BYTE SLICING GR@STL
Optimized I ntel AES-NI and 8-bit | mplementations of the SHA-3 Finalist Grgstl

Kazumaro Aok}*, Gunther Rolang] Yu Sasaki and Martin Schlaffer
INTT Corporation, Tokyo, Japan
2| AIK, Graz University of Technology, Graz, Austria

Keywords: Hash function, SHA-3 competition, Grgstl, Software implementation, Byte slicing, Intel AES new instruc-
tions, 8-bit AVR.

Abstract: Grastl is an AES-based hash function and one of the 5 finalists of the SHA-3 competition. In this work we
present high-speed implementationsCofstl for small 8-bit CPUs and large 64-bit CPUs with the recently
introduced AES instructions set. SinGegstl does not use the same MDS mixing layer as the AES, a direct
application of the AES instructions seems difficult. In contrast to previous findingssrestt implemen-
tations using the AES instructions are currently by far the fastest known. To achieve optimal performance
we parallelize each round @frestl by taking advantage of the whole bit width of the used processor. This
results in implementations running at 12.2 cylces/byteSimstl -256 and 18.6 cylces/byte f@rastl -512.

1 INTRODUCTION lementGrgstl very efficiently on both 8-bit and 128-
bit platforms. We achieve very good performance for
In 2007, NIST has initiated the SHA-3 competi- larger bit widths by optimizing the MDS mixing ma-
tion (National Institute of Standards and Technology, trix computation ofGrgstl and by computing mul-
2007) to find a new cryptographic hash function stan- tiple columns in parallel. The parallel computation
dard. 51 interesting hash functions with different de- of the wholeGrgstl round is possible and if parallel
sign strategies have been accepted for the first round AES S-box table lookups (using AES-NI or the vpaes
Many of these SHA-3 candidates are AES-based andimplementation of (Hamburg, 2009)) are available.
might benefit from the Intel AES new instructions set The paper is organized as follows. In Section 2,
(AES-NI) (Gueron and Intel Corp., 2010) to speed we give a short description @rgstl . In Section 3,
up their implementations. In (Benadjila et al., 2009) we describe requirements and general optimization
those candidates which use the AES round transfor-techniques of our byte sliced implementations. In
mation as a main building block have been analyzed Section 4, we show how to minimize the computa-
and implemented using AES-NI. In that work, the au- tional requirements foMixBytes, the MDS mixing
thors claim that algorithms which use a very different layer of Grgstl . In Section 5, we present the spe-
MDS mixing matrix (than AES) are too distant from cific details of the 8-bit and 128-bit implementations.
AES and that there is no easy way to benefit from Finally, we conclude in Section 6.
AES-NI.
Since December 201Gygstl (Gauravaram et al.,
2011) is one of 5 finalists of the SHA-3 competiton 2 DESCRIPTION OF GR@STL
and uses the same S-box as AES but a very differ-
ent MDS mixing matrix. In this work we show that The hash functiorGrastt was designed by Gau-
it is still possible to efficiently implemenGrastl ravaram et al. as a candidate for the SHA-3 compe-
using AES-NI. Moreover, our AES-NI implementa- tjtion (Gauravaram et al., 2011). In January 2011,
tion of Grestl is the fastest known implementation Gyasti has been tweaked for the final round of the
of Grestl so far. Furthermore, we present a self-byte competition and we only consider this variant here. It
sliced implementation strategy which allows to imp- s ap jterated hash function with a compression func-

*Parts of this work were done while the author stayed at tion built from two distinct permutation® and Q,
TU Graz. which are based on the same principles as the AES

124 Aoki K., Roland G., Sasaki Y. and Schléaffer M..
BYTE SLICING GR@STL - Optimized Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grastl.
DOI: 10.5220/0003515701240133
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2011), pages 124-133
ISBN: 978-989-8425-71-3
Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

BYTE SLICING GROSTL - Optimized Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grestl

round transformation (National Institute of Standards
and Technology, 2001)Grgstl is a wide pipe de-
sign with security proofs for the collision and preim-

age resistance of the compression function (Fouqueintensive part ofrgstl

etal., 2009). In the following, we describe tGapstl
hash function and the permutations @fzstl -256
andGrgstl -512 in more detail.

2.1 TheGrgstl Hash Function

The input messagi is padded and split into blocks
M1, Mg, ... M; of £ bits with£ = 512 forGrgstl -256
and/ = 1024 forGrgstl -512. The initial valueHo,
the intermediate hash valullg and the permutations
P and Q are of size/ as well. The message blocks
are processed via the compression functipmhich
accepts two inputs of sizébits and outputs a#-bit
value. The compression functidnis defined via the
permutation$® andQ as follows:

f(HM)=PH&M)®Q(M)®H.

The compression function is iterated withy = IV
and Hi «+ f(Hi—1,M;) for 1 <i <t. The output
H; of the last call of the compression function is
processed by an output transformatigmefined as
g(x) = trunc,(P(x) @ x), wheren is the output size of
the hash function and trupx) discards all but the
least significanh bits of x. Hence, the digest of the
messag#/ is defined asiM) = g(H;).

