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Abstract: In the paper application of constrained predictive control to multi input, multi output system is presented. 

The method is based on feedback linearization and LQ control. Constraints of the system are implemented 

by interpolation of reference trajectory. Finding solution is a compromise between the unconstrained LQ 

control and a constrained feasible control and is executed by minimization of one variable. The application 

of the method to a two link manipulator is used to present advantages and limitations of the algorithm. 

1 INTRODUCTION 

Feedback linearization is a powerful technique that 

allows to obtain linear model with exact dynamics 

(Isidori, 1985), (Slotine and Li, 1991). Linear 

quadratic control is well known optimal control 

method and with its dynamic programming 

properties can be also easily calculated (Anderson & 

Moore, 1990). The combination of feedback 

linearization and LQ control has been used in many 

algorithms in Model Predictive Control applications 

for many years and it is used also in present papers 

(He De-Feng et al., 2011), (Margellos and Lygeros, 

2010). Another problem apart from finding the 

optimal solution on a given horizon (finite or 

infinite) is the constrained control. A method which 

use the advantages of feedback linearization, LQ 

control and applying signals constraints was 

proposed in (Poulsen et al., 2001). It rely in every 

step on interpolation between the LQ optimal control 

and a feasible solution – the solution that fulfils 

given constraints. A feasible solution is obtain by 

taking calculated from LQ method optimal gain for a 

perturbed reference signal. The compromise 

between the feasible and optimal solution is 

calculating by minimization of one variable – the 

number of degrees of freedom in prediction is 

reduced to one variable. 

2 THE TWO LINK 

MANIPULATOR SYSTEM 

The considered system is the two link manipulator 

(fig.1). It consists of two rigid links and two one 

degree-of-freedom wrists, whose motion is in the 

vertical axis. The objective of control is to move the 

clutch of the manipulator from one position in two 

dimensional space to the other. The output variables 

are the two angles y1=x1 and y2=x2. The coordinates 

of the clutch can be obtained from kinematics 

equations (1)  

                        

                        
(1) 

 

Figure 1: The two link manipulator system. 

The dynamics of the system is represented by below 

equations (2) 

 ̇     

 ̇     
 ̇                                     
 ̇                                     

(2) 
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where x1 and x2 are the angles, variables x3 and x4 are 

the respective angular velocities, d1, d2 are the 

lengths of the links. The input variables u1 and u2 are 

the moments of force in the wrists. Furthermore 

                                    
   

                            
  

(3) 

represents Coriolis and centrifugal forces and 

                     

                     
(4) 

are the friction forces approximated by smooth 

functions. The approximation is used to fulfil 

conditions of feedback linearization method. 

Masses and inertial forces are represented by M 

matrix, where 
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(5) 

The values of coefficients which appeared in 

equations (3-5) are listed in tab.1. 

Table 1: Coefficients of manipulator system. 

 link 1 link 2 

Ii[kg*m2] 1 1 

mi[kg] 10 5 

di[m] 1 0.7 

xci[m] 0.5 0.35 

yci[m] 0 0 

si[Nm] 0.1 0.1 

fi[kg*m2/s] 0.01 0.01 

In considered system input variables u1 and u2 are 

constrained by -1 and 1 Nm 

                

              
(6) 

2 CONTROL ALGORITHM 

2.1 Feedback Linearization 

Nonlinear equations of manipulator system are 

smooth and the system has full relative degree. The 

system has the same number of inputs and outputs. 

Feedback linearization of the system can be 

accomplished with diffeomorphism 

       [

  

  
  

  

] (7) 

and the new input variables 

                               

                               
(8) 

The inputs of the nonlinear system (2) are nonlinear 

functions of v1, v2 and the state x obtained from (8)  

               

               
(9) 

Consequently we obtain two identical linear systems 

 ̇    

 ̇    

     

   

 ̇    

 ̇    

     

 (10) 

for which the theory of linear control can be applied. 

2.2 Linear Quadratic Control 

Each of the two linear systems is discretized with 

sampling interval Ts. In order to track the change of 

set point the state is augmented by new variable with 

included reference signal wt and each system is 

described in form 
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The linear quadratic cost function can be written as 







tk

kk

T

kt RvJ ,
2

Qzz  (12) 

and the solution 

,ttyt wLv Lz  (13) 

where L is the optimal gain obtained from Riccati 

equation and   .0
T

dyL CL  

2.3 Constrained Predictive Control 

The system equation (11) can be used as model 

prediction equation to calculate the state for the 

samples t+1=(k,…,k+H-1), on horizon H in the time 

instant k. Constraints will be included into control 

law by interpolation method in every predicted step. 

