than a simple shift
instruction. Furthermore thePSHUFBinstruction of
ShiftBytes can be combined with thePSHUFBinstruc-
tion to correctShiftRows for AESENCLAST.

Two PSHUFBinstructions with constant masks can
be merged by shuffling the first mask using the second
mask:

pshufb xmm0 , mask1
pshufb xmm0 , mask2

is equal to:

(pshufb mask1 , mask2)
pshufb xmm0 , mask1

where the shuffled mask is again a constant. The new
mask (mask1) can be precomputed. This way we can
save onePSHUFBinstruction and only need to store
one constant.

5.1.6 MixBytes

With the new row ordering we can compute 16
columns in parallel in one pass. We have imple-
mented both variants which need a minimum number
of 16 multiplications by 2. Apart from the multipli-
cations by 2, the first variant of Section 4.1 needs 8
MOVand 32XORoperations without memory access,
and 25MOVand 26XORoperations with memory ac-
cess (33MOVand 58XORoperations in total). For the
second variant given in Section 4.3, we need 11MOV
and 32XORoperations without memory access, and 8
MOVand 16XORoperations with memory access (19
MOVand 48XORoperations in total).

In the following, we show different implementa-
tion variants of the multiplication by 2 which can be
used to implementMixBytes.

Multiplication by 2 in F256 with SSE or Similar.
If SSE is available, the code shown below can be used

BYTE SLICING GRØSTL - Optimized Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grøstl

129

to calculate the multiplication in parallel. In this ex-
amplexmm1 is multiplied by 2 andxmm0 will be lost
(paddb is used instead ofpsllq because of the shorter
opcode):

movdqa xmm0 , xmm1
psrlw xmm1 , 7
pand xmm1 , 0 x0101 ...01
pmullw xmm1 , 0 x1b1b ...1 b
paddb xmm0 , xmm0
pxor xmm1 , xmm0

Multiplication by 2 in F256 with PBLENDVB. If
SSE 4.1 is available we can use thePBLENDVBin-
struction to slightly speed up the algorithm described
above. PBLENDVBmerges two XMM registers into
one. The source register is selected by theMSBof each
byte in a third register. TheMSBis also the bit that de-
cides whether or not it is necessary to reduce the byte
after shifting. Therefore we can use this instruction
to generate a mask toXOR 0x1Bwhere necessary. The
multiplication as implemented is shown below where
xmm2 is multiplied by 2,xmm0 andxmm1 are lost:

movdqa xmm0 , xmm2
pand xmm2 , 0 x1b1b ...1 b
pxor xmm1 , xmm1
paddb xmm2 , xmm2
pblendvb xmm1 , 0 x7f7f ...7 f
pxor xmm2 , xmm1

Multiplication by 2 in F256 with PCMPGTB. We
get the fastest implementation using thePCMPGTBin-
struction. PCMPGTBcompares signed bytes. If the
MSB is set, the comparison with zero results in0xFF
and in0x00 otherwise. The multiplication is shown
below where xmm1 will be multiplied by 2, xmm0
will be lost and xmm2 has to be all0x1B .

pxor xmm0 , xmm0
pcmpgtb xmm0 , xmm1
paddb xmm1 , xmm1
pand xmm0 , xmm2
pxor xmm1 , xmm0

If ALU instructions are the bottleneck in the
MixBytes implementation, we can also replace some
instructions by their memory variant and get for ex-
ample:

movaps xmm0 , 0 x0000 ...00
pcmpgtb xmm0 , xmm1
paddb xmm1 , xmm1
pand xmm0 , 0 x1b1b ...1 b
pxor xmm1 , xmm0

5.1.7 Further Optimizations

For even higher performance we tried different local
optimization techniques. We:

• tried different variants of theMixBytes computa-
tion;

• unrolled loops;

• used precomputed constants for
AddRoundConstant;

• analyzed different instruction orders to improve
parallel executions in different ALUs (micro-ops);

• used equivalent instructions with smaller opcode
where possible;

• tried different variants for the multiplication by 2;

• used different variants of equivalent LOAD/
STORE or ALU; instructions to keep all units
busy.

While unrolling loops works perfectly forGrøstl -
256, we found that unrolling all loops inGrøstl -512
increases the code size to exceed the cache size of
the used CPU. This causes an immense drop in per-
formance. Therefore using loops is necessary in this
implementation.

