
TOWARDS PATTERNS FOR HANDLING SAFETY CRITICAL
ADAPTIVE CONTROL SOFTWARE

André A. Hauge
Department of ICT Risk and Dependability, Institute for Energy Technology, Halden, Norway

Department of Informatics, University of Oslo, Oslo, Norway

Ketil Stølen
Department of Networked Systems and Services, Sintef ICT, Oslo, Norway

Department of Informatics, University of Oslo, Oslo, Norway

Keywords: Pattern format, Adaptive software, Safety.

Abstract: This article puts forward a pattern format for use in the safety critical control domains where adaptable com-
ponents are part of the control software. The pattern format may be seen as a first step towards establishing a
pattern language uniting three interests. The first interest is related to the objective of providing the compre-
hensibility and usability found in design patterns with respect to communication of solutions to problems that
may be solved by means of adaptive control. The second interest is related to the need to make explicit the re-
quirements to be satisfied in order to facilitate instantiation of a design in different safety critical contexts. The
third interest is related to the need to provide argumentation for risk being satisfactory reduced. The pattern
format supports not only documentation of a technical solution to a recurring problem, but also documentation
of the requirements that must be satisfied when instantiating a design in different contexts as well as solutions
for how the safety property may be demonstrated.

1 INTRODUCTION

From the perspective of a software safety engineer,
evaluating the suitability of a particular adaptive soft-
ware design or finding the most suitable of a set of
relevant designs for use in a specific context is a chal-
lenge in itself. Our approach is intended to provide
the safety engineer with a pattern language which of-
fers design solutions as well as indication on the re-
quirements that may be associated with the design and
solutions to how one may demonstrate safety.

Figure 1 illustrates the relationship between the
different constituents of our pattern language for Safe
Adaptive Control Software (or SACS for short). We
employ the Alexandrian (Alexander et al., 1977) in-
terpretation of what is meant by a pattern language.
This article mainly addresses the format and discusses
how the format supports establishing the SACS pat-
tern language.

Section 2 provides an overview of the main chal-
lenges to be addressed by our pattern language. Sec-
tion 3 presents the pattern format. Section 4 exem-

Figure 1: The levels of the language.

plify how patterns specified according to the format
may be combined to form a usable pattern language.

2 THE CHALLENGE

Adaptive control software is able to evolve while exe-
cuting, thereby introducing an additional uncertainty
aspect with respect to functional behaviour compared
to conventional software systems. The uncertainty is
associated with the variability of the system and the
variability of the service as an effect of the adaptations
that may be experienced at runtime. The variability of

211A. Hauge A. and Stølen K..
TOWARDS PATTERNS FOR HANDLING SAFETY CRITICAL ADAPTIVE CONTROL SOFTWARE.
DOI: 10.5220/0003538502110214
In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2011), pages 211-214
ISBN: 978-989-8425-74-4
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



the systems and the service is governed by the adap-
tation loop mechanism (Salehie and Tahvildari, 2009)
consisting of processes for monitoring, detecting, de-
ciding and acting upon change. From a safety per-
spective, the challenge is to demonstrate that the sys-
tem is still safe after each adaptation iteration.

A successful pattern language for use by a safety
engineer should be able to communicate: (i) design
solutions; (ii) requirements that must be satisfied in
order to give confidence that a system may achieve its
intended utility and safety integrity; and (iii) how to
demonstrate that a system based on a design pattern
is sufficiently safe for a given purpose. In order to
facilitate such a pattern language, we summarise the
following main success criteria for our pattern format:

1) support the specification of patterns in such a
manner that a pattern language for safety criti-
cal/related adaptive control software may be pro-
vided

2) support the specification of patterns for each of
the concerns requirements, design and safety case

3) support specification of patterns which build upon
each other in such a manner that a user may be
provided with choices and detail by the linked pat-
terns

3 MAIN INGREDIENTS OF THE
PATTERN FORMAT

Figure 2 gives the basic format of the three types of
patterns. In the following we describe these in further
detail.

Figure 2: Overall Structure for Pattern Format.

3.1 Requirement Pattern Format

The requirement pattern format as illustrated in Fig-
ure 3 is inspired by the problem frames approach by

Figure 3: Requirement Pattern Format.

