
AN ARCHITECTURAL PATTERN FOR X3D-BASED 
VIRTUAL ENVIRONMENTS 

An Object-oriented Approach 

George Anastassakis and Themis Panayiotopoulos 
Knowledge Engineering Lab, Department of Informatics, University of Piraeus, Piraeus, Greece 

Keywords: X3D, Virtual Environment. 

Abstract: X3D is an open, royalty-free, scene-graph-based standard for 3D virtual worlds that has been used by virtual 
environment developers many times until today. As a virtual environment development tool, it has 
numerous appealing features; however, it also has certain characteristics that may, under certain 
circumstances, create significant problems to developers. With a motivation to communicate our own 
experience to, and contribute to the efforts of, other researchers who are using or consider using it, we 
evaluate X3D in a virtual environment developer's perspective and identify potential problems with its 
usage. Also, we present an architectural pattern aimed at addressing those problems effectively, with a focus 
on transparency, standards-compliance, reusability and extendibility. In conclusion, we present a case study 
of the application of the proposed pattern in a fully-implemented intelligent virtual environment system. 

1 INTRODUCTION 

Today's virtual worlds are typically three-
dimensional and consist of virtual objects of various 
kinds, each with its own geometry, structure, 
location and orientation in space, presentation, 
functionality and behaviour. Host virtual 
environment systems render virtual worlds in real 
time and enable users to experience and interact with 
them multimodally, while autonomous behaviour 
exhibited by synthetic actors – virtual agents – is an 
essential element of applications aimed at 
believability, realism and an increased sense of user 
presence. To provide such functionality, virtual 
environments systems employ world representation 
technologies which, in most (if not all) cases, are 
based upon the concept of the scene graph. 

As its name implies, a scene graph is a graph 
structured so as to represent a scene which, in most 
cases, is three-dimensional, dynamic and interactive. 
A typical scene graph contains nodes of various 
types, each with a specific purpose, such as to define 
geometry and apply transformations. Scene graphs 
are the preferred method for the representation of 
complex scenes mostly because they (a) can 
naturally capture the conceptual hierarchy of the 
represented scene, and (b) are highly independent, in 

principle, of the underlying hardware and software 
implementation. 

X3D is a scene-graph specification for virtual 
worlds (Web3D Consortium, 2011). It is the 
successor of VRML version 2.0, also known as 
VRML97. It is an ISO standard currently steered by 
the Web3D Consortium. 

X3D has several features that make it an 
appealing candidate for employment in virtual 
environment systems. It is for those features that we 
have adopted it for our own research which has 
yielded, among other results, a virtual environment 
system titled REVE Worlds (Anastassakis, 2011; 
REVEnet, 2011) that uses X3D both as a format for 
external source data and to maintain an internal 
virtual world representation at run-time. 

Nonetheless, X3D provides no original facilities 
to accomodate a range of needs inherent to virtual 
environments. In addition, certain parts of the X3D 
specification, while facilitating the processing of the 
kind of online content X3D was originally meant to 
support, may lead to problems when fine-grained 
and accurately-timed control over internal virtual 
world representation data is needed. The latter is no 
less than a non-negotiable requirement especially 
when it comes to intelligent virtual environments – 
that is, virtual environments in which the element of 

466 Anastassakis G. and Panayiotopoulos T..
AN ARCHITECTURAL PATTERN FOR X3D-BASED VIRTUAL ENVIRONMENTS - An Object-oriented Approach.
DOI: 10.5220/0003863404660471
In Proceedings of the International Conference on Computer Graphics Theory and Applications (GRAPP-2012), pages 466-471
ISBN: 978-989-8565-02-0
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

intelligent behaviour exhibited by intelligent virtual 
agents is dominant – where multiple actors, both 
artificial and human, simultaneously exhibit 
complex behaviour (Aylett and Luck, 1999). 

