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Abstract: This paper deals with two trajectory planning algorithms that provide a continuity of position, velocity, 
acceleration and jerk. The first method achieves that goal by separating a planned path and a corresponding 
velocity profile, while the other method combines fifth-order polynomials to satisfy the continuity of jerk 
and give smooth accelerations on all segments of the planned trajectory. Two methods were compared on a 
benchmark trajectory for a 3-DOF planar articulated robot and comments of the results obtained for each 
method are given. 

1 INTRODUCTION 

Trajectory planning completely defines the way how 
some robotic mechanism is going to move (Biagiotti 
and Melchiorri, 2008). There are many applications 
where robot motion with abrupt changes of jerk is 
not wanted, such as in transportation of people and 
goods where dropouts and breakages may easily 
occur. Limiting jerk in robot trajectories also 
contributes to extended life of robot joints and thus 
to more precise trajectory tracking. Since jerk 
control coincides with torque rate control, jerk-
bounded trajectories result in much more smoothed 
actuator loads (Kyriakopoulos and Saridis, 1988).  

In the review of motion planning methods 
focused on jerk bounding (Macfarlane and Croft, 
2003) the method can be found that provides a 
smooth, controlled near time optimal trajectory for 
point-to-point motion with jerk limits by using a 
concatenation of fifth-order polynomials between 
two waypoints. The trajectory approximates a linear 
segment with parabolic blends trajectory, and a sine 
wave template is used to calculate the end conditions 
(control points) for ramps from zero acceleration to 
nonzero acceleration. In (Li and Ceglarek, 2002) a 
methodology of time-optimal trajectory planning for 
compliant sheet metal parts is described by splitting 
the part transfer path into N segments that have 
equal horizontal distance and by approximating the 
trajectory as having piecewise constant acceleration 
that can only change its value at the end of each 
segment.  

The trajectory planning algorithm presented in 
(Ho and Cook, 1982) and (Ranky and Ho, 1985) 
uses cubic and fourth-order spline-functions and 
thus in all waypoints provides continuity of 
positions, velocities and accelerations  On the other 
hand, the use of third-order polynomials to describe 
the intermediate segments causes abrupt changes of 
jerk at the waypoints. Nevertheless, this method, 
called Ho and Cook “434” method was used in the 
programming tool for robotized plants (Kovacic et 
al., 2001), as well as for trajectory planning of 
automated guided vehicles (Petrinec and Kovacic, 
2005)  

 The Ho and Cook “445” trajectory planning 
algorithm (the numbers indicate the orders of the 
used polynomials) described in (Petrinec and 
Kovacic, 2007) guarantees not only the continuity of 
acceleration and velocity, but also the continuity of 
jerk at all trajectory segments. Moreover, the 
velocities and accelerations at the terminal points 
can be other than zero. 

Another approach to trajectory planning has been 
used by O.A.Yakimenko (Yakimenko, 2006), 
(Bevilacqua, Yakimenko and Romano, 2006), and 
(Kaminer et al., 2006), where a trajectory and a 
velocity profile depend on each other through an 
independent time-varying variable (called a virtual 
arc) that can be optimized. Such variable can be a 
traverse time, energy consumption, shortest path 
requirement, minimal path deviation etc. The actual 
velocity profile and the trajectory profile become 
separate and interdependent through the first 
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derivative of a virtual arc, called a velocity factor. 
Typical applications of the Yakimenko algorithm 
can be found in the aerospace area (rockets, missiles, 
spaceships, airplanes, helicopters etc.), but due to its 
generic character, it can be employed in other 
technical areas, too. 

The idea presented in this paper is to create a 
variation of Ho-Cook “445” algorithm by changing 
it into a “555” version and adopting the Yakimenko 
approach by allowing the existence of two span 
variables, a virtual arc and a velocity factor, to 
connect the optimization and time frames. 

The paper is organized in the following way. 
First we describe a modified Yakimenko algorithm 
and then we do the same for a modified Ho-Cook 
“555” trajectory planning algorithm. The 
effectiveness of both continuous jerk trajectory 
planning methods applied to a planar 3-DOF robot is 
analyzed and simulation results obtained with both 
algorithms are compared and discussed. 

