
Hash Algorithms for 8051-based Sensornodes

Manuel Koschuch, Matthias Hudler and Michael Krüger
Competence Centre for IT-Security, FH Campus Wien, University of Applied Science,

Favoritenstrasse 226, 1100 Vienna, Austria

Keywords: Efficient Implementation, Hash Algorithms, Sensor Networks, Sensor Nodes, SHA-1, SHA-3, Tiger Hash.

Abstract: Wireless Sensors Networks are still an emerging technology. Their special architecture allows for unique ap-
plications that would be impossible, or at least very difficult, to implement using other technologies. But the
wireless data transmission between the single nodes poses new challenges from a security point of view: the
single messages have to be secured against eavesdropping and manipulation, as well as the individual nodes
have to be secured against capture and extraction of their secret key. Cryptographic hash functions are an inte-
gral part of most cryptographic network protocols, whether they are used for signatures or message integrity.
In this position paper, we describe a preliminary performance evaluation of three very different hash-functions
on a Texas Instruments CC2530 sensor node, based on an 8051 microcontroller: Tiger, representing a hash
designed for 64-bit architectures, the current standard SHA-1, and Grøstl, a SHA-3 finalist. Our preliminary
results indicate that even without any major optimizations hash algorithms that were clearly not designed to
run on constrained devices can be adapted to these environments with quite acceptable results, thereby giving
designers of sensor network security protocols new implementation options.

1 INTRODUCTION

Wireless Sensor Networks (WSNs) are an ever emerg-
ing field of technology. The usage of a huge number
of tiny sensor nodes, distributed across a large area
and communicating their sensor readings in a per-
hop fashion to a centralized base-station for process-
ing allows for efficient measurement of environmental
conditions, power plant or factory surveillance, traf-
fic monitoring, or new applications in personal health
care and ubiquitous computing.

But the distributed nature of WSNs also requires
the implementation of security measures against
eavesdropping on or manipulating the communication
over the air interface. Single sensor nodes can also
very easily and almost undetectable be removed from
the network, so that an attacker can try to read out
any secret keys stored in the node. Traditional ap-
proaches using asymmetric cryptography are usually
assumed to be too resource intensive for the small, 8-
Bit sensor nodes, while symmetric cryptography has
the drawback of lacking authentication and the neces-
sity to distribute the same key across a (potentially
large) number of nodes.

But regardless of the actual cryptographic techni-

que used, cryptographic hash-functions play a major
role in almost every implementation of a secure com-
munication scheme. Whether they are used for sig-
nature generation, key derivation, or HMAC calcula-
tions, an efficient and secure way of hashing usually
quite small amounts of data is needed.

There is already a huge number of publications
dealing with security protocols for WSNs, some of
them also heavily relying on hash-functions. But
when it comes to evaluating the performance of dif-
ferent hashes on small, constrained devices like 8-bit
microcontrollers, or whether there are viable alterna-
tives to the ubiquitous SHA-1, there is a much lower
number of research results available.

In this position paper we try to make a first, delib-
erately rough, approach of trying to compare the per-
formance of different hash-functions, also some that
have never been designed with embedded devices in
mind, on a Texas Instruments CC2530 Sensor node,
using an 8051 microcontroller with 32MHz clock fre-
quency. Our goal is to determine whether is is sen-
sible to also consider non-standard, but nevertheless
secure hash-functions when designing a custom secu-
rity protocol for a WSN, or if the existing standards
also satisfy the special requirements of embedded de-
vices.

The remainder of this position paper is structured

65
Koschuch M., Hudler M. and Krüger M..
Hash Algorithms for 8051-based Sensornodes.
DOI: 10.5220/0004062400650068
In Proceedings of the International Conference on Data Communication Networking, e-Business and Optical Communication Systems (DCNET-2012),
pages 65-68
ISBN: 978-989-8565-23-5
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



as follows: in Section 2 we give an overview of the
properties of a hash-function that are required to con-
sider that functionsecure as well as a short descrip-
tion of the functions selected for this first test. Sec-
tion 3 details our modifications to the hash functions
to make them work on the target device and first re-
sults, while finally Section 4 describes the next steps
planned.

2 HASH FUNCTIONS

A general hash-function has the property of mapping
arbitrary length input to fixed length output, and do-
ing so efficiently. So the first two properties of every
hash-function are

• Compression and

• Efficiency

These two properties do not suffice for acrypto-
graphic hash-function, where in addition the follow-
ing characteristics must hold:

• Preimage Resistance

• Second-Preimage Resistance and

• Collision Resistance

For the following discussion, letH(x) = y denote
the hash-functionH applied to the arbitrary length in-
putx, resulting in the fixed length outputy.

Preimage resistance means that giveny it should
be unfeasible to determinex.

Second-Preimage resistance means that given the
tuple (x,y) it should be infeasible to findx′ 6= x such
thatH(x′) = y.