2.2 TheGrgstl -256 Permutations

As mentioned above, two permutatioRsandQ are
defined forGrgstl -256. Both permutations operate
on a 512-bit state, which can be viewed as ax 8
8 matrix of bytes. Each permutation Gfgstl -256
consists of 10 rounds, where the following four AES-
like round transformations are applied to the state in
the given order:

e AddRoundConstant (AC) XORs a constant to one
row of the state foP and to the whole state f@.
The constant changes for every round.

e SubBytes (SB) applies the AES S-box to each
byte of the state.

e ShiftBytes (SH) cyclically rotates the bytes of
rows to the left by{0,1,2,3,4,5,6,7} positions
in P and by{1,3,5,7,0,2,4,6} positions inQ.

e MixBytes (MB) is a linear diffusion layer, which

multiplies each column with a constan8 cir-
culant MDS matrix.

2.2.1 MixBytes

As the MixBytes transformation is the most run-time
in our case, we will describe
this transformation in more detail here. TiexBytes
transformation is a matrix multiplication performed
on the state matrix as follows:

A+ BxA,
where A is the state matrix andB is a
circulant MDS matrix specified asB =

circ(02,02,03,04,05,03,05,07) or by the following
matrix:

02
07
05
03
05
04
03 04 05 03 05 07 02
02 03 04 05 03 05 07 O

The multiplication is performed in a finite field
Fos6 defined by the irreducible polynomig & x* &
x3 @ x® 1 (0x11B). As the multiplication by 2 only
consists of a shift and a conditiongDRin binary
arithmetic, we will calculate all multiplications by
combining multiplications by 2 and addition¥@R,
eg. 7-x=(2-(2-x))® (2-x) &x.

For more details on the round transformations we
refer to theGrgstl specification (Gauravaram et al.,
2011).

02
02
07
05
03
05

03
02
02
07
05
03

04
03
02
02
07
05

05
04
03
02
02
07

03
05
04
03
02
02

05
03
05
04
03
02

OO OO OO

2.3 TheGrgstl -512 Permutations

The permutations used @Brgstl -512 are of sizé =
1024 bits and the state is viewed as ax 86 matrix

of bytes. The permutations use the same round trans-
formations as inGragstl -256 except foiShiftBytes:
Since the permutations are larger, the rows are shifted
by {0,1,2,3,4,5,6,11} positions to the leftifP. In Q

the rows are shifted b{/1,3,5,11,0, 2, 4,6} positions

to the left. The number of rounds is increased to 14.

3 BYTE SLICED
IMPLEMENTATIONS OF
GROSTL

In this section, we describe some requirements for the
efficient parallel computation of thérgstl round
transformations. Due to the fact thistixBytes ap-
plies the same algorithm to every column of the state

125

SECRYPT 2011 - International Conference on Security and Cryptography

we can 'byte sliceGrgstl . In other words, we apply Another approach for parallel AES S-box table
the same computations for every byte-wise column of lookups is to use small Log tables to efficiently com-
the Grastl state. On platforms with register sizes pute the inverse of the AES S-box using the vpaes
larger than 8-bit we can parallelize every transforma- implementation presented in (Hamburg, 2009).
tion by placing several bytes of one row (of the state)
inside one register. One column of the state is then 3.4 ShiftBytes
distributed over 8 different registers (see Figure 1).
ShiftBytes is generally simple to implement on any

p Q platform if the state is stored in row ordering. Only
byte shufflings, bitshifts anBORs, or addressing dif-
ferent state bytes (or words) is necessary.

n3

3.5 MixBytes

1L

As stated aboveylixBytes is the transformation that
benefits most from byte slicingMixBytes is com-
puted using a large number ¥DRs and multiplica-
Figure 1: For the AES-NI implementation, ttegstl -256 tions by two inF,se. The multiplication in the finite
izﬁte IS itGOtr.ed rOV"'W'Se”'”I xmm registers to compute each fig|q 55 will be simplified to simple multiplications

Ui i CRAE by two and additions ifif255 (XOR).

For the multiplication by two we only need to shift
each hyte to the left by one bit. To keep the result
in F256 we have to observe the carry bid$Bbefore

) . . ; the shift operation). If the carry bit is zero the re-
the opposite of this requirement. The state is mapped o eaqy correct (still ilfasg), if the carry bit is

o a byte sequence column-wise. Therefore we haveone we have to reduce by the irreducible polynomial
to transpose each input state to get bytes of the same y poly

X X (i.e. XOR 0x11B).
row into one register. .
Once this realignment is done we can apply the There are many strategies to reduce the number of

same operations on each column (or byte) stored in KORcomputations foMixBytes and we discuss two
the row registers at once. EvnbBytes which only optimization strategies in detail in Section 4.
reorders the bytes of one row, is easier to implement

this way, because no data has to be moved between

registers. 4 OPTIMIZING THE MIXBYTES
COMPUTATION

3.1 Transposing the State

Unfortunately, the byte mapping @rastl is exactly

3.2 AddRoundConstant

) The MDS matrix multiplication is the most complex
In° AddRoundConstant a constant isXORed to the gperation ofGrestl . Without optimizations all bytes
state. This constant is different f& and Q and of a column have to be multiplied by,2 4,5 and 7

changes every round. When using large registers, and then summed up according to the following ma-
these constants can be precomputed XDiéd row- trix multiplication:

by-row and in parallel to each column of the state.