2 TRAJECTORY PLANNING 
PROBLEM 

As shown in Figure 1, we assume that a planned 
trajectory has N waypoints, P1… PN, and N-1 
segments, s1,…,sN-1. Each given waypoint Pi is 
described with a 1×6 configuration vector wi=[xi, yi, 
zi, ϕi, θi, ψi]T. By using an inverse kinematics 
solution, each configuration vector can be converted 
into a corresponding joint variables vector qi=[q1i, 
…, qni]T. 

Before looking for an optimal trajectory planning 
solution, one should determine a desired optimality 
goal to be achieved, a control method, actual 
physical constraints and allowed tolerances of key 
trajectory values such as path deviations, constraints 
excesses etc. 

 
Figure 1: Trajectory waypoints and segments. 

In a particular case of planning continuous jerk 
robot trajectories, terminal (initial and final) 

positions, velocities and accelerations are known 
(they are often equal to zero). Also, velocity and 
acceleration constraints for each robot joint are 
known (jerk constraints can also be known, but 
herein they are not taken into consideration). Quality 
assessment criteria include observation of a total 
traverse time of a robot along a given path and of a 
total execution time of the algorithm needed to 
finish trajectory calculations. In the same time, 
deficiency assessment criteria include constraints 
violations, failures in maintenance of a continuous 
jerk in the waypoints, and the inability of a robot 
tool to pass through all given waypoints. 

Two different trajectory planning methods have 
been considered for comparison - a modified 
Yakimenko method adapted for robot applications, 
and a Ho-Cook “555” method. 

2.1 Modified Yakimenko Trajectory 
Planning Algorithm 

The essence of the Yakimenko method is separation 
of the trajectory profile and the actual velocity 
profile through selection of a suitable optimization 
variable τ(t) and its first derivative λ(t)=dτ(t)/dt. The 
variable τ(t) is called a virtual arc, and its derivative 
λ(t) is called a velocity factor. 

For example, such separation allows us to take 
time-varying dynamics of robotic mechanisms into 
account during descent along a planned trajectory. In 
other words, each trajectory segment may have a 
different velocity profile dictated by τ(t) and λ(t).  

Following this approach, trajectory Γ passing 
through a set of given waypoints P1,…,PN becomes a 
function of accompanying configuration vectors 
w1,…,wN, and also a function of a selected 
optimization variable τ(t), i.e. Γ=w(t)=w(τ). 
Interpretation of Γ in two different frames allows 
also interpretation of a velocity profile in two 
separate frames: 

( ) ( ) ( )
( )

( ) ( )1 1d td t
d td dt t

dt

τ τ
ττ λ

′ = =
w

w w = w  
(1)

If the form of w(τ) allows multiple 
differentiations with respect to τ, then so called 
virtual velocities, accelerations, jerks and snaps can 
be obtained, as follows:  
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( ) ( ) ( ) ( ) ( )2
p p wt tτ τ τ λ−′ ′′= = =a v w a  (3)

( ) ( ) ( ) ( ) ( )3
p pτ τ τ λ −′ ′′′= = = wt tj a w j  (4)

( ) ( ) ( ) ( ) ( )4
pτ τ λ −′′′′′= = =p ww t t ts j s  (5)

where vw(t), aw(t), jw(t), and sw(t) denote actual 
velocities, accelerations, jerks and snaps, 
respectively. 

When virtual complements are found, one can 
use relations (2)-(5) to find vw(t), aw(t), jw(t), and 
sw(t). In order to get responses of vw(t), aw(t), jw(t), 
and sw(t) bounded and continuous over all trajectory 
segments sj, j=1,…,N-1, boundary vectors wtj=[wj 
vwj awj jwj swj]T and wt(j+1)=[wj+1 vw(j+1) aw(j+1) jw(j+1) 
sw(j+1)]T must be defined for each pair of waypoints 
Pj and Pj+1, j=1,…,N.  

In general, each segment is unique and 
accordingly, a number of components of its 
boundary vectors can vary. 

