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Abstract: Regularization is a solution to solve the problem of unstable estimation of covariance matrix with a small 
sample set in Gaussian classifier. And multi-regularization parameters estimation is more difficult than 
single parameter estimation. In this paper, KLIM_L covariance matrix estimation is derived theoretically 
based on MDL (minimum description length) principle for the small sample problem with high dimension. 
KLIM_L is a generalization of KLIM (Kullback-Leibler information measure) which considers the local 
difference in each dimension. Under the framework of MDL principle, multi-regularization parameters are 
selected by the criterion of minimization the KL divergence and estimated simply and directly by point 
estimation which is approximated by two-order Taylor expansion. It costs less computation time to estimate 
the multi-regularization parameters in KLIM_L than in RDA (regularized discriminant analysis) and in 
LOOC (leave-one-out covariance matrix estimate) where cross validation technique is adopted. And higher 
classification accuracy is achieved by the proposed KLIM_L estimator in experiment. 

1 INTRODUCTION 

Gaussian mixture model (GMM) has been widely 
used in real pattern recognition problem for 
clustering and classification, where the maximum 
likelihood criterion is adopted to estimate the model 
parameters with the training samples (Bishop, 2007) 
(Everitt, 1981). However, it often suffers from small 
sample size problem with high dimensional data. In 
this case, for d-dimensional data, if less than d+1 
training samples from each class is available, the 
sample covariance matrix estimate in Gaussian 
classifier is singular. And this can lead to lower 
classification accuracy. 

Regularization is a solution to this kind of 
problem. Shrinkage and regularized covariance 
estimators are examples of such techniques. 
Shrinkage estimators are a widely used class of 
estimators which regularize the covariance matrix by 
shrinking it toward some positive definite target 
structures, such as the identity matrix or the diagonal 
of the sample covariance (Friedman, 1989); 
(Hoffbeck, 1996); (Schafer, 2005); (Srivastava, 

2007). More recently, a number of methods have 
been proposed for regularizing the covariance 
estimate by constraining the estimate of the 
covariance or its inverse to be sparse (Bickel, 2008); 
(Friedman, 2008); (Cao, 2011). 

The above regularization methods mainly 
concern various mixture of sample covariance 
matrix, common covariance matrix and identity 
matrix or constraint the estimate of the covariance or 
its inverse to be sparse. In these methods, the 
regularization parameters are required to be 
determined by cross validation technique. Although 
the regularization methods have been successfully 
applied for classifying small-number data with some 
heuristic approximations (Friedman, 1989); 
(Hoffbeck, 1996), the selection of regularization 
parameters by cross validation technique is very 
computation-expensive. Moreover, cross-validation 
performance is not always well in the selection of 
linear models in some cases (Rivals, 1999). 

Recently, a covariance matrix estimator called 
Kullback-Leibler information measure (KLIM) is 
developed based on minimum description length 
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(MDL) principle for small number samples with 
high dimension data (Guo, 2008). The KLIM 
estimator is derived theoretically by KL divergence. 
And a formula for fast estimation the regularization 
parameter is derived. However, since multi-
parameters optimization is more difficult than single 
parameter optimization, only a special case that the 
regularization parameters are taken the same value 
for all dimensions is considered in KLIM. Though 
estimation of regularization parameter becomes 
simple, the accuracy of covariance matrix estimation 
is decreased by ignore the local difference in each 
dimension. This will result in decreasing the 
classification accuracy of Gaussian classifier finally. 

In this paper, KLIM is generalized to KLIM_L 
which considers the local difference in each 
dimension. Based on MDL principle, the KLIM_L 
covariance matrix estimation is derived for the small 
sample problem with high dimension. Multi-
regularization parameters in each dimension are 
selected by the criterion of minimization the KL 
divergence and estimated efficiently by two-order 
Taylor expansion. The feasibility and efficiency of 
KLIM_L are shown by the experiments. 

2 THEORETICAL 
BACKGROUND  

2.1 Gaussian Mixture Classifier 

Given a data set 1{ }N
i iD  x  which will be classified. 