bo 2 2 3 4 5 3 5 7 a
3.3 SubBytes by 7 2 23 45 35 a
by 5 7 2 2 3 4 5 3 a
In order to improve the performance of tBebBytes 23 =35> 7223 45 %
layer, we need to compute as many parallel S-box “ >3 5 72 2.3 4 %
: bs 4 5 3 5 7 2 2 3 as

lookups as possible.
In general, there is no easy way to lookup and re- N S 45 s s 22 %

9 ’ L by | L2 3 4 5 3 5 7 2] | a]

place each byte of a register using generic instructions
on large platforms. For this reason the T-table based If we use only multiplications by 2 as described
implementations are currently still the fastest on most above we can rewrite the same equations with factors
bigger platforms. However, the AES new instruc- of only 2 and 4. See Listing 1. Without optimization,
tions set gives us the possibility of 16 parallel S-box the total number oKOR is 13- 8 = 104 and we need
lookups within only one instruction (see Section 5). 16 multiplications by 2 (if we can store the results).

126

BYTE SLICING GROSTL - Optimized Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grestl

Note that a multiplication by 2 is usually about 3-5 the greedy approach until only single terms are left.
times more expensive than ZORoperation. Using this approach we found a sequence of comput-
ing MixBytes which requires 5&0Rs and 16 multi-
plications by two. This sequence is shown by Table 1
and we use superscript numbers to denote the order of
computing temporary results.

4.1 Using Temporary Results

In this section, we show #MixBytes computation
which tries to minimize the number OR and the
used registers while keeping the minimum number of 4.2 Reusing Results ofl
16 multiplications by 2. This strategy is used for the

Intel AES-NI implementation in Section 5.1. In this section, we show a differeMixBytes opti-
Since many termsa(,2-a;,4- &) in the computa- mijzation technique which might be faster if more reg-

tion are added to more than one result, we can savejsters are available. This technique has been used for

XORs by computing temporary results (see Table 1). the 8-bit AVR implementation (see Section 5.2).

For example, the term In Table 2 we have separated thixBytes com-
putation for each factog;, 2-a and 4 a. We use

) . e
superscript numbers to-denote the order in which we

needs to be added tp, b; andbs. This has a total compute temporary results again. The values marked

cost of 3-5 = 15 XORs using the naive approach. If with letters are added to the temporary results after

we first compute the temporary resufind then adtl computing the first (intermediate) results to further

to each oby, by andbs, we can save 15 (4+3) =8 optimize the computatiore,g.:

XOR.

t=2-a9+2-ap+1-a5+4-a7+1-ay

There are many possibilities to compute tempo- by1 =a0® as
rary results and we used a greedy approach to find Ps1=Db11 ()
a good sequence. In each step of this approach, we bi1=bi1as
try out all possible temporary results and compute the bay=Dbi1

number ofXOR we can save. In the first step, the
maximum number oKORs we can save is 8. After In this version the values that are multiplied by
we remove the already added terms, we continue with 2 are not calculated from the original inpus but
from the results of the first part of the calculation.
While this significantly reduces the numberX®rRs
the number of multiplications increases from 16 to 24:
instead of multiplying every byte of the column first
by 2 and then again by 2 to get the values multiplied

bp=axGasdasGasdar®2a0®d 2a1P
28, @ 2a5 P 2a7 B daz G day D 4ag D 4ay

by =a®azPas®asdard 20D 2a1®
2ap @ 2a3 P 285 P 4ag P 4as b das G 4ay
bo=agdarPas®ag®ay @ 2a1 ® 28D
2a3® 2a4 P 2a7 G dap B 4a; & das d dag
b3 =ag®a;®axd asd ayd 2a0® 28
2a3 P 2a4 P 2as P 4ag 4ap S dag D 4ay
bs=agParGarPazdagd 2a; & 2a3d
204 @ 2a5 P 285 B 4ag G 4ay b daz G 4ay
bs =a1®aydag® asd ar® 2ax H 24P
2a5 @ 2ag P 2a7 H dag® 4a; D dasz D day
bs =ap® ax D ag® ay D as ® 2ap P 283D
2a5 D 2a5 © 2a7 & 4a1 @ dap © 4ay @ 4as
br=a1®azPasdas®as® 280D 2a1P
204 @ 285 P 2a7 B 4ay d 4az P das G 4ag

by 4, we need to multiply the intermediate values too.
Although the number of multiplications increases to
24 we only need 4XORoperations. This variant has
been used for the 8-bit implementation@fastl in
Section 5.2.

