
SOLVING FUZZY LINEAR SYSTEMS IN THE STOCHASTIC
ARITHMETIC BY APPLYING CADNA LIBRARY

Mohammad Ali Fariborzi Araghi1 and Hassan Fattahi2

1Department of Mathematics, Faculty of Science, Islamic Azad University, Central Tehran Branch
P.O.Box 13185.768, Tehran, Iran

2Department of Mathematics, Islamic Azad University, Kermanshah Branch, Kermanshah, Iran

Keywords: Iterative methods, Fuzzy Linear Systems (FLS), Stochastic arithmetic, CESTAC method, CADNA library,
Hausdorff distance, Fuzzy number.

Abstract: In this paper, a fuzzy linear system with crisp coefficient matrix is considered in order to solve in the stochastic
arithmetic. The fuzzy CESTAC method is applied in order to validate the computed results. The Gauss-Seidel
and Jacobi iterative methods are used for solving a given fuzzy linear system. In order to implement the
proposed algorithm, the CADNA library is applied to find the optimal number of iterations. Finally, two
numerical examples are solved based on the given algorithm in the stochastic arithmetic.

1 INTRODUCTION

A general model for solving a FLS whose coefficient
matrix is crisp and the right-hand side column is an
arbitrary fuzzy number was first proposed by Fried-
man, Ming and Kandel, (1998). They used the em-
bedding method and replaced the original fuzzy lin-
ear system by a crisp linear system with a nonnegative
coefficients matrix. In the sequel, solving this kind of
fuzzy linear system based on the numerical and itera-
tive methods were proposed by others. Some of these
works were presented by Abbasbandy et al. (2006),
Allahviranloo (2004)(2005), Dehghan and Hashemi
(2006). Since, the results of the iterative methods
are obtained in the floating-point arithmetic, the ter-
mination criterion depends on a positive number like
ε. So, the final results may not be accurate or the
number of iterations may increase without increas-
ing the accuracy of the results. Therefore, the vali-
dation of the computed results is important. In this
case, because of the round-off error propagation, the
computer may not able to improve the accuracy of the
computed solution. By using the stochastic arithmetic
in place of the traditional floating-point arithmetic,
one can rely the results and estimate the accuracy of
them (Abbasbandy and Fariborzi Araghi, 2004; Ches-
neaux, 1992; Fariborzi Araghi, 2008; Vignes, 1993).
CESTAC (Controle et Estimation Stochastique des
Arrondis de Calculs) method is an efficient method
in order to estimate the accuracy of the results and
find the optimal number of iterations (Vignes,1993).

CADNA (Control of Accuracy and Debugging for
Numerical Applications) library is a tool to imple-
ment the stochastic arithmetic automatically. The first
goal of this software is the estimation of the accuracy
of each computed result. CADNA detects numerical
instabilities (informatical zero) during the run of the
program. CADNA works on Fortran or C++ codes.
When a result is a stochastic zero (i.e. is insignif-
icant), the symbol @.0 is printed. CADNA detects
numerical instabilities during the run of the program
(Jezequel and Chesneaux, 2008). For more details
about this library we refer the reader to ”http://www-
pequan.lip6.fr/cadna”.

By using the CESTAC method,N runs of the com-
puter program take place in parallel. In this way,
one runs every arithmetical operationN times syn-
chronously before running the next operation. In this
method, by running the programN times, for each re-
sult of any floating-point arithmetic operation, a set
of N computed resultsXi; i = 1,2, ...N, is obtained.
N can be chosen any natural number like 2,3,5,7, but
in order to decrease operations cost, usuallyN = 3 is
considered. This method is able to estimate the round-
off error on each result and determine the accuracy of
it.

Let F be the set of all values represented on the
computer. Thus, any real valuex is represented in the
form of X ∈F on the computer. It has been mentioned
in (Vignes, 1993) that in a binary floating-point arith-
metic withP mantissa bits, the rounding error stems
from assignment operator is
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X = x− ε2E−Pa, (1)

whereε is the sign ofx, 2−Pa is the lost part of the
mantissa due to round-off error andE is the binary
exponent of the result. In single precision case,P=
24. If the floating-point arithmetic is as rounding to
+∞ or−∞, then−1< a< 1.

According to (1) if we want to perturb the last
mantissa bit (or previous bits if necessary) of the value
x, it is sufficient to changea in the interval[−1,1]. We
considera as a random variable uniformly distributed
on [−1,1]. ThusX, the calculated result, is a random
variable and its precision depends on its mean(µ) and
its standard deviation(σ).