The travel along segment sj starts at t=0 and ends 
at t=tj+1. A total traverse time is equal to: 

1

1
1

N

tot i
i

t t
−

+
=

=∑   

For a given robot tool trajectory planning task, 
compound boundary vectors contain only position, 
velocity and acceleration components: wtj=[wj vwj 
awj]T, wt(j+1)=[wj+1 vw(j+1) aw(j+1)]T. Having l known 
boundary conditions (here l=3+3=6), the minimal 
degree of a polynomial that satisfies l conditions is 
l+1.  

Because of the assumption that initially jerk is 
equal to zero and cannot attain any other value than 
zero, instead of a seventh-order polynomial, a fifth-
order polynomial can be used to describe segment sj: 

( )
5

0

2 3 4 5
0 1 2 3 4 5

i
j ij

i

j j j j j j

t t

t t t t t
=
∑w = β

=β +β +β +β +β +β
 (6)

Upon differentiation of (6) we obtain: 
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Letting t in (6) to run from zero to tj+1, the 
boundary conditions for segment sj can be expressed 
as: 

( )
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where vwj and vw(j+1) represent tool velocities, while 
awj and aw(j+1) represent tool accelerations at points Pj 
and Pj+1, respectively (see Figure 1). 

From (6)-(9) we obtain: 

( )

( )

0

1

2
2 3 4 5

11 1 1 1 1 3
2 3 4

11 1 1 1 4
2 3

1 1 1 5 1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
1
0 1 2 3 4 5
0 0 2 6 12 20

jj

wjj

wjj

jj j j j j j

w jj j j j j

j j j j w j

t t t t t
t t t t

t t t

++ + + + +

++ + + +

+ + + +

⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

wβ
vβ
aβ

= wβ
vβ

β a

 
(10)

Initially, only boundary conditions for the first 
and last segment are known, as well as all positions 
in the given waypoints. The trajectory planning task 
is to find unknown velocities and accelerations at the 
boundaries of each intermediate segment. 

Respecting that τ(t) and λ(t) may affect each 
trajectory segment sj in a different way, we denote 
them as τj and λj.  

Let us now define a trajectory segment sj as a 
function of virtual arcτj: 

( )
5
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Upon consecutive differentiations of (11) as in 
(2)-(5), and by accounting for boundary vectors 
wtj=[wj vwj awj]T and wt(j+1)=[wj+1 vw(j+1) aw(j+1)]T, we 
obtain the following system of equations: 
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where τ jf  denotes the virtual crossing length of sj. 
By solving (12), eventually we obtain: 
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Besides velocities, accelerations and jerks, 
coefficients of the fifth-order polynomials to be 
found should also provide the continuity of snap 
sw(t). This is combined with Yakimenko approach to 
optimization of velocity profile by minimization of 
the traverse time of each trajectory segment. This 
should finally result in the shortest total traverse 
time ttot of the whole trajectory. 

The idea is to have simultaneous but separate 
changes of λ and τ that influence the form of 
trajectory defined. 

The condition of jerk and snap continuity applied 
to two neighboring segments sj and sj+1 results with 
the following equalities: 

( ) ( ) ( ) ( ) ( )3 3
1 1 1 10 0λ τ λ+ + + += → =j j j j pj jf j p jTj j j j  (14) 

  
( ) ( ) ( ) ( ) ( )4 4

1 1 1 10 0λ τ λ+ + + += → =j j j j pj jf j p jTs s s s  (15) 

By combining (12)-(14) and taking also the 
position, velocity and acceleration continuity criteria 
into account, a jerk continuity relation valid for three 
adjacent segments sj, sj+1 and sj+2 results with the 
following equality: 
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that allows calculation of unknown boundary values 
in (13): , ,pj pjv a ( 1) ( 1), ,p j p j+ +v a and ( ) ( )2 2 , p j p j+ +v a . 