In this paper, we evaluate X3D from a virtual 
environment developer's standpoint as a component 
of virtual environment systems, and identify what 
we consider to be its key benefits and drawbacks as 
such. In addition, we propose an architectural pattern 
aimed at effectively addressing those drawbacks 
with a focus on transparency, standards-compliance, 
reusability and extendibility. We also show how we 
have applied the proposed pattern in practice. 

2 RELATED WORK 

The potential of X3D – either in its contemporary 
form or in the earlier form of VRML97 – as a tool 
for developing virtual environments has been 
investigated and exploited on numerous occasions 
and in various domains until today, for the purposes 
of both research and applications. 

Cabral et al. (2007) discuss their use of X3D as a 
means to define virtual worlds for virtual heritage 
applications, as well as their implementation of a 
X3D browser based on the Ogre3D graphics engine. 
They conclude that X3D has helped them improve 
the design review process, save time and enable 
heritage specialists with no 3D graphics experience 
to benefit from virtual reality technologies. 

Bouras, Panagopoulos and Tsiatsos (2005) 
discuss how an existing VRML-based research 
platform for networked virtual environments titled 
“EVE” was modified using the Xj3D toolkit to rely 
on X3D. The authors also offer useful information 
about problems they faced during their effort. An 
application in the form of a tool for collaborative 
design and spatial arrangement of multi-grade 
virtual classrooms is presented by Bouras, Tegos, 
Triglianos and Tsiatsos (2007). 

In the context of annotation-based approaches for 
the definition of virtual world semantics, the use of 
VRML's WorldInfo and PROTO nodes as well as 
GeoVRML's GeoMetadata nodes is discussed by 
Ibanez-Martinez and Delgado-Mata (2006). 

Behr, Dähne and Roth (2004) discuss techniques 
for using X3D in virtual reality applications with a 
specific focus on user immersion, and propose 
extensions to the X3D specification to that end. 

Ieronutti and Chittaro (2007) present an 
architecture for virtual humans in educational virtual 
environments based on Web3D technologies. 

Along similar lines, a Web-based teaching 

software system relying on VRML is presented by 
Ong and Mannan (2004). The authors examine – to 
great technical detail, which is rather an exception to 
the rule – the use of VRML's external authoring 
interface (EAI) (that is, an interface for 
communication between VRML scenes and external 
applications and a predecessor to a similar interface 
specified by X3D) to enable control over the VRML 
scene by external processes. 

In a wide spectrum of virtual environment 
systems and applications such as those mentioned 
above, X3D plays a central role, not only as a world 
representation means but also as a facilitator of 
diverse interactions among virtual objects, virtual 
agents and user avatars, and a component deeply 
involved with virtual world dynamics in general. 
Nonetheless, in spite of the numerous and highly-
technical implications in incorporating X3D into 
complex software, very little detail is available – as 
a general rule – on how those implications were 
dealt-with, what kinds of obstacles were encountered 
and how they were overcome in each case. 

3 X3D IN A VIRTUAL 
ENVIRONMENT 
DEVELOPER'S PERSPECTIVE 

Because virtual environments are complex systems 
involving multiple interoperating components, the 
following presentation of X3D and all further 
discussion in this paper is based on X3D's external 
scene access interface (external SAI), an interface 
for interaction between external processes and X3D 
worlds (as opposed to the internal scene access 
interface, which can be used to interact with X3D 
worlds from within). 

3.1 Desirable Features 

X3D can benefit virtual environment developers on 
several levels: it is an abstract specification enabling 
virtual world definitions largely disentangled from 
technical details and the underlying implementation; 
it can be used both for the purposes of run-time 
world representation and as a format for 3D scene 
source data; it specifies a number of powerful 
application programming interfaces (APIs) for the 
interaction between application code and X3D scene 
graphs; in contrast to many de facto standards, it is 
an ISO standard; it is an open and highly accessible 
standard; it is backed by a large and active online 
community. 