The idea of CESTAC method is to consider that
every resultX ∈ F of a floating-point operation cor-
responds to two informatical results one rounded off
from below(X−) , the second rounded off from above
(X+), each of them representing the exact arithmeti-
cal resultx, with equal validity.

In this paper, we apply the stochastic arithmetic
to solve a fuzzy linear system by applying the fuzzy
CESTAC method for the Jacobi and Gauss-Seidel iter-
ative methods. For this purpose, the CADNA library
is used over the Linux operating system. The pro-
grams have been provided by C++. The preliminaries
are given in Section 2. The fuzzy CESTAC method
and the algorithm of solving FLS are introduced in
Section 3. In Section 4, two examples are solved
by using of the stochastic arithmetic and CADNA li-
brary and compare the results with the results of the
floating-point arithmetic.

2 PRELIMANERIES

Definition 1. An arbitrary fuzzy numberX in para-
metric form is represented by an ordered pair func-
tions(X(r), X̄(r)), 0≤ r ≤ 1, whereX(r) is a bounded
left-continuous non- decreasing function over[0,1],
andX̄(r) is a bounded left-continuous non-increasing
function over[0,1]. Also,X(r)≤ X̄(r),0≤ r ≤ 1. We
denote the set of all fuzzy numbers byE1.

Definition 2. Let X̃ = (X(r),X(r)) and Ỹ =
(Y(r),Y(r)) be arbitrary fuzzy numbers then the
Hausdorff distance of these numbers is defined by:

D(X̃,Ỹ) =

sup0≤r≤1max{|X(r)−Y(r)|, |X(r)−Y(r)|}. (2)

Definition 3. Consider then× n linear system of
equations:

AX = Y , (3)

where the coefficients matrixA= [ai j ] is a crisp ma-
trix andyi ∈ E1, i = 1,2, ...,n. The fuzzy system (3)
is called a fuzzy linear system (FLS). This system can
be converted to a crisp 2n× 2n linear system as fol-
lows (Abbasbandy et al., 2006; Allahviranloo, 2004;
Dehghan and Hashemi, 2006):

SX=Y, S=

(

B C
C B

)

(4)

where,B contains the positive entries ofA, andC con-
tains the absolute values of the negative entries ofA
andA= B−C.

We suppose thatSii > 0, i = 1,2, ...,2n. Let B =
D1 + L1 +U1 whereD1, L1 and U1 are the diago-
nal, the strict lower and the strict upper triangular
matrices respectively. So, the elements ofX(k+1) =

(X(k+1),X
(k+1)

),k = 0,1,2, ..., in the Jacobi itera-
tive technique are obtained as follows (Allahviran-
loo,2004):

X(k+1) =−D−1
1 (L1+U1)X

(k)+D−1
1 CX

(k)
+D−1

1 Y,
(5)

X
(k+1)

=−D−1
1 (L1+U1)X

(k)
+D−1

1 CX(k)+D−1
1 Y.

(6)
Also, the elements of the vectorX(k+1) for

the Gauss-Seidel iterative method is (Allahviranloo,
2004):

X(k+1) =−(D1+L1)
−1U1X(k)−

(D1+L1)
−1CX

(k)
+(D1+L1)

−1Y, (7)

X
(k+1)

=−(D1+L1)
−1U1X

(k)−
(D1+L1)

−1CX(k)+(D1+L1)
−1Y. (8)

3 INTRODUCING FUZZY
CESTAC METHOD

Let x̃ = (x(r),x(r)) be a fuzzy number inE1. Then,
x̃ is represented as̃X = (X(r),X(r)),0≤ r ≤ 1 in the
computer. It can be shown that:

X(r) = x(r)− ε12E1−Pα, (9)

X(r) = x(r)− ε22E2−Pα, (10)

where,ε1 and ε2 are the signs ofx(r) and x(r) re-
spectively and 2−Pα and 2−Pα are the lost part of the
mantissa due to round-off error andE1 andE2 are the
binary exponents of the results. In single precision
case,P = 24 and−1 ≤ α,α ≤ 1. In the CESTAC
method,α and α in (9) and (10) are considered as
random variables uniformly distributed on[−1,1]. In
order to find samples for the obtained random vari-
ables, we perturb the last mantissa bit (or previous
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bits) of the valuesX(r) andX(r),0 ≤ r ≤ 1 (Vignes,
1993). The algorithm of fuzzy CESTAC method is
as follows whered is a small positive value like 10−2

andτβ is the value ofT distribution withN−1 degree
of freedom and confidence interval 1− β. If N = 3
andβ = 0.05 thenτβ = 4.303.