5.1.8 Log Tables (vpaes)

As presented in (Hamburg, 2009), there is another
way to compute the S-box relatively fast and cache-
timing resistant without the use of AES instructions.
By using Log tables to calculate inverses inF24 it is
possible to compute the inverse inF28. This way the
S-box can be realized with only 4-bit table lookups.
These lookups can be implemented withPSHUFBin-
structions. Recently,Grøstl has been implemented
this way in (Çalik, 2010). We have implemented the
AES S-box computation and improved the previous
results using our optimizedMixBytes computations.
Note that the resulting vpaes implementation is now
as fast as the T-table based implementation.

5.1.9 Intel AVX

The next generation of Intel processors feature a 256-
bit extension to SSE called AVX. Using these new
registers the possible bandwidth for parallel compu-
tations can be doubled. Even thoughPSHUFBand
AESENCLASTwill not be available for 256-bit regis-
ters,Grøstl -512 might run up to 50% faster because
MixBytes andAddRoundConstant can be applied to
P and Q at the same time.

SECRYPT 2011 - International Conference on Security and Cryptography

130

Table 3: Speed of theGrøstl AES-NI and vpaes implemen-
tations in cylces/byte on an Intel Core i7-M620 and Intel
Core2 Duo L9400 processor (v1: usingMixBytes compu-
tation of Section 4.1; v3: usingMixBytes computation of
Section 4.3).

CPU Version Grøstl -256 Grøstl -512

Core i7

aesni v3 12.2 18.6
aesni v1 13.0 18.6
vpaes v1 23.2 32.6
(T-tables) 24.0 35.9

Core2 vpaes 21.2 29.2
Duo (T-tables) 20.4 30.3

5.1.10 Benchmarks

The final round version ofGrøstl has been bench-
marked on an Intel Core i7-620LM and Intel Core2
Duo L9400. For comparison, we also show bench-
marks of the T-table implementation and the vpaes
implementation. The results are shown in Table 3.

5.2 8-bit AVR (ATmega163)

The ATmega163 is an 8-bit microcontroller with 32
8-bit multi-purpose registers, 1024 Bytes of SRAM
and 16K of flash memory. The multi-purpose regis-
ters can be used to manipulate data. The controller
needs 2 cycles to read from and write to the SRAM
and 3 cycles to read from flash memory. Six of the
8-bit registers are used as 16-bit address registers X,
Y and Z, thus they can usually not be used for com-
putations. For a list of instructions see (Atmel, 2003).

Because of the limited bit width of the architecture
we can only compute one column at once. Therefore
the most important part of the 8-bit optimization is
minimizing the number ofXORs in MixBytes as de-
scribed above. With 26 available general purpose reg-
isters we have just enough space to keep the interme-
diate values loaded at all times during the computa-
tion of one column. All the other columns have to be
written back to RAM.

The multiplication inF256 can be implemented
with the code shown in Listing 2, where r0 is multi-
plied by 2, r1 has to be pre-set to 0x1B and r2 will be
lost. These instructions will take 4 cycles to process

LSL r0 # r0 = r0 << 1
IN r2 , 0 x3F # r2 = status register
SBRC r2 , 0 # skip next if no carry
EOR r0 , r1 # r0 = r0 + 0 x1B

Listing 2: Multiplication by 2 for 8-bit version.

on the selected CPU. As they are executed for every

Table 4: Speed of three differentGrøstl -256 8-bit AVR
implementations in cycles/byte on an ATMega163. The last
line shows the RAM usage in bytes (usingMixBytes com-
putation of Section 4.2).

HighSpeed Balanced LowMem
Grøstl 469 530 -
Grøstl -0 456 517 738
RAM 994 226 164

byte of the state it is faster to have a lookup table for
the multiplication if enough memory is available.

AddRoundConstant andSubBytes are computed
for each byte separately usingXORs and table lookups.
ShiftBytes is achieved at no cost by simply loading
from shifted positions in RAM. For more details on
the 8-bit implementation we refer to the full descrip-
tion of the implementation (Roland, 2009). Note that
this implementation can probably be further improved
using theMixBytes computation of Section 4.3.

5.2.1 Benchmarks

We have implemented two different versions of the
8-bit implementation with the final round tweak
(Grøstl) and three versions without the final round
tweak (Grøstl -0) using different amounts of RAM.
The versions are compared in Table 4.