AN ARCHITECTURAL PATTERN FOR X3D-BASED VIRTUAL ENVIRONMENTS - An Object-oriented Approach

467



 

3.2 Potentially Problematic Features 

X3D has specific features that may create non-
negligible obstacles under certain circumstances. 
Based on our own relevant experience, we feel that 
virtual environment system developers must be 
aware of those characteristics and the problems they 
may create, and have thoroughly considered them 
before investing in X3D. 

3.2.1 Asynchronous Execution Model 

According to the X3D specification, a scene graph 
can be modified by application code on an 
exclusively asynchronous basis. In other words, 
scene graph modification requests are not processed 
when issued by application code but, as the 
specification clearly dictates, when the browser, that 
is, the component whose responsibility is to render 
subsequent instances of the scene graph, decides to 
do so. In cases where application code must make 
multiple changes to a scene graph in a single burst, 
modification requests can be grouped and processed 
as a single event cascade, again when the browser 
decides to do so. 

This is a useful specification-level feature that 
results in increased browser performance and safe 
concurrent access to the same scene graph by 
different threads, among other benefits. However, it 
raises an issue when scene graph contents must be 
accessed immediately, or very shortly, after requests 
for modification are issued. Consider the following 
example of readily-compilable Java code meant to 
write a certain value to a certain field of some node 
in a X3D scene graph: 

 
float before = initial; 
((SFFloat) foo).setValue(before); 
float after = ((SFFloat) foo).getValue(); 
boolean test = before == after; 
 

In the above code snippet, a call to foo field's 
setValue method – a request to modify the field's 
value – with the value initial (which shall not be 
equal to the field's value at the time) is immediately 
followed by a call to the field's getValue method – a 
request to access the field's value. Because the time 
difference between the two calls is extremely small, 
the browser will have most likely not processed all 
pending event cascades when the getValue method is 
called. As a result, the value that will be read will 
not be equal to the value just written, and the test 
variable will have a value of false. 

Where similar patterns of rapidly successive 
scene graph access and modification operations are 
inevitable (as it is the case with virtual environments 

due to multiple virtual agents interacting with the 
same virtual world at the same time), X3D's 
asynchronous execution model may become a 
considerable obstacle. One way to circumvent this is 
to register an interest for notifications of fully-
realized modifications to specific fields and only 
access those fields when corresponding notifications 
are received, something that is indeed supported by 
X3D; however, when the ability to strictly order and 
schedule complex interactions with the scene graph 
is of the essence, such an approach is inapplicable. 

3.2.2 Inaccessible Geometry Dimensions 

The X3D specification provides that several fields of 
primitive geometry nodes, such as Box, Sphere and 
Cone, are only accessible as initializeOnly, which 
essentially means that their values cannot be read at 
run-time. This is a major drawback as it renders 
bounding-shape calculation by application code in 
an automated fashion virtually impossible, while 
bounding shape information is essential to several 
aspects of a virtual environment system's operation, 
such as collision detection and response, visual 
annotation of virtual objects, automated arrangement 
of virtual objects in space, and many more. 

A possible solution is to supply bounding-shape 
information calculated at design-time in the metadata 
field which all X3D nodes have; however, such an 
approach requires additional pre-processing and, 
most importantly, only applies to non-deformable 
virtual objects (which virtual bodies and user avatars 
rarely are, if ever). 

Luckily, it is possible to access the coordinates 
of vertices in IndexedFaceSet and IndexedLineSet 
nodes: their coord field as well as the Coordinate 
node's point field are both accessible as inputOutput. 
This enables calculation of local geometric extents, 
which, in turn, enables calculation of bounding-
shapes based on a number of methods. 