(Jackson, 2001). A requirement pattern in our pat-
tern language address a specified set of problems, or
problem domains, which are documented as part of
the problem context. The problem framepart of a
pattern is intended to be used to elaborate upon the
phenomenons associated with the different types of
problem domains identified in the problem context
to such an extent that the problem is sufficiently un-
derstood. Therequirementspart should specify the
sets of requirements which are derived on the basis of
the problem frames specifications. A challenge is to
capture uncertainty or allowable variability of the ser-
vice and the system as an effect of adaptations, this
is discussed in (Qureshi and Perini, 2009) and (Whit-
tle et al., 2009). AnAdaptive Problem Framemay
be used to elaborate upon the challenges with respect
adaptiveness. This type of problem frame requires
that theobjective for introducing adaptivity,adap-
tation meansdetailing how adaptability may be ob-
tained, and the challenges associated withvariability
of the system and the system service are addressed.
Requirements that may be derived the problem frames
specifications are detailed in therequirementsfield.

3.2 Design Pattern Format

Our format for expressing design patterns as shown
in Figure 4 is inspired by the the format provided by
(Gamma et al., 1995), an extension is provided by re-
quiring the explicit description ofsafety features.

Although our language is intended to address
adaptive control software, each pattern which make
up a part of the language does not necessarily address
adaptivity. A design pattern thus might conform to the
basicDesign Pattern Formator the extendedAdapt-
able Design Pattern Formatas illustrated in Figure
4. An adaptable design pattern should clearly de-
scribe the characteristic properties which providesys-
tem variabilityandservice variabilityas an effect of
runtime adaptations.

ICINCO 2011 - 8th International Conference on Informatics in Control, Automation and Robotics

212



Figure 4: Design Pattern Format.

3.3 Safety Case Pattern Format

A safety case may be structured in different styles
(Alexander et al., 2008) and by different means, e.g.
graphical approaches like GSN or CAE (Alexander
et al., 2008), (Bishop et al., 2004). The intent how-
ever is to structure claims, arguments and evidence in
such a manner that it may be logically deduced and
concluded that the system is sufficiently safe.

For any safety critical or safety related system, the
core driver for providing confidence that the system is
sufficiently safe is basically to demonstrate two con-
cerns: (i) that the safety requirements specification is
sufficient and correct and (ii) that the system satisfies
the safety requirements. A safety case pattern should
provide the main claims, arguments and indicate the
evidence required such that the concerns of (i) and (ii)
may be demonstrated.

Adaptive software differs from non-adaptive soft-
ware in that the properties of the software are ex-
pected to change beyond commissioning time. In or-
der to demonstrate that an adaptive system is safe, we
must demonstrate that an iteration of the adaptation
loop always yields a refinement which is safe within
its operational lifetime.

Figure 5 provides the basic format of our pat-
tern for demonstrating the safety of adaptive software.
A pattern specified according to theAdaptive Safety
Case Pattern Formatis required to provide aclaim
structuredocumentation which in general is intended
to be used to document the argument in a structured
manner. With respect to demonstration of adaptive
software safety, the claim structure should be docu-
mented in such a manner that it is a logical conse-
quence of the premises provided by these argument
parts that adaptation will have no negative effect on
safety. There are five important parts to such an argu-
ment which are required to be explicitly documented
in our pattern format under the fieldSafe Adaptation.

Figure 5: Safety Case Pattern Format.

Theobjectiveshould reflect the goals to be achieved
by adaptation. Thepreconditionis intended to capture
the premises of the argument related to the conditions
for executing the adaptation loop. Related to thetran-
sition field, there should be provided a description of
the means which assure adapting a system satisfying
a precondition will always yield a system satisfying a
postcondition. Thepostconditionis intended to cap-
ture set of premises which is satisfied when the sys-
tem is adapted and which guarantees that the system
is safe. Thevariability part of the pattern is intended
to capture the implied variability of the service and
the system which may be expected as an effect of ac-
commodating changes by adapting. It should also be
described why this variability will have no negative
effect on safety.