There are N-2 such segment triples sj, sj+1 and 
sj+2, and accordingly, N-2 equations of type (16). 
Since there are totally 2×(N-2) unknowns, still N-2 
new equations are needed to make the system 
solvable. This can be done by introducing a criterion 
of snap continuity in each given waypoint, which 
results with the following equality: 
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The equations for boundary segments s1 and sN-1 
are different, as initial conditions for s1 and final 
conditions for sN-1 are known. This means that these 
values are moved to the right-hand side of equations 
(16) and (17), respectively: 

1st segment – jerk continuity 
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 (N-1)th segment – jerk continuity 
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1st segment – snap continuity 
3 3 2 2

21 2 2 1
2 2 2 23 3 2 2

1 2 2 1

3 2 2 4
2 3 2 3 1

3 3 13 2 4
2 2 1

4 4 4 4 4
1 2 2 1 1

2 3 1 14 4 4 3 2
1 2 2 1 1

16 3

14 2
30

14 2
30 30

λ λ λ λ
λ λ

τ τ τ τ

λ λ λ λ λ
τ τ τ

λ λ λ λ λ
τ τ τ τ τ

⎛ ⎞ ⎛ ⎞
− + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

+ − =− +

⎛ ⎞
+ − + − −⎜ ⎟⎜ ⎟

⎝ ⎠

p p
f f f f

p p
f f f

p p
f f f f f

v a

v a w

w w v a

 
(20) 

(N-1)th segment – snap continuity 
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In order to simplify derived equations and 
organize them in a matrix formulation, the following 
substitutions have been introduced (i=1,…,N-2): 
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Equation (17) 
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Equation (18) 
3

1 1
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1
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τ
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f
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3

1 1
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Equation (19) 
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Equation (20) 
4
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1
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4
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Equation (21) 
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4
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=−N N
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4
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2
1
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−
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F a
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Using these substitutions, let us define a vector 
with elements equal to known components at the 
right-hand sides of equations (16)-(21): 
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(22)

The equations attain a final matrix form: 
1 1 1 1
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(23) 

The dimensions of matrix Mp are (2N-4)×(2N-4). 
The elements of Mp are functions of “virtual times” 

defined by the optimized values of τ and λ, vector dp 
contains values of velocities and accelerations that 
must be found, and vector hp contains known initial 
values defined in (22). Vector dp can be calculated 
from (23): 

1−= ⋅p p pd M h  (24) 

Solving (24) for dp starts with calculation of hp 
and Mp. In order to find the elements of Mp, initial 
values of τj and λj must be chosen before starting an 
iterative process of trajectory optimization. The 
initial value of λ is very important, as it influences a 
final result. For the sake of computational simplicity, 
the assumption is made that all trajectory segments 
start with the same initial value of λ. For example, in 
the trajectory planning example that follows, the 
initial value of λ has been set to 1.5. Because 
dynamics of robotic systems change during motion, 
any attempt to plan trajectories with inapt initial 
values of λ can end up with noticeable excesses of 
velocity, acceleration and jerk constraints. 
Therefore, the use of velocity and acceleration 
constraints leads iteratively to two new values of λ. 
In the ith iteration of the algorithm, new values of λ 
are calculated using a Schur-Hadamard quotient: 

[ ]
( )1

1
max

i

k
i

−

−

=
⎡ ⎤⎣ ⎦

I
λ

λ
 (25) 

where λ is (N-1)×1 vector and k denotes a number of 
a robot joint, k=1,…, n.  

The initial value of τ depends on the variable 
being optimized along the trajectory. Regardless 
from the fact that τ can be an arbitrary variable, the 
algorithm needs some initial value of τ. In the 
trajectory planning experiment that follows, this 
value has been set to one. Based on the initial 
settings of τj and λj, hp and Mp can be calculated. 
Then, using equation (13) the coefficients of the 
fifth-order polynomial (11), and consequently, the 
expressions for vpj and apj can be obtained. Then, by 
knowing λ and using (2) and (3), the polynomials of 
the velocity vector vw(t) and the acceleration vector 
aw(t) can be found. The next task is comparison of 
the maximal values of vw(t) and aw(t) and the 
respective constraints. If their differences exceed a 
given threshold, then a new value of τj must be 
determined. This is done in the following way: 
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( ) ( ) ( ) ( )
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0
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1

,
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,
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f v a

jf j vj aj
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τ τ ε ε
τ τ ε ε

τ τ ε ε

τ τ ε ε− − − −
−
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⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (26) 

where operator  denotes a Schur-Hadamard inner 
product operation (component wise multiplication), 
τj0 is the initial value of τj, and εvj and εaj are relative 
velocity and  acceleration deviations expressed in 
joint space for each joint (k=1,…n) by: 

( )max

max

max
max 1

jk

vj k
k

q

q

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

ε  

( )max

max

max
max 1

jk

aj k
k

q

q

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟= −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

ε  

(27)

Iteratively obtained variables τ and λ define 
different traverse times for different joints, and this 
must be finally reduced to a common time interval, 
which would ensure that excesses of imposed 
velocity and acceleration limits are avoided. One 
simple solution would be to take the largest traverse 
time as a common time for all joints. Unfortunately, 
this will not prevent possible excesses of limits 
because not only absolute values, but also the 
relations among traverse times play an important 
role.  