3.2.3 Lack of Per-frame Processing Support 

The term per-frame processing (or per-frame 
behaviour) is used to refer to functionality engaged 
on every frame rendered. Support for per-frame 
processing is crucial to any virtual environment 
system: it is required by mechanisms such as those 
enforcing laws like gravity and friction, and 
performing collision detection and response. X3D only 
supports per-frame processing as part of its internal 
SAI by means of X3DPerFrameObserverScript, a 
dedicated data type that can serve as a basis for 
scripts capable of responding to frame events. 
Unfortunately, the external SAI has no inherent 

GRAPP 2012 - International Conference on Computer Graphics Theory and Applications

468



 

support for per-frame processing. Hence, developers 
are forced to apply custom solutions which, albeit 
often highly effective, may compromise transparency, 
reusability and implementation life-span. 

4 ARCHITECTURAL PATTERN 

To tackle issues such as those discussed in Section 3.2 
with transparency, standards-compliance, reusability 
and extendibility in mind, we propose the design 
pattern shown on Figure 1. 

 
Figure 1: Architectural overview of a virtual environment 
system using X3D through X3DSceneProxy. 

The figure shows a virtual environment system 
maintaining an internal scene graph as a X3DScene 
object. (In this text, X3DScene refers to the concrete 
implementation of the SAIScene data type provided 
by the X3D implementation used, while SAIScene is 
the corresponding abstract X3D data type). 

X3DSceneProxy

+create(String profile, ComponentInfo[] components)
+pause()
+getPosition(): float[]
+getOrientation(): float[]
+pause(int numberOfFrames)
+addX3DFrameEventListener(X3DFrameEventListener l)
+removeX3DFrameEventListener(X3DFrameEventListener l)
#getScene(): X3DScene

X3DScene

X3DFrameEventListener
<<interface>>

+frameRendered(X3DFrameEvent e)

X3DFrameEvent

 
Figure 2: X3DSceneProxy and related classes. 

However, the X3DScene object is not used 
directly but through an object of the X3DSceneProxy 
class – a scene proxy. As its name implies, 
X3DSceneProxy is a proxy for X3DScene (Gamma, 
Helm, Johnson and Vlissides, 1995). Meaning to 
mediate all interaction between application code and 
X3D scene graphs, each X3DSceneProxy object 
fully encapsulates and manages a X3DScene object, 
only allowing access to it according to strict 
specifications. Figure 2 depicts X3DSceneProxy and 
all related classes (only critical members are shown). 

In the following text, aspects of the functionality 
that can be made available thanks to the proposed 
pattern are discussed along with implementation 
guidelines. Please note that the latter are but possible 
methods to address the issues discussed in Section 
3.2; other mechanisms can be implemented just as 
well without any compromise on transparency and 
reusability thanks to the proposed pattern. 

4.1 Initialization 

The scene proxy handles creation and initial 
configuration of the internally-managed X3DScene 
object. More specifically, it creates a TimeSensor 
and a ProximitySensor node. The TimeSensor node 
is set to loop forever, while the ProximitySensor 
node's size field is set to a sufficiently large value, 
which implies that it is to monitor the entire scene 
for events. In addition, a field event listener is added 
to the fractionChanged field of the TimeSensor 
node, which means that, as per the X3D 
specification, the listener's readableFieldChanged 
method – referred to as the frame event handler in 
the following text – will be called on every frame. 

4.2 Viewpoint Tracking 

The scene proxy enables access to the currently-
bound viewpoint's position and orientation through 
its getPosition and getOrientation methods based on 
information provided by the ProximitySensor node 
discussed in Section 4.1. This is provided as a 
convenience to applications that need transparent 
run-time access to that kind of information, for 
instance, to respond when user avatars move to 
specific locations in the virtual world. 