Finally, collision resistance as the strongest prop-
erty requires that it should be infeasible to findx and
x′ with x 6= x′ such thatH(x) = H(x′).

The strongest attack against a given hash-function
with n-bit output length is to find two distinct values
yielding the same hash, which, due to the birthday
paradox, results in an effort of 2n/2. With 280 being
the approximate practical complexity limit today, this
translates into a minimal output length of the hash-
function of 160 bit.

SHA-1 fulfills this requirement, as well as all the
final candidates of the SHA-3 competition. For the
purpose of this work, we selected three different hash-
functions and discussed a fourth one.

2.1 Tiger

TheTiger hash-function (Anderson and Biham, 1996)
was designed for 64-bit processors, and serves as

more or less a “worst-case” design for an 8-bit mi-
crocontroller. It consists of (at least) 3 passes, with 8
rounds each, utilizing 4 S-Boxes with a combined size
of 8 Kbytes. It operates on 64-byte input blocks and
generates a 192-bit digest. Internally only additions,
subtractions, multiplications and xor’s of 64-bit val-
ues are used, in addition to the S-Box lookups. This
structure allows for a very efficient implementation
on machines which are able to handle 64 bit natively,
but poses a huge challenge when ported to an 8-bit
microcontroller.

We chose this algorithm mainly as a “proof-of-
concept” to find out whether porting of such a hash-
function with clearly different design goals in mind
results in at least decent performance or is even pos-
sible at all.

2.2 SHA-1

The Secure-Hash-Algorithm (SHA) family is still
(since 1995, 1993 when one also counts SHA-0) the
current standard for hash algorithms. Currently there
are basically 2 different versions used, SHA-1 with
an output size of 160 bit, and SHA-2 with an output
size of 224, 256, 384 or 512 bit, respectively (NIST,
2002).

Currently there are no known published attacks
against full SHA-2, yet there do exists attacks against
SHA-1 (Manuel, 2011). In this work, we use a SHA-
1 implementation as representation for the still most
widely deployed hash-function.

SHA-1 takes 64-byte input blocks, and produces
a 160-bit message digest. It is designed with 32-bit
machines in mind and consists of 80 rounds, with the
round function changing every 20 rounds. Internally,
only logical operations and circular shifts are used.

2.3 AES-based Hashes

The usual approach of designing a hash-function is to
use some function block with compression property,
whose output looks as random as possible, and repeat-
edly apply this function to the input until all message
blocks are processed. Since a block cipher can also
be seen as a compression function (given n-bit block
size and a k-bit key, the cipher maps this(n+ k)-bit
Input to ann-bit output), using the current standard
for symmetric cryptography as a hash bulding block
seems like a natural choice.

The problem when simply using the Advanced
Encryption Standard (AES) with the standard con-
struction of a hash-function lies in its block-size:
while Rijndael, the underlying algorithm for AES,
supports larger blocks, AES is fixed to 128-bit block

DCNET�2012�-�International�Conference�on�Data�Communication�Networking

66



size. This results in a 128-bit digest, too small to be
considered secure against simple brute-force attacks.

In (Bos et al., 2011) several techniques to increase
this digest are proposed, some of them we are cur-
rently evaluating on the sensor node. Using an AES-
based hash would allow the usage of the existing AES
co-processor on the node, in this way hopefully mit-
igating the additional complexity required to extend
the digest size.

2.4 SHA-3

The 6-year long competition to find the new standard
hash algorithm SHA-3 is expected to be finished by
the end of 2012. Currently, there are five finalists left:
BLAKE (Jean-Philippe Aumasson and Luca Henzen
and Willi Meier Raphael C.-W. Phan, 2010), Grøstl
(Gauravaram, P. and Knudsen, L. R. and Matusiewicz,
K. and Mendel, F. and Rechberger, C. and Schlffer,
M. and and Thomsen, S. S., 2011), JH (Wu, H., 2011),
Keccak (Bertoni, G. and Daemen, J. and Peeters, M.
and Assche, G. v., 2011), and Skein (Ferguson, N. and
Lucks, S. and Whiting, B. S. D. and Bellare, M. and
Kohno, T. and Walker, J. C. J., 2008). All of these
functions have a digest size of at least 224 bits.

We chose Grøstl as an example candidate for a
first comparison, although an evaluation of the re-
maining 4 candidates is also planned. Grøstl operates
on a 64-byte input, producing a 256 or 512-bit mes-
sage digest. Internally, it’s structure is very similar to
AES, even using the same S-Box as defined for Rijn-
dael, and also using similar approaches operating on
a two-dimensional state. The individual round opera-
tions are repeated 10 or 14 times, for 256 or 512 bit
digest size, respectively.