The other way to solve the problem is extension 
of all traverse times by introducing an auxiliary 
scaling factor that intentionally decreases the values 
of given limits. The idea is not to find the shortest 
time intervals but to obtain the best average total 
traverse time that keeps joint velocities and 
accelerations within limits. Finally, the resultant 
interval is picked by applying the max-operator to 
all intervals. That approach usually results with 
slightly longer traverse times, but nevertheless, it is 
very useful in the systems with time-varying 
dynamics such as those in robotics. It should be 
noted that the use of the auxiliary scaling factor is 
not necessary for off-line planning. 

2.2 Ho-Cook ”555” Trajectory 
Planning Algorithm 

In order to compare a modified Yakimenko method 
with some method of its kind, a Ho-Cook “445” 

method described in [8] has been changed to a “555” 
method, indicating that all trajectory segments from 
s1 to sN-1 are described with fifth-order polynomials 
defined in equation (6). This means that the 
coefficients of the polynomials should provide the 
continuity of vw(t), aw(t), jw(t), and sw(t). The “555” 
method calculates coefficients of fifth-order 
polynomials starting from equation (10), which 
means that the solution is searched directly in the 
time domain. Under the continuity of jerk and snap 
condition for τ=λ=1, equation (16) assumes the 
following form: 

1 1 22 2 2 2
11 1

2 1 23 3 3 3
1

1 1 1 1 1 1 18 12 3 8

1 1 1 1 120 20 20

j j j j j
j j jj j j j

j j j j
j j j j j

t t tt t t t

t t t t t

+ + +
++ +

+ + +
+

⎛ ⎞ ⎛ ⎞
+ + − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞

+ = − + + −⎜ ⎟⎜ ⎟
⎝ ⎠

v a v a v

a w w w

 
(28) 

Thus, equation (17) attains a simpler form: 

1 1 23 2 3 3 2 2 3
1 1 1

2 1 22 4 4 4 4
1 1 1

1 1 1 1 1 1 114 2 16 3 14

1 1 1 1 12 30 30 30

j j j j j
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v a v a v

a w w w

 
(29) 

The rest of the algorithm resembles the steps of 
the modified Yakimenko method and ends up with 
the matrix equation similar to equation (24): 

1
s s s

−=d M h  (30) 

The Ho-Cook “445” method calculates travel 
times for each segment based on the normalized 
distance between Pj and Pj+1 expressed in joint 
coordinates and iteratively corrected by the ratio 
factor between the maximal velocities and 
accelerations on one hand, and the given velocity 
and acceleration constraints on the other.  

In contrast to the “445” method, “555” method 
calculates relative velocity and acceleration 
deviations expressed by (27) and thereafter it adjusts 
iteratively the travel times of each trajectory 
segment si: 

( ) ( ) ( )
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⎜ ⎟
⎜ ⎟
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⎝ ⎠

 

(31) 

The enhancement of this procedure can be 
obtained by additional correction of a segment travel 
time having the following form: 

, 1, 2ic c s ik i= ⋅ =t η t  (32) 
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where kc is an auxiliary correction factor, and sη is 
determined by the relative magnitude of velocity and 
acceleration with respect to the given constraints: 

( )max min
max ,j j

sv
smx

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

v v
η

v
 

( )max min

1
2max ,j j

sa
smx

⎡ ⎤
⎢ ⎥=
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a a
η

a
 

( )max ,s sv sa=η η η  

(33) 

Once the polynomials have been defined for all 
robot joints, the result obtained in this way can 
undergo further optimization (using GA, for 
example), which is the subject of ongoing research 
work. 