4.3 Application Code Execution Delay 

The scene proxy can be used to delay execution of 
application code for a specific number of frames by 
means of its pause methods which use internal 
counters to monitor the number of frames rendered 

AN ARCHITECTURAL PATTERN FOR X3D-BASED VIRTUAL ENVIRONMENTS - An Object-oriented Approach

469



 

since their invocation and block execution until a 
specified count is reached. This particular bit of 
functionality can be used to effectively overcome 
obstacles created as a result of X3D's asynchronous 
execution model, thus enabling synchronized 
interaction between application code and the X3D 
scene graph. For instance, the example in Section 
3.2.1 can be modified as follows: 

 
float before = initial; 
((SFFloat) foo).setValue(before); 
scene.pause(); 
float after = ((SFFloat) foo).getValue(); 
boolean test = before == after; 
 

In the above code snippet, the variable scene is a 
reference to the scene proxy. Thanks to a call to the 
pause method, the above code will wait one frame 
before reading the value of the foo field. This means 
that, as per the X3D specification, pending event 
cascades will have (most probably) been processed 
and values will have been written to output fields 
when the field is subsequently read, resulting to a 
test variable value of true, in contrast with the case 
in Section 3.2.1. 

4.4 Per-frame Processing 

The scene proxy can be used to apply per-frame 
processing. To that end, it maintains an internal list 
of frame event listener references, that is, references 
to objects of class X3DFrameEventListener that have 
registered an interest to receive notifications about 
frame events. A frame event is represented by a 
X3DFrameEvent object. Implementation-specific 
frame event handling occurs in the frameRendered 
method the X3DFrameEventListener interface. 

5 CASE STUDY 

We have implemented the proposed architectural 
pattern using Xj3D, a Web3D consortium-endorsed, 
LGPL-licensed, multi-platform, extendible X3D 
toolkit written in Java (Xj3D, 2011), as part of the 
REVE Worlds virtual environment system. 

The REVE Worlds system encodes virtual 
objects as items. An item contains several item 
aspects, each describing a certain representational 
aspect of the virtual object, for example, its physical 
properties, perceivable semantics and accessible 
functionality. Information pertaining to a virtual 
object's appearance, geometry, structure and all 
other properties that can be subjectively regarded as 
physical are encoded by the respective item's 

physical aspect in the form of X3D data. In 
particular, for each virtual object, a X3D scene is 
accessed through an external data source (for 
example, a X3D file). Then, part of it is loaded and 
appended to a sequence of specialized functionality 
nodes which are created by the system and are 
responsible for application-specific tasks, such as 
positioning the virtual object in space, aligning it 
with the world coordinate system, adding 
annotations such as a wireframe bounding box and 
nameplates, and more. The mechanism is highly 
flexible, as different parts of a single X3D scene can 
be used for different virtual objects, enabling virtual 
world designers to organize their resources into 
libraries. Also, the same part of a single X3D scene 
can be reused by different virtual objects, which 
facilitates the definition of several discrete virtual 
objects with similar physical properties. 

Figure 3 below shows two discrete virtual 
objects sharing the same X3D scene graph. 

 
Figure 3: Two discrete virtual objects whose physical 
aspects draw data from the same X3D scene graph. 

A sample virtual world in the REVE Worlds 
system is shown in Figure 4 below. 

 
Figure 4: Sample virtual world in REVE Worlds. 

GRAPP 2012 - International Conference on Computer Graphics Theory and Applications

470



 

In the REVE Worlds system, a virtual object's 
functionality is exposed as a set of functions which 
can be executed, in potentially rapid succession, by a 
virtual agent's effectors as part of the execution of 
complex actions, such as animated motion and other 
kinds of virtual object manipulation. This introduces 
the requirement for accurately-timed read- and 
write-access to the virtual environment's scene graph 
which, in X3D's case, turns out to be problematic 
because of its asynchronous execution model. In 
addition, it is necessary that the scene graph is 
evaluated and updated on a per-frame basis so that 
the virtual world's state is at all times consistent with 
all laws in effect, which is also problematic because 
of X3D's lack of inherent per-frame processing 
support. We were able to address those requirements 
effectively and elegantly by incorporating the 
proposed patter into the REVE Worlds system's 
architecture. We have also found modifications of 
relevant application code to be straightforward and 
transparent, thus increasing the maintainability, 
extendibility and life-span of our implementation. 