6 CONCLUSIONS

In this work we have proposed two optimized al-
gorithms for MixBytes, the MDS mixing layer of
Grøstl , which allow to speed upGrøstl on vari-
ous platforms. Furthermore, byte slicing provides the
possibility to parallelize theGrøstl computation if
the registers are large enough and parallel AES S-box
table lookups are available. This is the case for Intel
processors including the new AES instructions set or
in general, using the vpaes implementation.

Both implementations show thatGrøstl can be
implemented efficiently on very different platforms.
The 8-bit implementation will run at 469 cycles per
byte on this very limited target hardware. The AES-
NI implementation shows that even thoughGrøstl
is very different from AES it still can take advantage
of these new instructions. More specifically, our In-
tel AES-NI implementation ofGrøstl is the fastest
known implementation so far.Grøstl -256 runs at
about 12.2 cycles per byte on an Intel Core i7-M620,
which is about 50% faster than the table-based version
on the same CPU.

We have reduced the number of operation needed
to computeMixBytes to only 48XORs with 16 multi-
plications by 2. Future work includes the optimization

BYTE SLICING GRØSTL - Optimized Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grøstl

131

of theMixBytes computation to take more advantage
of the 3 available ALUs in current Intel processors by
minimizing the dependency chains. Also future CPU
features like AVX will provide another opportunity
to increase the performance, especially for the larger
variantGrøstl -512.

ACKNOWLEDGEMENTS

The authors thank Krystian Matusiewicz for useful
discussions and for fine-tuning the AES-NI imple-
mentations. This work was supported in part by the
European Commission through the ICT Programme
under Contract ICT-2007-216646 ECRYPT II, by the
Austrian Science Fund (FWF), project P21936 and by
the IAP Programme P6/26 BCRYPT of the Belgian
State (Belgian Science Policy).

REFERENCES

Atmel (2003). 8-bit AVR Microcontroller with 16K
Bytes In-System Programmable Flash. AT-
mega163. Retrieved December 21, 2010, from
http://www.atmel.com/dyn/resources/proddocuments/
doc1142.pdf.

Benadjila, R., Billet, O., Gueron, S., and Robshaw, M.
(2009). The Intel AES Instructions Set and the SHA-3
Candidates. Retrieved December 22, 2010, from
http://crypto.rd.francetelecom.com/ECHO/sha3/AES/.

Çalik, Ç. (2010). Multi-stream and Constant-time
SHA-3 Implementations. NIST hash function
mailing list. Retrieved May 03, 2010, from
http://www.metu.edu.tr/∼ccalik/software.html#sha3.

Fog, A. (2010). Instruction tables - Lists of instruction la-
tencies, throughputs and microoperation breakdowns
for Intel, AMD and VIA CPUs. Retrieved December
22, 2010, from http://www.agner.org/optimize/.

Fouque, P.-A., Stern, J., and Zimmer, S. (2009). Cryptanal-
ysis of Tweaked Versions of SMASH and Reparation.
In Avanzi, R., Keliher, L., and Sica, F., editors,Se-
lected Areas in Cryptography 2008, Proceedings, vol-
ume 5381 ofLNCS, pages 136–150. Springer.

Gauravaram, P., Knudsen, L. R., Matusiewicz, K., Mendel,
F., Rechberger, C., Schläffer, M., and Thomsen, S. S.
(2011). Grøstl – a SHA-3 candidate. Submission
to NIST (Round 3). Retrieved May 03, 2010, from
http://www.groestl.info.

Gueron, S. and Intel Corp. (2010). IntelR©Advanced
Encryption Standard (AES) Instructions
Set. Retrieved December 21, 2010, from
http://software.intel.com/en-us/articles/intel-
advanced-encryption-standard-aes -instructions-set/.

Hamburg, M. (2009). Accelerating AES with Vector Per-
mute Instructions. In Clavier, C. and Gaj, K., editors,
CHES, volume 5747 ofLNCS, pages 18–32. Springer.

Intel Corp. (1996). Using MMXTM Instructions to
Transpose a Matrix. Retrieved July 12, 2011, from
ftp://download.intel.com/ids/mmx/MMXApp Transp
oseMatrix.pdf.

Intel Corp. (2010). IntelR©64 and IA-32 Ar-
chitectures Software Developers Man-
ual. Retrieved December 21, 2010, from
http://www.intel.com/products/processor/manuals/.

National Institute of Standards and Technology (2001).
FIPS PUB 197, Advanced Encryption Standard
(AES). Federal Information Processing Standards
Publication 197, U.S. Department of Commerce.

National Institute of Standards and Technology (2007).
Cryptographic Hash Project. Available online at
http://www.nist.gov/hash-competition.