Assume that the data point in D is sampled from a 
Gaussian mixture model which has k component: 
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is a general multivariate Gaussian density function. 
x  is a random vector, the dimension of x  is d  and 

1{ , , }k
j j j j   m Σ  is a parameter vector set of 

Gaussian mixture model.  
In the case of Gaussian mixture model, the 

Bayesian decision rule arg max ( | , )jj p j  x is 

adopted to classify the vector x  into class j with 

the largest posterior probability ( | , )p j x . After 

model parameters   estimated by the maximum 
likelihood (ML) method with expectation-
maximization (EM) algorithm (Redner, 1984), the 
posterior probability can be written in the form: 
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And the classification rule becomes: 

arg min ( )j jj d  x ,    1, 2, ,j k  , (4)
 

where 
 

T 1ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ln | | 2 lnj j j j j jd    X m mx Σ x Σ . (5)
 

This equation is often called the discriminant 
function for the class j (Aeberhard, 1994).  

Since clustering is more general than 
classification in the mixture model analysis case, we 
consider the general case in the following. 

2.2 Covariance Matrix Estimation 

The central idea of the MDL principle is to represent 
an entire class of probability distributions as models 
by a single “universal” representative model, such 
that it would be able to imitate the behaviour of any 
model in the class. The best model class for a set of 
observed data is the one whose representative 
permits the shortest coding of the data. The MDL 
estimates of both the parameters and their total 
number are consistent; i.e., the estimates converge 
and the limit specifies the data generating model 
(Rissanen, 1978); (Barron, 1998). The codelength 
(probability distribution or a model) criterion of 
MDL involves in the KL divergence (Kullback, 
1959). 

Now considering a given sample data set 

1{ }N
i iD  x  generated from an unknown density 

( )p X , it can be modelled by a finite Gaussian 

mixture density ( , )p x , where  is the parameter 

set. In the absence of knowledge of ( )p x , it may be 

estimated by an empirical kernel density estimate 
( )hp x  obtained from the data set. Because these two 

probability densities describe the same unknown 
density ( )p x , they should be best matched with 

proper mixture parameters and smoothing 
parameters. According to MDL principle, the model 
parameters should be estimated with minimized KL 
divergence ( , )KL h   based on the given data drawn 

from the unknown density ( )p x (Kullback, 1959), 
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Here hW  is a d d  dimensional diagonal matrix 

with a general form, 
 

1 2
( , , , )

h d
diag h h hW  , (8)

 

where ih , 1, 2, ,i d   are smoothing parameters 

(or regularization parameters) in the nonparametric 
kernel density. In the following this set is denoted 
as 1{ }d

i ih h  . The Eq. (6) equals to zero if and only 

if ( ) ( , )hp p x x . 

If the limit 0h  , the kernel density function 
( )hp x  becomes a   function, then Eq. (6) reduces 

to the negative log likelihood function. So the 
ordinary EM algorithm can be re-derived based on 
the minimization of this KL divergence function 
with the limit 0h  . The ML-estimated parameters 
are shown as follows: 
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The covariance matrix estimation for the 
limit 0h  is shown as follows. By minimizing Eq. 

(6) with respect to jΣ , i.e., setting 

( , ) / 0jKL h   Σ , the following covariance 

matrix estimation formula can be obtained: 
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In this case, the Taylor expansion is used for 
( | , )p j x at ix x with respect to x  and it is 

expanded to first order approximation: 
 

Tˆ ˆ ˆ( | , ) ( | , ) ( ) ( | , )i i x ip j p j p j      x x x x x  (11)
 

with ˆ ˆ( | , ) ( | , ) |
ix i xp j p j      x xx x . 

On substituting the above equation into Eq. (10) 
and according to the properties of probability density 
function, the following approximation is finally 
derived:  

ˆ( )
j h j

h Σ W Σ . (12)
 

The estimation in Eq. (12) is called as KLIM_L in 
the paper, where ˆ

jΣ is the ML estimation 

when 0h  , taking the form of Eq. (9).  