6 CONCLUSIONS 

In this paper, we present specific elements of the 
X3D specification that may pose problems to virtual 
environment developers. We also propose solutions 
to those problems and describe an object-oriented 
architectural pattern for the transparent incorporation 
of those solutions into concrete virtual environment 
designs. In particular, we demonstrate how to 
address field output timing issues that may arise due 
to X3D's asynchronous event model, as well as how 
to implement per-frame processing according to an 
event delegation mechanism. We have been unable, 
however, to overcome the inability to access 
primitive geometry node size-related fields (for 
instance, for the purposes of automatic bounding 
box calculation), as that is a restriction that arises 
from the X3D specification itself. 

ACKNOWLEDGEMENTS 

We would like to thank all members of the X3D 
Public mailing list, the X3D developer message 
boards and the Web3D Consortium for all the 
exciting discussions we had and the invaluable 
insights they provided us with over the past few 
years of our involvement with X3D and Xj3D. 

REFERENCES 

Anastassakis, G., Panayiotopoulos, T., 2011. Intelligent 
Virtual Environment Development with the REVE 
Platform: An Overview. In Vilhjalmsson, H. H., Kopp, 
S., Marsella, S. and Thorisson, K. R. (Eds.), Intelligent 
Virtual Agents, Lecture Notes in Computer Science, 
Vol. 6895 (pp. 431-432). Springer. 

Aylett, R., Luck, M., 1999. Applying Artificial Intelligence 
to Virtual Reality: Intelligent Virtual Environments. 
Applied Artificial Intelligence 14(1), 3-32. 

Behr, J., Dähne, P., Roth, M., 2004. Utilizing X3D for 
immersive environments. In Web3D '04: Proceedings 
of the ninth international conference on 3D Web 
technology (pp. 71-78). ACM. 

Bouras, C., Panagopoulos, A., Tsiatsos, T., 2005. 
Advances in X3D multi-user virtual environments. In 
Proceedings of the Seventh IEEE International 
Symposium on Multimedia (ISM'05) (pp. 136-142). 

Bouras, C., Tegos, C., Triglianos, V., Tsiatsos, T., 2007. 
X3D Multi-user Virtual Environment Platform for 
Collaborative Spatial Design. In Proceedings of the 
27th International Conference on Distributed 
Computing Systems Workshops (ICDCSW '07). 

Cabral, M., Zuffo, M., Ghirotti, S., Belloc, O., Nomura, 
L., Nagamura, M., Andrade, F., Faria, R., Ferraz, L., 
2007. An experience using X3D for virtual cultural 
heritage. In Proceedings of the Twelfth International 
Conference on 3D Web Technology (Web3D '07) (pp. 
161-164). ACM. 

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., 1995. 
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley. 

Ibanez-Martinez, J., Delgado-Mata, C., 2006. A Basic 
Semantic Common Level for Virtual Environments. 
International Journal of Virtual Reality, 5(3) 25-32. 

Ieronutti, L., Chittaro, L., 2007. Employing virtual humans 
for education and training in X3D/VRML worlds. 
Computers & Education, 49(1), 93-109. 

Ong, S., Mannan, M., 2004. Virtual reality simulations 
and animations in a web-based interactive 
manufacturing engineering module. Computers & 
Education, 43(4), 361-382. 

REVEnet, 2011. REVEnet. http://kelnet.cs.unipi.gr/reve. 
Web3D Consortium, 2011. X3D and related Specifications. 

http://www.web3d.org/x3d/specifications/ 
Xj3D, 2011. The Xj3D project. http:// http://www.xj3d.org. 
 

AN ARCHITECTURAL PATTERN FOR X3D-BASED VIRTUAL ENVIRONMENTS - An Object-oriented Approach

471