4.3 Minimizing the Number of XOR

The previous technique leads to another method to
minimize the number of instructions iMixBytes.
Using Table 2, we can observe that for each rasult
manya; @ aj1 terms are needed for each factor of
1, 2 and 4. By computing temporary resultsg and

yi we get the following optimized/ixBytes compu-
tation formulas with = {0,...,7}:

ti=a+aj1
X =ti+1lis3 3)

Listing 1: MixBytes computation for one column with fac- bttt a
tors 1, 2 and 43; are the input bytes arig are the output Yi=t+li2taie
bytes. bi=2-(2-Xi13+Yit7) +Vita

127

SECRYPT 2011 - International Conference on Security and Cryptography

Table 1:MixBytes computation with 5&O0Rs. A “e” denotes those inputsy, 2- a;, 4- &) which are added to get the results
b;. Superscripts denote the order in which the temporary tesné computed (1 corresponds to the temporary results of

Equation 1).
) a a a3 4 as 3 a7
4 2 1|4 2 1|4 2 1|4 2 1|4 2 1|4 2 1|4 2 1|4 2 1
bp | — o -— _ &2 _ el % | 60 | e 62| — &2 el | 62 _ 2| ol 2 et
by | @ o1 &5 | — & — — et - — e &P | &4 O — ol | — e 67| ol ol
bz o5 o o’ o2 o’ — o — — o5 — — o’ o2 o — — o2 — o? — o2 o°
b3 — L] .3 .7 — .7 .3 .1 .3 — .3 — — .7 — .3 .1 .d — — .1 .1
by | @8 — &3 | — 6@ ef | 63 — &3 | e* &3 et | — &t — — & - S o I
b5 .d — — .6 — .4 .d L] .9 .4 — .4 .6 .4 .6 — .9 — — .4 — — .6 .C
bs | — o8 o3| e — o3 _ o3| — @3 o | o6 _ o8 | &8 3 68 | — b _ | — &8 _
b7 - .8 — — .2 .4 - - — .4 — .4 i .4 .2 .8 — .8 .2 .4 .2 — .2 —
These formulas contain a minimum number o8- Grgstl -~ are written in assembler. In the following, we

16 multiplications by 2 and in total, only-& = 48
XORoperations. However, it is still an open problem to
find the smallest number &fORs needed to compute
MixBytes of Grgstl . This strategy is also used for
the Intel AES-NIimplementationin Section 5.1. Note
that this variant can also be used to impr@restl

on the 8-bit platform.

5 IMPLEMENTATIONS

In the following we will describe specific implemen-
tation details for both the Intel AES-NI and 8-bit AVR
platforms.

5.1 Intel AES-NI

will discuss the main principles of the implementation
and important observations.

5.1.1 State Alignment in Registers

For optimal performance, the alignment of the state
inside the XMM registers is crucial. We have found
that the best solution foBrastl -256 is to compute
P and Q simultaneously and put one row (64-bit) of
each state side by side in one 128-bit XMM register.
We then need 8 XMM registers to store both states.
Thanks toMixBytes having the same MDS matrix
for P -and Q we can apply an optimizétixBytes al-
gorithm to the whole XMM register and thus, to 16
columns of the state in parallel.

In Grgstl -512 we have 16 columns for each per-
mutation which perfectly fit into 16 XMM registers.
Hence, P and Q are computed separately and after

Intel Processors based on the microarchitecture codeeach other but the sanéixBytes algorithm can still
name Westmere come with a new AES instructions pe used 16 times in parallel again.

set (AES-NI) (Gueron and Intel Corp., 2010). This

set consists of six new instructions used for AES en-

cryption and decryption. Next to improving the per-

5.1.2 Transposing the State

formance of AES they also provide more security due To align the column-ordered message to fit the re-
to their constant-time execution by avoiding cache- quired row-ordering, the message has to be trans-
based table lookups. Furthermore, all processors withposed after being loaded. For this purpose we use the
AES-NI come with different versions of SSE which PUNPCKinstructions. The same has to be done with
we will also use to improve our implementations. For the IV for the initialization and in reverse order for
more information about the instructions used in this the last chaining value before truncation. All the in-
document we refer to the Intel Manual (Intel Corp., termediate chaining values are kept in the transposed
2010). form.

SinceGrgstl uses the same S-box as AES we can In more detail, th@UNPCKnstruction merges two
use AES-NI to improve the performance Gfgstl XMM registers into one XMM register by interleav-
significantly. The implementation requires the pro- ing the high or low bytes/words/doublewords or quad-
cessor to run in 64-bit mode to have access to the 16words of the two source registers (Intel Corp., 2010).
128-bit XMM registers. This helps to avoid unnec- A simple square matrix can be transposed using only
essary memory accesses that would significantly re- PUNPCKinstructions (Intel Corp., 1996). As we ini-
duce the performance. These 16 128-bit XMM reg- tially have two 64-bit columns in each register, and
isters provide enough space for the wh@msstl therefore an 8x16 matrix, we also neR8HUFBand
state. Critical parts of the AES-NI implementation of MOMnstructions to reorder the data correctly.