3 MULTI- REGULARIZATION 
PARAMETERS ESTIMATION 
BASED ON MDL 

3.1 Regularization Parameters 
Selection 

The regularization parameter set h  in the Gaussian 
kernel density plays an important role in estimating 
the mixture model parameter. Different h will 
generate different models. So selecting the 
regularization parameters is a model selection 
problem. In the paper the similar method as in (Guo, 
2008) is adopted based on MDL principle to select 
the regularization parameters in KLIM_L. 

According to the principle of MDL, it should be 
with the shortest codelength to select a model. When 

0h  , the regularization parameters h  can be 
estimated with the minimized KL divergence 

regarding h with ML estimated parameter ̂ , 
 

*
arg min ( )h J h ,   ˆ( ) ( , )J h KL h  . (13)

 

Now a second order approximation for estimating 
the regularization parameter h  is adopted here. 
Rewrite the ( )J h  as: 
 

0( ) ( ) ( )eJ h J h J h  , (14)

where 
0 ( )( ) ln ( , )dhJ h p p  x x x , 

( ) ( )( ) ln de h hJ h p p  x x x . 

Replacing ln ( , )p x with the second order term of 

Taylor expansion into the integral of 0 ( )J h  and 

resulting in the following approximation of 0 ( )J h , 
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For very sparse data distribution, the following 
approximation can be used: 
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Substituting the Eq. (16) into ( )eJ h , it can be got: 
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So far, the approximation formula of ( )J h  is 

obtained: 
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where C is a constant irrelevant to h . 
Let ln ( , )d d iH p    x x x . Taking partial 

derivative of ( )J h  to hW  and letting it be equal to 

zero, the rough approximation formula of h  is 
obtained as follows: 
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3.2 Approximation for Regularization 
Parameters  

The Eq. (19) can be rewritten as follows: 
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Considering hard-cut case ( ( | , ) 1 or 0ip j  x ) and 

using the approximations 
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Suppose the eigenvalues and eigenvectors of the 
common covariance matrix Σ  are k  and k , 

1k d  , where T
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Substituting Eq. (21) into Eq. (20) and using the 

average eigenvalue 
1

( ) / trace( ) /
d

i
i

d d 


  Σ to 

substitute each eigenvalue of matrix Σ (only in the 
denominator), it can be obtained:  
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 with [ ]ij d d Σ . 

Finally, the regularization parameters can be 
approximated by the following equation:  

2
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trace ( ) 1 1
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
Σ

W  . (22)

3.3 Comparison of KLIM_L with 
Regularization Methods 

The four methods (KLIM_L, KLIM, RDA 
(Regularized Discriminant Analysis, Friedman, 1989) 
and LOOC (Leave-one-out covariance matrix 
estimate, Hoffbeck, 1996)) are all regularization 
methods to estimate the covariance matrix for small 
sample size problem. They all consider ML 
estimated covariance matrix with the additional 
extra matrices. 

KLIM_L is derived by the similar way as KLIM 
under the framework of MDL principle. Meanwhile, 
the estimation of regularization parameters is similar 
to KLIM based on MDL principle. KLIM_L is a 
generalization of KLIM. Multi-regularization 
parameters are included and estimated in KLIM_L 
while one regularization parameter is estimated in 
KLIM. For every ii ( 1i d  ), if it is taken 

by
1

trace( )
d

Σ , then (trace( ) / )h ddW Σ I . It will 

reduce to the case of h dhW I  in KLIM, 

where trace( ) /h d Σ .  

KLIM_L is derived based on MDL principle 
while RDA and LOOC are heuristically proposed. 
They differ in mixtures of covariance matrix 
considered and the criterion used to select the 
regularization parameters.  
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Different computation time costs are required in 
the four regularization discriminant methods. The 
time costs of them are sorted decreasing in the 
following order: KLIM, KLIM_L, LOOC and RDA. 
This will be validated by the following experiments. 

4 EXPERIMENT RESULTS  

In this section, the classification accuracy and time 
cost of KLIM_L are compared with LDA (Linear 
Discriminant Analysis, Aeberhard, 1994), RDA, 
LOOC and KLIM on COIL-20 object data (Nene, 
1996). 