Algorithm 1:

For r = 0(d)1 do the following steps:
1) FindN samples forX(r) andX(r) as

X1(r),X2(r), ...,XN(r)
and

X1(r),X2(r), ...,XN(r),
by means of the perturbation of the last bit of the
mantissa,

2) Compute

Xave(r) =
∑N

i=1 Xi(r)
N

and

Xave(r) =
∑N

i=1 Xi(r)
N

3) Compute
S2(r) = 1

N−1 ∑N
i=1(Xi(r)−Xave(r))

2

and
S

2
(r) = 1

N−1 ∑N
i=1(Xi(r)−Xave(r))2,

4) Compute

CXave(r),X(r) = log10

√
N|Xave(r)|
τβ.S(r)

and

CXave(r),X(r) = log10

√
N|Xave(r)|
τβ.S(r)

as the common significant digits between the exact
valuesX(r) andX(r) and the approximate values
Xave(r) andXave(r) respectively,

5) If
CXave(r),X(r) ≤ 0 orXave(r) = 0

and
CXave(r),X(r) ≤ 0 orXave(r) = 0

then writeX̃ = @.0

For solving fuzzy linear systems in the stochastic
arithmetic we use the following algorithm by apply-
ing Jacobi and Gauss-Seidel iterative methods with

the initial vectorX(0) = (X(0),X
(0)
). The programs

have been written in C++ and executed on a Linux
machine using CADNA library. For the termination
criterion, we consider the Hausdorff distance to be an
informatical zero (@.0). In the algorithm, the valued
is a small positive number liked = 0.1.

Algorithm 2:

1- Letk= 0 andi = 1,
2- For r = 0(d)1 do the following steps based on
the fuzzy CESTAC method:

2.a) FindX(k+1) and X
(k+1)

by using Jacobi or
Gauss-Seidel iterative method mentioned in (5)-
(8),
2.b) Let

di f = |X(k+1)−X(k)|
and

di f = |X(k+1)−X
(k)|,

and put the maximum value of them asmaxdi f[i]
in the arraymaxdi f,
2.c) i = i +1,
3- Find the maximum element of the arraymaxdi f
and call it ”Hmax” which is the approximation of
Hausdorff distance in the stochastic arithmetic. If
Hmax= @.0 then go to step 4 else putk = k+1
and go to step 2,
4- Printk as the optimal iteration andX(k) ≃X and

X
(k) ≃ X as the approximate solution of the linear

system (4).

Now, from the procedure mentioned by Khojasteh
Salkuyeh and Toutounian (2006), we can prove the
following theorem for computing of the common sig-
nificant digits of each corresponding components of
the computed solution and exact solution for a lin-
ear system using an iterative method. In this theorem,
the notationCX,X′ means the common significant dig-

its between two distinct real vectorsX andX
′

in R
n

which is defined asCX,X′ = log10
||X+X

′ ||2
2
√

n||X−X′ ||2
.

Theorem 3.1.Let X(k+1) =P1X(k)+Q1 andX
(k+1)

=

P2X
(k)

+Q2,k≥ 0, be convergence iterative method to
the exact solutionX = (X,X) of the system (4) with
Q1,Q2 6= 0. Then, for sufficiently large value ofk, we
have

log10|1−||P1||2| ≤CX(k),X −CX(k),X(k+1)

≤ log10(1+ ||P1||2).

log10|1−||P2||2| ≤C
X(k)

,X
−C

X(k)
,X(k+1)

≤ log10(1+ ||P2||2).
Since the above iterative procedure is convergent

if ||P1||2 < 1 and||P2||2 < 1, hence according to the
theorem 3.1, when||P1||2 << 1 and||P2||2 << 1 then,

CX(k),X ≃CX(k),X(k+1) .

C
X(k)

,X
≃C

X(k)
,X(k+1) .
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4 NUMERICAL EXAMPLES

In this section, we solve two examples by using the
above algorithm based on the stochastic arithmetic.
The programs have been implemented by CADNA li-
brary. In each examples, the number of iterations in
both arithmetic are shown in single precision case. In
the floating-point arithmetic we use the termination
criterionHmax< ε whereε is a given positive num-
ber.

Example 4.1. Consider the following fuzzy linear
system (Freidman et al.,1998)

{

x1− x2 = (r,2− r),
x1+3x2 = (4+ r,7−2r),

Table 1: The number of iterations (example 4.1).

Jacobi Gauss-Seidel ε
Stochastic 26 9 —

Floating-point 34 10 10−7

As we observe in the table 1, for Jacobi method
the algorithm is stopped at the iterationk= 34 in the
floating-point arithmetic withε = 10−7. But, in the
stochastic arithmetic the optimal number of iterations
is k = 26. It means that after this number the contin-
uation of the iterations is useless and the accuracy of
the solution does not increase. Also, we can compare
the results of the Gauss-Seidel method. The optimal
solution of Jacobi method in the stochastic arithmetic
in the iterationkopt = 26 is:

x1 = (0.1375001E + 01 + 0.6249994E + 00r,
0.2875000E+01−0.87499957E+00r)

and
x2 = (0.8750008E + 00 + 0.1249997E + 00r,

0.1375000E+01−0.3749999E+00r).