128

BYTE SLICING GROSTL - Optimized Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grestl

Table 2: MixBytes computation separated for factor 1, 2
and 4.g are the input ant; the output bytes. A¢” denotes

those inputs &, 2-a, 4-g) which are added to get the
intermediate results; j. Superscripts denote the order in

tion. To isolate SubBytes we can invert the
ShiftRows transformation (using®SHUFB with the
mask 0x0306090c0f0205080b0e0104070a0d00) and
use an empty RoundKey. The following assembler

which temporary values are computed. Note that the results code shows the S-box implementation using AES-NI:

for factor 2 can be computed only by multiplying the results
of factor 1 by 2 €.9. bgo = 2b3 1).

lag | 1lay | lap | lag | lay | las | lag | lay
bo 1 — — o — o2 o o2 .
b1 ol — — ol — . o? .
bpy | o° o3 - — o? - o2 o3
bs1 oP o3 o0 — — o — o3
bs1 ol . . ol — — o —
bs 1 — o3 . . . - - o3
bs 1 ol — o0 ol . o0 — —
b71 — . — . o? . o? —
2a0 | 2a1 | 28 | 2a3 | 2a4 | 285 | 2a¢ | 2a7 =
bo2 . . . - - . - . 2b3
b2 . .) 3 — - . = 2by
b2 - — - . 2bs 1
bz . — - — 2bg 1
bs2 — . — — 2b7 4
bs o — — . — 2bo1
be 2 . - — . - . . . 2by 1
b72 . . — — . — . . 2by;
dag | 4ay | dap | daz | day | das | 4das | day
Do 4 - — — o0 ol _ o0 ol
bis | #° - - — ol o2 - ol
bos | 2 o3 - — - o2 o3 -
bs4 — o3 ot — — — 3 ot
bag | o | — | o* | & | — _ — | e
bss | o° of - o> of - - -
bs 4 — of o — of o — —
b74 — — o’ o0 — o o0 —

(Gueron and Intel Corp., 2010)

pshufb xmmO0, 0x0306090c0f...70a0d00
aesenclast xmmO0, 0x0000000000...0000000

These instructions combined will take less than 3 cy-
cles to compute with a latency of about 6 cycles (Fog,
2010).

5.1.5 ShiftBytes

We can use thBSHUFBnstruction (SSSE3) to quickly
reorder the bytes in the XMM registers fhiftBytes.
This instruction is even faster than a simple shift
instruction. Furthermore thBSHUFBinstruction of
ShiftBytes can be combined with thRSHUFBinstruc-

tion to correcShiftRows for AESENCLAST

Two PSHUFBinstructions with constant masks can
be merged by shuffling the first mask using the second
mask:

pshufb xmmO, maskl
pshufb xmmO, mask2

is equal to:

(pshufb maskl, mask2)
pshufb xmmO, maskl

where the shuffled mask is again a constant. The new
mask (mask1) can be precomputed. This way we can
save oneéPSHUFBInstruction and only need to store
one constant.

5.1.6 MixBytes

The details of the transpositions for each step are with the new row ordering we can compute 16

shown in table form in the Appendix.

5.1.3 AddRoundConstant

AC adds a constant to the state matrix. Poa con-
stant is only added to the first row, f@the constant

is added to all rows. Therefore we need 8 128-bit
XORs for Grgstl -256 sinceP and Q share registers.
ForGrgstl -512 we need XORfor P and 8 forQ.

5.1.4 SubBytes

The Intel AES instructions provide exactly the func-
tionality required for SubBytes of Grgstl since
the same AES S-box is used. The last round of
the AES encryption applieShiftRows, SubBytes
and AddRoundKey to the state. This func-
tionality is available by theAESENCLASTIinstruc-

columns in parallel in one pass. We have imple-
mented both variants which need a minimum number
of 16 multiplications by 2. Apart from the multipli-
cations by 2, the first variant of Section 4.1 needs 8
MOVand 32XORoperations without memory access,
and 25MOVand 26XORoperations with memory ac-
cess (33VI0Vand 58X0Roperations in total). For the
second variant given in Section 4.3, we needVillV
and 32XORoperations without memory access, and 8
MOVand 16XORoperations with memory access (19
MOVand 48XORoperations in total).

In the following, we show different implementa-
tion variants of the multiplication by 2 which can be
used to implementixBytes.

Multiplication by 2 in Fy56 with SSE or Similar.
If SSE is available, the code shown below can be used

129

SECRYPT 2011 - International Conference on Security and Cryptography

to calculate the multiplication in parallel. In this ex-
amplexmml is multiplied by 2 anckmmoO will be lost
(paddb is used instead gillg because of the shorter
opcode):

movdga xmmO, xmml
psrlw xmml, 7

pand xmml, 0x0101...01
pmullw xmm1, 0x1lblb...1b
paddb xmmO, xmmO

pxor xmml, xmmoO

Multiplication by 2 in 56 with PBLENDVB. If
SSE 4.1 is available we can use tABLENDVBIn-
struction to slightly speed up the algorithm described
above. PBLENDVBmerges two XMM registers into
one. The source register is selected byMiS&of each
byte in a third register. ThESBis also the bit that de-

cides whether or not it is necessary to reduce the byte

after shifting. Therefore we can use this instruction
to generate a mask DR 0x1Bwhere necessary. The
multiplication as implemented is shown below where
xmm?2 is multiplied by 2 xmm0 andxmml are lost:

movdga xmm0, xmm2
pand xmm2, O0xlblb...1b
pxor xmml, xmml
paddb xmm2, xmm2

pblendvb xmm1, Ox7f7f...7f
pxor Xxmm2, xmml

Multiplication by 2 in Fy56 with PCMPGTB. We
get the fastest implementation using #@MPGTBN-
struction. PCMPGTBcompares signed bytes. If the
MSB is set, the comparison with zero result9xirF
and in0x00 otherwise. The multiplication is shown
below where xmm1 will be multiplied by 2, xmmO0
will be lost and xmm2 has to be &lk1B.