COIL-20 is a database of gray-scale images of 20 
objects. The objects were placed on a motorized 
turntable against a black background. The turntable 
was rotated through 360 degrees to vary object pose 
with respect to a fix camera. Images of the objects 
were taken at pose intervals of 5 degrees, which 
corresponds to 72 images per object. The total 
number of images is 1440 and the size of each image 
is 128×128. 

In the experiment, the regularization parameter 
h  of KLIM is estimated by trace( ) /h d Σ . The 

parameter matrix hW  of KLIM_L is estimated by 

Eq. (22). In RDA, the values of   and   are 

sampled in a coarse grid, (0.0, 0.25, 0.50, 0.75, 1.0), 
resulting in 25 data points.  In LOOC, the four 
parameters are taken according to the table in 
(Hoffbeck, 1996). Six images are randomly selected 
as training samples from each class to estimate the 
mean and covariance matrix. And the remaining 
images are employed as testing samples to verify the 
classification accuracy. Since the dimension of 

image data is very high of 128×128, PCA is adopted 
here to reduce the data dimension. Experiments are 
performed with five different numbers of 
dimensions. Each experiment runs 25 times, and the 
mean and standard deviation of classification 
accuracy are reported as results. The results of 
experiment are shown in table 1 table 2. 

In the experiment, the classification accuracy of 
KLIM_L is the best among the five compared 
methods, while the classification accuracy of KLIM 
is the second best. The classification accuracy of 
LOOC is the worst among the compared methods 
except in dimension 80, where the classification 
accuracy of LOOC is higher than that of LDA. 
Considering the time cost of regularization 
parameters estimating, KLIM_L needs a little more 
time to estimate the regularization parameters than 
KLIM needs, while RDA and LOOC need much 
more time than KLIM_L needs. The experimental 
results are consistent with the theoretical analysis.  

5 CONCLUSIONS 

In this paper, the KLIM_L covariance matrix 
estimation is derived based on MDL principle for 
the small sample problem with high dimension. 
Under the framework of MDL principle, multi-
regularization parameters are estimated simply and 
directly by point estimation which is approximated 
by two-order Taylor expansion. KLIM_L is a 
generalization of KLIM. With the KL information 
measure, total samples can be used to estimate the 
regularization parameters in KLIM_L, making it less 
computation-expensive than using leave-one-out 
cross-validation method in RDA and LOOC. 

Table 1: Mean classification accuracy on COIL-20 object database. 

classifier LDA RDA LOOC KLIM KLIM_L 

80 81.6(2.6) 87.2(2.2) 82.2(1.8) 87.7(1.8) 90.0(2.2) 

70 83.6(2.2) 86.4(1.8) 81.2(2.8) 87.0(1.7) 87.9(1.8) 

60 85.0(2.2) 86.8(2.2) 82.8(2.3) 87.7(1.4) 88.1(1.6) 

50 85.0(2.5) 86.3(2.4) 80.3(2.9) 87.5(2.0) 87.8(2.3) 

40 86.9(1.7) 86.9(1.7) 80.6(3.2) 87.6(1.3) 87.6(1.6) 

Table 2: Time cost (in seconds) of estimating regularization parameters on COIL-20 object database. 

classifier RDA LOOC KLIM KLIM_L 

80 62.0494 1.8286 3.8042e-005 8.1066e-005 

70 48.8565 1.5147 3.4419e-005 7.8802e-005 

60 34.2189 1.0275 2.9890e-005 5.2534e-005 

50 23.9743 0.7324 2.9890e-005 4.9817e-005 

40 16.2443 0.4987 3.0796e-005 4.9364e-005 
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KLIM_L estimator achieves higher classification 
accuracy than LDA, RDA, LOOC and KLIM 
estimators on COIL-20 data set. In the future work, 
the kernel method combined with these 
regularization discriminant methods will be studied 
for small sample problem with high dimension and 
the selection of kernel parameters will be 
investigated under some criterion. 
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