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Abstract. In previous research, many mutation selection techniques have been 
proposed to reduce the cost of mutation analysis. After a mutant subset is se-
lected, researchers could obtain a test suite which can detect all mutants in the 
mutant subset. Then they run all mutants over this test suite, and the detection 
ratio to all mutants is used to evaluate the effectiveness of mutation selection 
techniques. The higher the ratio is, the better this selection technique is. Ob-
viously, this measurement has a presumption that the set of all mutants is the 
best to evaluate test cases. However, there is no clearly evidence to support this 
presumption. So we conducted an experiment to answer the question whether 
the set of all mutants is the best to evaluate test cases. In this paper, our expe-
riment results show that a subset of mutants may be more similar to faults than 
all the mutants. Two evaluation metrics were used to measure the similarity – 
rank and distance. This finding reveals that it may be more appropriate to use a 
subset rather than all the mutants at hand to evaluate the fault detection capabil-
ity of test cases. 

1 Introduction 

Mutation analysis is a fault-based testing technique that has been used to identify or 
create adequate test cases effectively. It was first proposed by [6] and [3]. In mutation 
analysis, a faulty program termed mutant is generated by seeding a fault into the orig-
inal program, and the transformation rule to generate mutants is called mutation oper-
ator. Then we can execute a test case on a mutant and the original program to com-
pare their outputs. If their outputs are different, we say that the mutant can be de-
tected by this test case. Otherwise, this mutant survives. However, there are some 
mutants that cannot be detected by any test case and these mutants are deemed to be 
equivalent mutants. Automatically detecting equivalent mutants has been proved to 
be an undecidable problem [10]. 

Although mutation analysis is an effective evaluation for testing experiment [1], it 
has seldom been used in practice because of its high cost. Even a small program can 
generate numerous mutants. Obviously, compiling and executing such numerous 
mutants are heavy burdens in mutation analysis. In order to alleviate these burdens, 
many cost reduction techniques have been developed. A natural idea is to select a 
subset from all the mutants, while maintaining the effectiveness to evaluate the fault 
detection capability of test cases. Operator-based selection, clustering-based selection,  
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and random selection are three representative mutation selection techniques. 
Previous research showed that mutants can be used to replace faults to evaluate 

the fault detection capability of test cases [1]. Most of the existing efforts have an 
implication that using all mutants to evaluate the fault detection capability of test 
cases will increase the validity of their conclusions than using a subset of mutants. 
After selecting a subset of mutants, we can obtain test cases that can detect all the 
mutants in this subset. Then we execute all non-equivalent mutants on these test cases 
and calculate the mutation detection ratio. The higher the ratio is, the better the subset 
is. However, there is no convincing evidence whether this methodology is trustwor-
thy because some mutants may have negative affection in mutation analysis. 

In this paper, we investigated the similarity between faults and all mutants gener-
ated using mutation operators, and between faults and subsets of mutants. Our expe-
riment results show that a subset of mutants is more similar to faults in the ability of 
evaluating test cases. This finding reveals that it may be more appropriate to use a 
subset rather than all the mutants at hand to evaluate the fault detection capability of 
test cases in some studies. 

The rest of this paper is organized as follows. Section 2 introduces our experiment. 
Section 3 reports the results and analysis. Section 4 presents the conclusions and 
future work. 

2 Experiment 

We are interested in the following research question: 
When considering the ability of evaluating test cases, can a subset of mutants be 

better than all mutants? i.e., can a subset of mutants be more similar to faults than all 
mutants? 

2.1 Subject Programs 

We used seven Siemens C programs as subjects [5], [11]. We obtained all the subject 
programs and the corresponding test cases from Software-artifact Infrastructure Re-
pository (SIR) [4]. Table 1 shows the basic information of the seven programs. 

Table 1. Subject Programs. 

Programs Lines of Code Test Pool Size Non-Equivalent Faults Non-Equivalent Mutants 
tcas 137 1608 40 4011 
tot_info 281 1052 23 7870 
schedule 296 2650 9 3681 
schedule2 263 2710 9 4862 
print_tokens 343 4130 7 9165 
print_tokens2 355 4115 10 8765 
replace 513 5542 31 19861 

11



2.2 Techniques for Generating Mutants 

In our experiment, we used the following four techniques to obtain a set of mutants. 
For all mutants, we used a tool called ProteumIM2.0 [2], which implemented 108 

mutation operators for C language. For each subject program, we generated all mu-
tants with all the mutation operators, and equivalent mutants are discarded in our 
experiment. 

In order to increase the validity of our experiment, we generated the subsets of 
mutants with the same size (denoted as n) when using Offutt et al. operator-based 
selection, clustering-based selection and random selection. 