3 SIMULATION RESULTS 

Let us apply two trajectory planning methods to a 3 
DOF robot shown in Figure 2. The lengths of robot 
segments are d1 = 1.1 m, and d2 = 0.9 m.  Using the 
following equations for forward kinematics, the path 
and orientation of the robot tool are determined: 

( ) ( )
( ) ( )

1 1 2 1 2

1 1 2 1 2

1 2 3

cos cos

sin sin

j j j j

j j j j

j j j j

X d F d F F

Y d F d F F

O F F F

= + +

= + +

= + +

 (34)

where Xj and Yj represent x- and y-coordinate of Pj, 
and  Oj represents the orientation of robot tool at Pj. 

Twelve given robot tool waypoints, starting with 
P1=(1.0, 0.5, 0), form a triangle with vertices (1, 0, 
0), (0, 1, 0) and (1, 1, 0). Velocity and acceleration 
vectors at both ends of the trajectory are set to v1

T = 
vN

T = [-0.1, 0.4, 0] rad/s, a1
T = a12

T = [1, 3, 0] rad/s2. 
Being convenient, maximal velocities and 
accelerations of all joints are set to 2 rad/s and 10 
rad/s2, respectively. 

Initial values of Yakimenko parameters are: 
τj0=1, λ0=1.5. 

d 1

d2

x

F t1( )

F t2( )

F t3( )

y

 
Figure 2: A three degree of freedom planar robot. 

The given waypoints are found in the robot joint 
space using the robot inverse kinematics equations: 

( )( ) ( )
( )( ) ( )
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1 2

2
1 2
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1

1 2 2 2 2
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j j j j

X Y d d
P

d d

d d P Y d P X
P

d d P X d P Y

P O P P

 (35)

The analysis of trajectory planning results shows 
that the planned trajectories have a similar shape 
since both pass through the same waypoints (Figure 
3). Path deviations obtained with the Ho-Cook 
“555” algorithm are similar to those obtained with 
the adapted Yakimenko method. Achievement of 
higher accuracy requires addition of new waypoints, 
for example, by using a well known Taylor bounded 
deviations method (Taylor, 1979). It can also be 
noticed in Figure 4 that the traverse time of the 
“555” trajectory is comparable to the time of the 
“Yakimenko” trajectory (3.9 s compared to 3.6 s). 
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Figure 3: Planned trajectories. 
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Figure 4: The position of robot joints. 
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All velocities (Figure 5) and accelerations 
(Figure 6) of robot joints obtained with considered 
algorithms are smooth and they all stay within the 
given constraints. Also, all velocities and 
accelerations are equal to the requested velocity and 
acceleration values at the start and the end of the 
trajectories. 

Analyzing the jerk responses shown in Figure 7, 
one can see that all interpolation methods ensure the 
continuity of jerk, but the responses obtained with 
the “555” method are smoother. General conclusions 
cannot be made as the result of the Yakimenko 
method depends on τj0 and λ0. 
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Figure 5: The velocity of robot joints. 
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Figure 6: The acceleration of robot joints. 
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Figure 7: The jerk of robot joints. 

4 CONCLUSIONS 

There are many robot applications which require 
smooth robot motion. Both iterative trajectory 
planning algorithms described in this paper ensure 
the continuity of velocity, acceleration, and jerk at 
all trajectory segments. Moreover, the velocities and 
accelerations at the terminal points can assume 
different values. The first method, called a modified 
Yakimenko method achieves jerk continuity by 
splitting a trajectory into a planned path and a 
corresponding velocity profile defined by a selected 
optimization criterion (or more of them), while the 
other method, called a Ho-Cook “555” method uses 
fifth-order polynomials to achieve the same goal in 
the time domain. 

The Ho-Cook “555” method shows more 
potential when the shortest traverse times are 
important. On the other hand, the modified 
Yakimenko method is much more apt when other 
optimizations (shortest path, minimal energy 
consumption, minimal path deviation etc.) are also 
considered. In the paper it has been shown that both 
methods give similar results of trajectory planning if 
the optimization criterion was to get close to the 
given velocity and acceleration limits. 

Regarding a future work, both methods will be 
further investigated in terms of applying various 
optimization methods (e.g. genetic algorithms) and 
combining various optimization criteria. Also, the 
future work will be more focused on the extensive 
laboratory experiments with the available robotic 
systems. 
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