3 IMPLEMENTATION AND
PRELIMINARY RESULTS

Tiger, SHA-1 and Grøstl-256 were implemented
on a Texas Instruments Zig-Bee compliant CC2530
Sensornode, featuring an 8051 microcontroller core
clocked at 32MHz. As compiler, the IAR C compiler
for 8051, version 8.10.1, was used.

As a first test, no assembler optimizations were
performed, the code was entirely written in C.

In the case of SHA-1, the reference implementa-
tion given in RFC3174 (Eastlake, D. and Jones, P.,
2001) was slightly modified, some functions were ex-
changed by macros for better speed.

Tiger was entirely ported to 32-bit datatypes that
are supported in IAR declaring them aslong long.
All basic operation on the 64-bit values from the the

Tiger reference implementations were rewritten to op-
erations on 32-bit datatypes. We also performed an
additional split and tried to use 16-bit datataypes in-
stead, but due to the resulting increase in codesize, the
16-bit version ran slower then the 32-bit one.

For Grøstl we also used the reference implementa-
tion from the project homepage. Again, slight modifi-
cations were performed to adapt the code to the 8051
platform.

We then used the Tiger reference test vectors as
input to all three hash-functions and timed the number
of cycles needed for processing a single block (that
is, 64 Bytes or 512 Bits, respectively, for all hash-
functions analyzed). Table 1 gives an overview of our
results, while Table 2 compares the code sizes for the
three implementations.

Our results show that, barring any optimizations
but the most obvious ones, even a hash-function de-
signed for 64-bit machines like Tiger can achieve
acceptable performance on an 8051 microcontroller.
The bad results for Grøstl are surprising yet will be
optimized during the next steps, at least on an AT-
mega163 Grøstl has already been shown to perform
very favorably. Again, our focus in this first round
was only on a comparison of unoptimized versions of
the algorithms, ported straightforward from the refer-
ence implementations.

Table 1: Number of cycles per 64-byte input block.

Hash cycles/block
Tiger 193,944

SHA-1 561,589
Grøstl-256 2,813,496

Table 2: Code size after compilation , optimized forspeed.

Hash Code Size in kB
Tiger 85.332

SHA-1 58.936
Grøstl-256 89.880

4 OUTLOOK

We performed a preliminary performance analysis of
three hash functions from different domains (one de-
signed for 64-bit machines, the current standard, and
one SHA-3 finalist) on a TI CC2530 sensor node, us-
ing an 8051 microcontroller. Our main goal was to
answer the question whether a more or less arbitrarily
selected, secure cryptographic hash-function can be
implemented on a sensor node, heavily constrained
in terms of available memory and processing power,

Hash�Algorithms�for�8051-based�Sensornodes

67



without extensive optimizations and still achieve ac-
ceptable performance.

The first results are promising, although there is
still a lot of work to be done: in addition to imple-
menting the remaining four SHA-3 finalists, we cur-
rently investigate the use of the sensornodes’ AES co-
processor to implement and speed up AES-based hash
constructions, with the final goals of identifying an ef-
ficient, secure cryptographic hash-function apart from
SHA-1 that can be used as a primitive building block
of a security framework for wireless sensor networks
and giving a general indication how much effort has
to be put into optimizing a chosen hash-function for
constrained environments.

REFERENCES

Anderson, R. and Biham, E. (1996). Tiger: A fast new hash
function. InFast Software Encryption, Third Interna-
tional Workshop Proceedings, pages 89–97. Springer-
Verlag.

Bertoni, G. and Daemen, J. and Peeters, M. and Assche,
G. v. (2011). The keccak reference.

Bos, J. W.,Özen, O., and Stam, M. (2011). Efficient hash-
ing using the aes instruction set. InProceedings of
the 13th international conference on Cryptographic
hardware and embedded systems, CHES'11 , Lecture
Notes in Computer Science, pages 507–522. Springer-
Verlag.

Eastlake, D. and Jones, P. (2001). Rfc3174 - us secure hash
algorithm 1 (sha1).

Ferguson, N. and Lucks, S. and Whiting, B. S. D. and Bel-
lare, M. and Kohno, T. and Walker, J. C. J. (2008).
The skein hash function family.

Gauravaram, P. and Knudsen, L. R. and Matusiewicz, K.
and Mendel, F. and Rechberger, C. and Schlffer, M.
and and Thomsen, S. S. (2011). Grøstl - a sha-3 can-
didate.

Jean-Philippe Aumasson and Luca Henzen and Willi Meier
Raphael C.-W. Phan (2010). Sha-3 proposal blake.

Manuel, S. (2011). Classification and generation of distur-
bance vectors for collision attacks against sha-1.Des.
Codes Cryptography, 59(1-3):247–263.

NIST (2002). Secure hash signature standard (shs) (fips pub
180-2). Technical report, National Institute of Stan-
dards and Technology.

Wu, H. (2011). The hash function jh.

DCNET�2012�-�International�Conference�on�Data�Communication�Networking

68