For operator-based selection, we preferred several operators to all operators, and 
we generated the operator subset with Offutt et al. 5 operators (ABS, UOI, LCR, 
AOR and ROR) [9], [8]. 

For clustering-based selection [7], we classified all non-equivalent mutants into 
several different clusters using simple K-means based on the detectable test cases. 
According to the characteristics of clustering, mutants in the same cluster can always 
be detected by similar test cases. Then we can select several mutants from one cluster 
to represent all the mutants in that cluster. In our experiment, the number of clusters 
is 20, and we randomly selected n/20 mutants from each cluster. If the number of 
mutants in a cluster was less than n/20, we selected all mutants in this cluster. 

For random selection, we randomly selected n mutants from all non-equivalent 
mutants to obtain the subset of mutants. 

2.3 Generate Test Suite 

We generated a test suite of 512 test cases (the maximum number of test cases al-
lowed by the tool we used) from the test pool by the following procedure: 

We used the test mode in Proteumim2.0. In this mode, if a mutant has been de-
tected by a test case, this mutant will not be executed by the remaining test cases, and 
if a test case cannot detect any survived mutant, this test case is defined as redundant 
test case and thus can be removed from the test suite. 

We randomly selected 512 test cases to form a test suite. After running this test 
suite, we removed redundant test cases (assume the number is m) from the test suite 
and added another m test cases from the remaining test cases in the test pool. We 
repeated this process until all the test cases in the test pool had been executed (m was 
always greater than zero in our experiment).  As such, the mutant that can be detected 
by the test pool can also be detected by this test suite. If the number of test cases in 
this test suite was less than 512 (all of our subject programs met this condition), we 
randomly selected test cases that were not in this test suite from the test pool to form a 
test suite (denoted as TS) with exactly 512 test cases. 

2.4 Generate Results 

We randomly selected test cases from TS using a selection rate x% from 25% to 
100% in steps of 5%. We denoted these subsets of TS as iTS  (i is from 1 to 16). Then 
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we ran faulty versions on iTS  and recorded the number of faults that can be detected 

by iTS . Thus we could obtain the fault detection ratio as follows: 

iKF  = (the number of faults that can be detected by iTS ) / (the number of all faults) 

For the sets of mutants generated using each of the four selection techniques, we 
define mutation detection ratio of this set as follows: 

iKT = (the number of non-equivalent mutants that can be detected by iTS  in mutant 

set) / (the number of non-equivalent mutants in mutant set) 
In order to increase the validity of our experiment, we repeated our experiment five 
times for each iTS , and computed the average over them as the final result. 

3 Results and Analysis 

In this section, we firstly present our experiment results and the process of evaluating 
the results, and answer the research question we proposed in Section 2.1. Then we 
analyze the possible reasons that could explain the results of our experiment. 

As previously mentioned in this paper, the more similar the ability of evaluating 
test cases of a mutant set is to faults, the better this mutant set is. So we use the fol-
lowing two evaluation metrics to measure the similarity between mutant sets and 
faults. 

3.1 Evaluation by Rank 

Table 2. Evaluation by Rank on tcas. 

Selection Rate All Operator Clustering Random 

25% 3 1 4 2 
30% 3 1 4 2 
35% 3 1 4 2 
40% 3 1 4 2 
45% 3 1 4 2 
50% 2 1 4 3 
55% 3 1 4 2 
60% 3 1 4 2 
65% 2 1 4 3 
70% 3 1 4 2 
75% 3 1 4 2 
80% 2 1 4 3 
85% 2 1 4 3 
90% 2 1 4 3 
95% 2 4 1 3 
100% 1 1 1 1 
Sum 40 19 58 37 

We firstly calculated the numerical difference between iKF  and iKT . Then we com-

pared the values of differences among all mutants and subsets of mutants. We as-
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signed the smallest difference as 1, the second smallest difference as 2, etc. For each 
technique, there will be 16 such values of differences. Table 2 shows those values on 
tcas. The column indicates the four techniques, the row indicates selection rate x% 
from 25% to 100% in steps of 5%, in a total of 16 rows. 

We summed up these 16 values as the rank value. The lower the rank value is, the 
better this technique is. Table 3 shows our experiment results. The column indicates 
the four techniques, the row indicates different subject programs, and the number is 
the rank value. 

Table 3. Evaluation by Rank. 