pxor xmm0, xmmO
pcmpgth xmm0, xmml

paddb xmml, xmml
pand xmmO0, xmm2
pxor xmml, xmmoO
If ALU instructions are the bottleneck in the

MixBytes implementation, we can also replace some
instructions by their memory variant and get for ex-
ample:

movaps xmm0, 0x0000...00
pcmpgth xmm0, xmml
paddb xmml, xmml
pand xmmO0, Ox1lbilb...1b
pxor xmml, xmmO

130

5.1.7 Further Optimizations

For even higher performance we tried different local
optimization techniques. We:

o tried different variants of th&lixBytes computa-
tion;
unrolled loops;

used precomputed constants for

AddRoundConstant;

analyzed different instruction orders to improve
parallel executions in different ALUs (micro-ops);

e used equivalent instructions with smaller opcode

where possible;
tried different variants for the multiplication by 2;

used different variants of equivalent LOAD/
STORE or ALU; instructions to keep all units
busy.

While unrolling loops works perfectly foGrostl -

256, we found that unrolling all loops @rgstl -512
increases the code size to exceed the cache size of
the used CPU. This causes an immense drop in per-
formance. Therefore using loops is necessary in this
implementation.

5.1.8 Log Tables (vpaes)

As presented in (Hamburg, 2009), there is another
way to compute the S-box relatively fast and cache-
timing resistant without the use of AES instructions.
By using Log tables to calculate inversesE it is
possible to compute the inverseligs. This way the
S-box can be realized with only 4-bit table lookups.
These lookups can be implemented WRBHUFBIn-
structions. RecenthGrgstl has been implemented
this way in (Calik, 2010). We have implemented the
AES S-box computation and improved the previous
results using our optimizeMixBytes computations.
Note that the resulting vpaes implementation is now
as fast as the T-table based implementation.

5.1.9 Intel AVX

The next generation of Intel processors feature a 256-
bit extension to SSE called AVX. Using these new
registers the possible bandwidth for parallel compu-
tations can be doubled. Even thouBBHUFBand
AESENCLASTwiIll not be available for 256-bit regis-
ters,Grostl -512 might run up to 50% faster because
MixBytes and AddRoundConstant can be applied to

P and Q at the same time.

BYTE SLICING GROSTL - Optimized Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grestl

Table 3: Speed of th@rgstl AES-NIand vpaesimplemen- Table 4: Speed of three differe@rgstl -256 8-bit AVR
tations in cylces/byte on an Intel Core i7-M620 and Intel implementations in cycles/byte on an ATMegal63. The last

Core2 Duo L9400 processor (v1: usiijxBytes compu- line shows the RAM usage in bytes (usihgxBytes com-
tation of Section 4.1; v3: usinlylixBytes computation of putation of Section 4.2).
Section 4.3). -
HighSpeed| Balanced| LowMem
CPU | Version Grostl -256 | Grostl -512 Grastl 469 530 -
aesniv3 12.2 18.6 Grostl -0 456 517 738
| aesnivl 13.0 18.6 RAM 094 226 164
Core i7 1 aes vi 23.2 32.6
T-tables 24.0 35.9 .
() byte of the state it is faster to have a lookup table for
Core2 | vpaes 21.2 29.2 h ltivlication if h . ilabl
Duo (T-tables) 504 303 the multiplication if enough memory is available.

AddRoundConstant andSubBytes are computed
for each byte separately usiX@R and table lookups.
5.1.10 Benchmarks ShiftBytes is achieved at no cost by simply loading

from shifted positions in RAM. For more details on

the 8-bit implementation we refer to the full descrip-
2 tion of the implementation (Roland, 2009). Note that
h- this implementation can probably be further improved
using theMixBytes computation of Section 4.3.