Roland, G. A. (2009). Efficient Implementation of
the Grøstl -256 Hash Function on an ATmega163
Microcontroller. Retrieved May 03, 2010, from
http://groestl.info.

APPENDIX

The following tables show how the message is loaded,
transposed, XORed to the chaining value and stored
in XMM registers for the byte slice implementation
of Grøstl -256. We use a sequence ofPUNPCKand
PSHUFBinstructions to get the required formats.

First, the message block bytesMi j are loaded into
4 XMM registers (see Table 5). Note that inGrøstl
the message is loaded in column ordering format.
Hence, the message needs to get transposed to get two
rows of theMi j in one XMM register (see Table 6).
The chaining value is kept in the same format. Then,
the initial XOR is computed to getPi j =Hi j⊕Mi j (see
Table 7).

To get one row ofP andQ in one XMM register,
we need to reorder and transpose both,Pi j and Mi j
again (see Table 8 and Table 9). This format is used
throughout all 10 rounds ofGrøstl -256 and we trans-
pose back to the chaining value format to compute the
final XOR ofP andQ and the feed-forward.

Table 5: Loading the message block into XMM0-XMM3.
XMM3 XMM2 XMM1 XMM0

M48 M32 M16 M0
M49 M33 M17 M1
M50 M34 M18 M2
M51 M35 M19 M3
M52 M36 M20 M4
M53 M37 M21 M5
M54 M38 M22 M6
M55 M39 M23 M7
M56 M40 M24 M8
M57 M41 M25 M9
M58 M42 M26 M10
M59 M43 M27 M11
M60 M44 M28 M12
M61 M45 M29 M13
M62 M46 M30 M14
M63 M47 M31 M15

SECRYPT 2011 - International Conference on Security and Cryptography

132

Table 6: After transposing the message block two rows are
stored in one XMM register. Note that the chaining value is
stored in the same format in registers XMM4-XMM7.

XMM3 XMM2 XMM1 XMM0

M6 M4 M2 M0

M14 M12 M10 M8

M22 M20 M18 M16

M30 M28 M26 M24

M38 M36 M34 M32

M46 M44 M42 M40

M54 M52 M50 M48

M62 M60 M58 M56

M7 M5 M3 M1

M15 M13 M11 M9

M23 M21 M19 M17

M31 M29 M27 M25

M39 M37 M35 M33

M47 M45 M43 M41

M55 M53 M51 M49

M63 M61 M59 M57

Table 7: After computing the initial XOR:Pi j = Hi j⊕Mi j.

XMM7 XMM6 XMM5 XMM4

P6 P4 P2 P0

P14 P12 P10 P8

P22 P20 P18 P16

P30 P28 P26 P24

P38 P36 P34 P32

P46 P44 P42 P40

P54 P52 P50 P48

P62 P60 P58 P56

P7 P5 P3 P1

P15 P13 P11 P9

P23 P21 P19 P17

P31 P29 P27 P25

P39 P37 P35 P33

P47 P45 P43 P41

P55 P53 P51 P49

P63 P61 P59 P57

Table 8: Reordering and transposing again to get one row
of Pi j and one row ofMi j in one XMM register. XMM0-
XMM3 contain row 0-3 ofP andQ.

XMM3 XMM2 XMM1 XMM0

P3 P2 P1 P0

P11 P10 P9 P8

P19 P18 P17 P16

P27 P26 P25 P24

P35 P34 P33 P32

P43 P42 P41 P40

P51 P50 P49 P48

P59 P58 P57 P56

M3 M2 M1 M0

M11 M10 M9 M8

M19 M18 M17 M16

M27 M26 M25 M24

M35 M34 M33 M32

M43 M42 M41 M40

M51 M50 M49 M48

M59 M58 M57 M56

Table 9: And XMM4-XMM7 contain row 4-7 ofP andQ.

XMM7 XMM6 XMM5 XMM4

P7 P6 P5 P4

P15 P14 P13 P12

P23 P22 P21 P20

P31 P30 P29 P28

P39 P38 P37 P36

P47 P46 P45 P44

P55 P54 P53 P52

P63 P62 P61 P60

M7 M6 M5 M4

M15 M14 M13 M12

M23 M22 M21 M20

M31 M30 M29 M28

M39 M38 M37 M36

M47 M46 M45 M44

M55 M54 M53 M52

M63 M62 M61 M60

BYTE SLICING GRØSTL - Optimized Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grøstl

133