Also, the optimal solution of Gauss-Seidel method
in the stochastic arithmetic in the iterationkopt = 9 is:

x1 = (0.1374999E + 01 + 0.6250000E + 00r,
0.2874999E+01−0.8750000E+00r)

and
x2 = (0.8750008E + 00 + 0.1250000E + 00r,

0.1375000E+01−0.3750000E+00r).

The approximate result in the floating-point arith-
metick= 34 is:

x1 = (1.375+0.625r,2.875−0.875r)
and

x2 = (0.875+0.125r,1.375−0.375r).

If we solve the system by Maple 8 directly and cal-
culate Hausdorff distance between the exact solution
and the result of iterationk = 26 of Jacobi method
based on (2), we haveD(X̃, X̃(26)) = 9.5364× 10−7

which means the computed result in the iteration 26
is very near to the exact solution.

Example 4.2. Consider the following fuzzy linear
system (Dehghan and Hashemi, 2006)


















8x1+2x2+ x3−3x5 = (r,2− r),
−2x1+5x2+ x3− x4+ x5 = (4+ r,7−2r),
x1− x2+5x3+ x4+ x5 = (1+2r,6−3r),
−x3+4x4+2x5 = (1+ r,3− r),
x1−2x2+3x5 = (3r,6−3r),

Table 2: The number of iterations (example 4.2).

Jacobi Gauss-Seidel ε
Stochastic 108 19 —

Floating-point > 104 60 10−7

The optimal solution of Jacobi method in the
stochastic arithmetic in the iterationkopt = 108 is:

x1 = (0.728699E + 00 − 0.3305729E + 00r,
0.441342E−01+0.353992E+00r),

x2 = (0.6141832E + 00 + 0.166261E + 00,
0.107726E+01−0.296823E+00r),

x3 = (0.126275E + 00 + 0.2905860E + 00r,
0.9182206E+00−0.5013588E+00r),

x4 = (0.2419159E + 00 − 0.331494E + 00r,
−0.415803E+00+0.3262251E+00r),

and
x5 = (0.475281E + 00 + 0.9123067E + 00r,

0.2394742E+01−0.100715E+01r).

Also, the optimal solution of Gauss-Seidel method in
the stochastic arithmetic in the iterationkopt = 19 is:

x1 = (0.7286988E + 00 − 0.330572E + 00r,
0.441349E−01+0.3539914E+00r),

x2 = (0.6141824E + 00 + 0.166262E + 00r,
0.107726E+01−0.2968246E+00r),

x3 = (0.126275E + 00 + 0.290586E + 00r,
0.9182215E+00−0.5013596E+00r),

x4 = (0.241915E + 00 − 0.331493E + 00r,
−0.4158026E+00+0.326224E+00r),

and
x5 = (0.475279E + 00 + 0.9123077E + 00r,

0.2394743E+01−0.100715E+01r),

The exact solution of the system by using Maple 8 is:
x1 = (0.7287−0.3306r,0.04413+0.3540r),
x2 = (0.6142+0.1663r,1.077−0.2968r),
x3 = (0.1263+0.2906r,0.9182−0.5014r),
x4 = (0.2419−0.3315r,−0.4158+0.3262r),
and
x5 = (0.4753+0.9123r,2.395−1.007r).

In Jacobi method the optimal number of iterations is
kopt = 108 in the stochastic arithmetic, but in the float-
ing point arithmetic the number of iterations exceed
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k= 10000 with criterionHmax< ε = 10−7. These it-
erations are useless because after the iterationk= 108
the accuracy does not increase but the floating-point
arithmetic is not able to recognize it. In this case,
D(X̃, X̃(108)) = 1.18017×10−5.

5 CONCLUSIONS

In this work, we proposed an algorithm in order to ap-
proximate the solution of a FLS in the stochastic arith-
metic. In this case, we are able to find the accuracy of
results and validate the results of the algorithm. Also,
we can find the optimal number if iterations in the it-
erative methods for solving fuzzy linear systems such
as Jacobi and Gauss-Seidel methods. In order to es-
timate the number of the significant digits we used
the CESTAC method and in order to implement the
stochastic arithmetic we applied the CADNA library.
Consequently, the stochastic arithmetic can play an
important role to rely the numerical solution of FLS.
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