The final round version orestt has been bench-
marked on an Intel Core i7-620LM and Intel Core
Duo L9400. For comparison, we also show benc
marks of the T-table implementation and the vpaes
implementation. The results are showninTable 3. 55 1 Benchmarks

5.2 8-hit AVR (ATmegal63) We have implemented two different versions of the
8-bit implementation with the final round tweak

The ATmegal63 is an 8-bit microcontroller with 32 (Grestl) and three versions without the final round

8-bit multi-purpose registers, 1024 Bytes of SRAM tweak Grastl -0) using different amounts of RAM.

and 16K of flash memory. The multi-purpose regis- The versions are compared in Table 4.

ters can be used to manipulate data. The controller

needs 2 cycles to read from and write to the SRAM

and 3 cycles to read from flash memory. Six of the 6§ CONCLUSIONS

8-bit registers are used as 16-bit address registers X,

Y and Z, thus they can USUa”y not be used for com- In this work we have proposed two optimized al-

putations. For a list of instructions see (Atmel, 2003). gorithms for MixBytes, the MDS mixing layer of
Because of the limited bit width of the architecture Grgstl , which allow to speed urgstl on vari-

we can only compute one column at once. Therefore ous platforms. Furthermore, byte slicing provides the

the most important part of the 8-bit optimization is possibility to parallelize theérgstt computation if

minimizing the number oKOR in MixBytes as de- the registers are large enough and parallel AES S-box

scribed above. With 26 available general purpose reg-table lookups are available. This is the case for Intel

isters we have just enough space to keep the intermeprocessors including the new AES instructions set or

diate values loaded at all times during the computa- in general, using the vpaes implementation.

tion of one column. All the other columns have to be Both implementations show th&rgstl can be

written back to RAM. implemented efficiently on very different platforms.
The multiplication inF2s¢ can be implemented The 8-bit implementation will run at 469 cycles per

with the code shown in Listing 2, where r0 is multi- byte on this very limited target hardware. The AES-

plied by 2, r1 has to be pre-set to 0x1B and r2 will be NI implementation shows that even thouGhgstl

lost. These instructions will take 4 cycles to process is very different from AES it still can take advantage

of these new instructions. More specifically, our In-

tel AES-NI implementation ofsrgstl is the fastest

LSL 10 #1010 = 10 << 1 . .
IN 2, OX3F # r2 = status register known implementation so farGrestl -256 runs at
SBRC 12, 0 # skip next if no carry about 12.2 cycles per byte on an Intel Core i7-M620,
EOR r0, r1 # r0 = r0 + 0x1B which is about 50% faster than the table-based version
on the same CPU.
Listing 2: Multiplication by 2 for 8-bit version. We have reduced the number of operation needed

to computeMixBytes to only 48XORs with 16 multi-
on the selected CPU. As they are executed for everyplications by 2. Future work includes the optimization

131

SECRYPT 2011 - International Conference on Security and Cryptography

of the MixBytes computation to take more advantage Intel Corp. (1996). Using MMXMinstructions to

of the 3 available ALUs in current Intel processors by Transpose a Matrix. Retrieved July 12, 2011, from
minimizing the dependency chains. Also future CPU ftp://download.intel.com/ids/mmx/MMXApp_Transp
features like AVX will provide another opportunity oseMatrix.pdf.
to increase the performance, especially for the larger M€l _Corp. (2010). Ine®64 and I1A-32 Ar-

. chitectures Software Developers Man-
variantGrgstl -512. ual. Retrieved December 21, 2010, from

http://www.intel.com/products/processor/manuals/.
National Institute of Standards and Technology (2001).

ACKNOWLEDGEMENTS FIPS PUB 197, Advanced Encryption Standard

(AES). Federal Information Processing Standards
Publication 197, U.S. Department of Commerce.

The authors thank Krystian Matusiewicz for useful National Institute of Standards and Technology (2007).

discussions and for fine-tuning the AES-NI imple- Cryptographic Hash Project. Available online at
mentations. This work was supported in part by the http://www.nist.gov/hash-competition.

European Commission through the ICT Programme Roland, G. A. (2009). Efficient Implementation of
under Contract ICT-2007-216646 ECRYPT II, by the the Grostl -256 Hash Function on an ATmegal6s3

Microcontroller. Retrieved May 03, 2010, from

Austrian Science Fund (FWF), project P21936 and by http://groestl.info.

the IAP Programme P6/26 BCRYPT of the Belgian
State (Belgian Science Policy).

APPENDIX

REFERENCES The following tables show how the message is loaded,
)) _ transposed, XORed to the chaining value and stored
Atmel (2003). ~ 8-bit AVR Microcontroller with 16K iy XMM registers for the byte slice implementation

Bytes In-System Programmable Flash. AT- _
megal63. Retrieved December 21, 2010, from of Grastl -256. We use a sequence RIINPCKand