Programs All Operator Clustering Random 

tcas 40 19 58 37 
tot_info 38 26 45 47 
schedule 40 28 52 37 
schedule2 39 37 36 40 
print_tokens 35 38 47 34 
print_tokens2 44 36 28 49 
replace 36 26 52 42 

3.2 Evaluation by Distance 

We calculated the Euclidean distance between the result sequences of fault detection 
ratios ( 1KF to 16KF ) and that of mutant detection ratios ( 1KT to 16KT ) for each tech-

nique and each subject program. The lower the distance is, the better this technique is. 
We summarized our results in Table 3. The column indicates the four techniques, the 
row indicates different subject programs, and the number is the Euclidean distance. 

Euclidean distance = 
16 2

0
( )

i ii
KF KT


  

Table 4. Evaluation by Distance. 

Programs All Operator Clustering Random 

tcas 0.4825 0.4201 0.5205 0.4694 
tot_info 0.2229 0.2194 0.2214 0.2232 
schedule 0.9071 0.8405 0.9163 0.9117 
schedule2 0.3108 0.2739 0.3237 0.3237 
print_tokens 0.4129 0.4283 0.4435 0.4014 
print_tokens2 0.1826 0.1897 0.2000 0.1777 
replace 0.1608 0.1597 0.1993 0.1751 

3.3 Result Analysis 

To sum up, there is always a subset of mutants which is better than all mutants. And 
in none of the seven subject programs, all mutants can be the best. It also means that 
the subset selected by three selection techniques, especially by Offutt et al. operators 
has  a  better  ability for evaluating test cases than all mutants. We provide the follow- 
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ing explanations for this phenomenon in our experiment: 
Firstly, the faults in Siemens programs are more difficult to be detected than most 

mutants, and this fact has been confirmed in [1]. The faults that can be detected by 
350 or more test cases have been discarded from the subject programs. Therefore, the 
remaining faults are difficult to be detected. 

Secondly, the mutants in operator subset are much more difficult to be detected 
than most of other mutants. Taking ABS for example, detecting the mutants generated 
by ABS requires the test cases which select from different parts of the input domain 
related to the mutated expression [12]. Therefore, only a small number of test cases 
can detect these mutants. 

Thirdly, because of the characteristics of clusters, the mutants in the same cluster 
can be detected by the similar test cases. Therefore, if the test cases we selected can 
detect one mutant, the mutants we selected from the same cluster may also be de-
tected by those test cases. Consequently, most mutants in clustering subsets can be 
detected. 

Finally, there are two kinds of mutation operators in proteumIM2.0, unit operators 
and interface operators. The unit operators include modifications to operands, state-
ments and operators in expressions. The interface operators are related to modifica-
tions to methods and classes features. In our experiment, however, the mutants in 
operator subset were all generated by unit operators, others subsets include mutants 
which were generated by interface operators. We suppose that interface operator 
mutants are easier to be detected than unit operator mutants. So for many programs in 
our experiment, the test sets detected fewer mutants in operator subset than other 
subset. 

3.4 Threats to Validity 

Threats to internal validity are uncontrolled factors that are also responsible for our 
results. The main threat is that there are defects in the process of generating, selecting 
and clustering mutants. To reduce this threat, we used ProteumIM2.0 to generate 
mutants and Offutt subset, and used Weka to cluster mutants with simple K-means. 
ProteumIM2.0 and Weka are tools that have been widely applied in previous research 
works. 

Threats to external validity are the representativeness of our subject programs and 
experiment procedures. The main threat is that the subject programs with their test 
cases and faulty versions may not have generality. To reduce this threat, we chose 
seven widely used Siemens programs, which contain plenty of test cases and different 
numbers of faults. 

Threats to construct validity are the measurements we used to evaluate our results. 
To reduce the threat, we applied rank sum measurement and Euclidean distance mea-
surement, which are well-known metrics to measure the (dis)similarity between two 
sequences. 
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4 Conclusions and Future Work 

In this paper, we conducted an experiment to investigate an important question in 
mutation analysis. We compared the similarities between faults and all mutants, and 
between faults and subsets of mutants. We confirmed that using a subset of mutants is 
more appropriate than using all mutants when evaluating test cases. 

In the future work, we plan to do the following research. Firstly, we will conduct 
experiments on larger programs with more faulty versions. Secondly, we will apply 
more selection techniques to extend our research. For example, in operator-based 
selection, we will use Barbosa’s operators and Siami Namin’s operators, and use 
other algorithms in clustering-based selection. Thirdly, we will do more research to 
deeply explain the phenomenon in detail that using the subset of mutants is better 
than using all mutants when evaluating test cases. Finally, we will figure out which 
selection technique should we use when we want to select a subset of mutants from 
all mutants. We propose to apply more programs with different sizes and structures to 
answer this question. 
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