4 EXAMPLE

Figure 6 illustrates a map of related patterns as seen
from the perspective of an example design pattern
namedTrusted Backup, thus only one generation of
links is provided. A map of the complete pattern lan-
guage may be provided by combining the information
contained in therelated patternsfield of individual
patterns.

Pattern combinators describe the rules for how
patterns may be combined to form a pattern language.
Figure 6 exemplify the use of a set of combinators
where the following semantics may be assumed:

includes: specifies that apatternmay be partially
defined by another pattern of the same type. This
is used to define that patterns may build upon each
other

requires: specifies that aDesign Patternshould
satisfy the requirements in aRequirement Pattern

enables: specifies that a specificDesign Pattern

TOWARDS PATTERNS FOR HANDLING SAFETY CRITICAL ADAPTIVE CONTROL SOFTWARE

213



Figure 6: Example.

enables the use of a specificSafety Case Pattern
in order to argue about the safety property

Where there is a one-to-many relationships between
patterns, the following rules may be used in order to
detail the relationship:

or: define that the targets represent alternatives
where only one is required for completeness

and: define that all the target patterns are required
for completeness. This is implied in Figure 6 if
not otherwise specified

We assume here that theTrusted Backupdesign pat-
tern describes a configuration of an adaptable con-
troller, a conventional controller, a monitor and a
switch component. Both controllers operate in par-
allel and are granted control privileges according to
a switching scheme. A monitor supervises the adapt-
able controller in order to detect anomalies to its be-
haviour. The switch grants control to the adaptable
controller given that no anomalies are detected by the
monitor and the system under control is in a state for
which the adaptable controller may not cause harm,
otherwise the switch grant control to the conventional
controller.

TheTrusted Backupdesign specifies the use of on
a redundant set of controllers and means for delega-
tion of control according to some type of diversifica-
tion of the operational state space. Therequiresrela-
tionships specify the requirement patterns which must
be instantiated and satisfied when instantiating the de-
sign pattern, here this is theOperational Domain Di-
versificationandRedundancyrequirement patterns.

The Trusted Backupdesign pattern may include
several other design patterns as part of its specifica-
tion. The include relationships of Figure 6 indicate
that the pattern include functionality for monitoring
and switching and that these are handled in dedicated
patterns namedMonitor andSwitch.

Depending on the intent for introducing adapt-
ability and other characteristics of the system design,
strategies for demonstrating safety may or may not be

applicable. If adaptivity is introduced in a design to
improve performance, we cannot make an argument
of improved safety. In Figure 6 there is illustrated
two applicable Safety Case Patterns namedAccept-
able Riskand Constrained Adaptive Controlwhere
it is sufficient to apply only one for demonstrating
safety.

REFERENCES

Alexander, C., Ishikawa, S., and Silverstein, M. (1977).A
Pattern Language: Towns, Buildings, Construction.
Oxford University Press.

Alexander, R., Kelly, T., and McDermid, J. (2008). Safety
cases for advanced control software: Safety case pat-
terns. Technical Report FA8655-07-1-3025, Depart-
ment of Computer Science, Univeristy of York.

Bishop, P., Bloomfield, R., and Guerra, S. (2004). The fu-
ture of goal-based assurance cases. InProceedings of
Workshop on Assurance Cases. Supplemental Volume
of the 2004 International Conference on Dependable
Systems and Networks, pages 390–395.

Gamma, E., Helm, R., Johnson, R. E., and Vlissides,
J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Jackson, M. (2001).Problem Frames: Analysing and Struc-
turing Software Development Problems. Addison-
Wesley.

Qureshi, N. A. and Perini, A. (2009). Engineering adaptive
requirements. International Workshop on Software
Engineering for Adaptive and Self-Managing Systems,
pages 126–131.

Salehie, M. and Tahvildari, L. (2009). Self-adaptive soft-
ware: Landscape and research challenges.ACM
Trans. Auton. Adapt. Syst., 4(2):1–42.

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H. C., and
michel Bruel, J. (2009). Relax: Incorporating uncer-
tainty into the specification of self-adaptive systems.
In 17th IEEE International Requirements Engineering
Conference RE 2009, pages 79–88.

ICINCO 2011 - 8th International Conference on Informatics in Control, Automation and Robotics

214