http://www.atmel.com/dyn/resources/prddcuments/ "SHUFBinstructions to get the required formats.
doc1142.pdf. First, the message block bytlk; are loaded into
Benadjila, R., Billet, O., Gueron, S., and Robshaw, M. 4 XMM registers (see Table 5). Note that@ngst
(2009). The Intel AES Instructions Set and the SHA-3 the message is loaded in column ordering format.
Candidates. ~Retrieved December 22, 2010, from Hence, the message needs to get transposed to get two
. http://crypto.rd.francetglecom.com/ECHO/sha3/AES/. rows of theM;j in one XMM register (see Table 6).
Ca“k,SH% 3(2|010|)- i\/'ltJ_”l-Stfealegf%d hCOrf:St?nt-ttl_me The chaining value is kept in the same format. Then,
-3 Implementations. ash function e i T y
mailing list. ~ Retrieved May 03, 2010, from :[Paebllglt;&)ll XORis computedto g&; = Hi; &M;j (see
http://www.metu.edu.triccalik/software.html#sha3. T .t P andO i XMM ist
Fog, A. (2010). Instruction tables - Lists of instruction la 0 get one row of andQ in one h register,
tencies, throughputs and microoperation breakdowns W€ Need to reorder and transpose bdi,and M;j
for Intel, AMD and VIA CPUs. Retrieved December ~again (see Table 8 and Table 9). This format is used
22, 2010, from http://www.agner.org/optimize/. throughoutall 10 rounds @restl -256 and we trans-
Fouque, P.-A., Stern, J., and Zimmer, S. (2009). Cryptanal- pose back to the chaining value format to compute the
ysis of Tweaked Versions of SMASH and Reparation. final XOR of P andQ and the feed-forward.
In Avanzi, R., Keliher, L., and Sica, F., editorSe-

lected Areas in Cryptography 2008, Proceedings, vol- . ; : :

ume 5381 oL NCS, pages 136-150. Springer. Table 5: Loading the message block into XMMO-XMM3.
Gauravaram, P., Knudsen, L. R., Matusiewicz, K., Mendel, Xm"‘ ijg"j X,'\\,l/%l X",(',,'\(/)lo

F., Rechberger, C., Schlaffer, M., and Thomsen, S. S. NZ9 M33 NT7 MT

(2011). Grgstl — a SHA-3 candidate. Submission M50 N34 M18 M2

to NIST (Round 3). Retrieved May 03, 2010, from M51 M35 MI9 M3

http://www.groestl.info. mgg mgg m;g m;‘
Gueron, S. and Intel Corp. (2010) Ir@Advanced M54 M38 M22 M6

Encryption Standard (AES) Instructions M55 M39 MZ3 M7

Set. Retrieved December 21, 2010, from M56 M40 MZ24 W]

http://software.intel.com/en-us/articles/intel- M57 M41 M25 M9

advanced-encryption-standard-aes -instructions-set/. mgg mg m;g mg
Hamburg, M. (2009). Accelerating AES with Vector Per- M0 NMZZ NIZ8 NTZ

mute Instructions. In Clavier, C. and Gaj, K., editors, M61 M45 M29 M13

CHES volume 5747 oL NCS, pages 18-32. Springer. mgg ms mgg mg

132

BYTE SLICING GROSTL - Optimized Intel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grestl

Table 6: After transposing the message block two rows are Table 8: Reordering and transposing again to get one row
stored in one XMM register. Note that the chaining value is of Bj and one row oiM;; in one XMM register. XMMO-

stored in the same format in registers XMM4-XMM?7. XMM3 contain row 0-3 ofP andQ.

XMM3 | XMM2 | XMM1 | XMMO XMM3 | XMM2 | XMM1 | XMMO
M6 M4 M2 MO P3 P2 P1 PO
M14 M12 M10 M8 P11 P10 P9 P8
M22 M20 M18 M16 P19 P18 P17 P16
M30 M28 M26 M24 P27 P26 P25 P24
M38 M36 M34 M32 P35 P34 P33 P32
M46 M44 Ma42 M40 P43 P42 P41 P40
M54 M52 M50 M48 P51 P50 P49 P48
M62 M60 M58 M56 P59 P58 P57 P56
M7 M5 M3 M1 M3 M2 M1 MO
M15 M13 M11 M9 M11 M10 M9 M8
M23 M21 M19 M17 M19 M18 M17 M16
M31 M29 M27 M25 M27 M26 M25 M24
M39 Mm37 M35 M33 M35 M34 M33 M32
m47 M45 M43 M41 M43 M42 M41 M40
M55 M53 M51 M49 M51 M50 M49 M48
M63 M61 M59 M57 M59 M58 M57 M56

Table 7: After computing the initial XOR®j = Hij & M. Table 9: And XMM4-XMM7 contain row 4-7 oP andQ.
XMM7 | XMM6 | XMM5 | XMM4 XMM7 | XMM6 | XMM5 | XMM4
P6 P4 P2 PO P7 P6 P5 P4
P14 P12 P10 P8 P15 P14 P13 P12
P22 P20 P18 P16 P23 P22 P21 P20
P30 P28 P26 P24 P31 P30 P29 P28
P38 P36 P34 P32 P39 P38 P37 P36
P46 P44 P42 P40 P47 P46 P45 P44
P54 P52 P50 P48 P55 P54 P53 P52
P62 P60 P58 P56 P63 P62 P61 P60
P7 P5 P3 P1 M7 M6 M5 M4
P15 P13 P11 P9 M15 M14 M13 M12
P23 P21 P19 P17 M23 M22 M21 M20
P31 P29 P27 P25 M31 M30 M29 M28
P39 P37 P35 P33 M39 M38 M37 M36
P47 P45 P43 P41 M47 M46 M45 M44
P55 P53 P51 P49 M55 M54 M53 M52
P63 P61 P59 P57 M63 M62 M61 M60

133