It rely on using perturbed reference trajectory 

 ̃                (14) 

In place of reference trajectory in equations (11 and 

13). Then the prediction equation: 
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And the control predicted values: 
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,ˆˆ
|||| ktktyktykt pLwv zLL 

 

(16) 

Variable αk is calculated in instant k and is the same 

for every predicted states and inputs on H, pt|k for 

t=k,…,k+H-1 forms a vector pH|k.  αk  can adopt 

values from 0 to 1 and pH|k is chosen in that manner 

so the perturbed reference trajectory with αt=1 

provides feasible, satisfying constraints solution for 

the considered system. Whereas αt=0 corresponds 

with unconstrained control. The aim is to minimize 

variable αt on the horizon with respect to system 

equations (15,16) and constraints (6). Since the two 

systems (11) are considered, constrained values are 

the functions of two variables αk
I
 and αk

II
 through 

nonlinear equations (9) and (7) (linear in this 

example, but nonlinear in general). 

2.4 Feasible Trajectory 

The perturbation vector pH|k providing feasible 

solution can be obtain from previous k-1 step by 

.1|1|  kHkkH pp   (17) 

With calculated αt for the n=3 dimensional system 

(11) we can express the prediction equation from 

(15) with used (16) in form: 
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The initial perturbation pH|i for i at the beginning 

of control application is calculated by using zero as 

the reference signal and the initial state 

corresponding to the step of original reference 

signal. The method presented in (Poulsen et al., 

2001) of obtaining initial feasible perturbation 

provided too large absolute values of control v at the 

beginning of the predicted vector. The alternative 

method is used in the paper with minimization of vt 

as a function of pt in (20). 

For the state equation 

ttt pz ΓΦz 1
 (19) 

and initial z0 =-(zf– zk),where zf – final stable state z 

for wk+1, zk – initial state for control system, 

additional cost function is used 
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where 

tytt pLv  Lz  (21) 

then the cost function has form 
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with 
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j   (23) 

The optimal gain K obtained by minimization (22) is 

used to calculate initial perturbations pt|i, t=1,...H-1 

.|| ititp Kz  (24) 

Now we can describe the predicted variable zk+l and 

predicted control law vk+l as a functions of initial and 

final state, reference trajectory and one variable αk. 

In equations k=i+1 is used:
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where  

 ΓΦΓΓΦΛ 1 l

 

)(

)(

)(

)(

0

0
ˆ

1

0

1

|

kf

l

d

k

lk

k

k

d

k

l

klk

w

w

w

v

zz

ΓΦK

ΓΦK

ΓΦK

C
ΛL

C
ΛLzLΦ









































































































 (26) 

The linearized system of manipulator example (2) 

consists of two linear equations (10) therefore in the 

algorithm two prediction equations (25) and law 

equations (26) are used. To avoid problems with 

multivariable minimization it is assumed that αk is 

equal to both subsystems, αk
I
=αk

II
. 

3 PERFORMANCE OF THE 

ALGORITHM 

3.1 Simulations 

Simulations was performed for the change of output 

y1 from 1.0489 to -0.0716 [rad] and y2 from 0.9626 

to 1.9284 [rad]. This is equivalent to the change of 
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coordinates (a,b) from (0.2,1.5) to (0.8,0.6). The 

weight matrices in cost function (12) for both 

subsystems was chosen as Q=[0 0 0; 0 0 0; 0 0 1], 

R=0.001 hence the emphasize in the minimization of 

the difference between the set point and the output. 

Remaining variables of the vector z are weighted 

with 0, since constraints are coped while 

minimization of α. R has to be positive define hence 

the small value was chosen. The resulted trajectories 

satisfied constraints, variables are changing fast and 

without significant overshoot. Oscillations on inputs 

charts are the effect of small R.  

 

Figure 2: Output variable y1. 

 

Figure 3: Output variable y2. 

 

Figure 4: Input variable u1. 

 

Figure 5: Input variable u2. 

3.2 Variables as Functions of   

In simulations only constraints of the two inputs 

values was considered. In this section it can be seen 

that for the remaining variables (the variables of 

state x) can be considered constraints. The idea of 

the algorithm is that by decreasing α the absolute 

variables of inputs and consequently variables of 

state are higher, the possibility of violating 

constraints is greater. On figures (6-11) this 

dependence of state variables and input on α is 

presented.  

 

Figure 6: Output variable y1 in dependence on α. 

 

Figure 7: Output variable y2 in dependence on α. 

 

Figure 8: Input variable u1 in dependence on α. 

 

Figure 9: Output variable u2 in dependence on α. 
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Figure 10: State variable x3 in dependence on α. 

 

Figure 11: State variable x4 in dependence on α. 

3.3 System with Coordinates as 
Outputs 

In order to present that the algorithm is not valid for 

every feedback linearizable system of smooth 

function the implementation of manipulator system 

with different outputs was prepared. In this section 

the outputs represents coordinates of the system that 

is y1=a, y2 =b. Then the system equations 

 ̇     

 ̇     

 ̇                                     

 ̇                                     

 ̇                                  

 ̇                                 

(27) 

The feedback linearization will be accomplished by 

diffeomorphism 

     

                                   

     

                                  

(28) 

And new inputs     ̇ ,     ̇ . 

Two linear systems are obtained as in (10). The 

system (21) has relative degree r=4, therefore there 

are 4 variables the linear system and two additional 

variables [z5 z6]
T
=Ti(x) has to be chosen. They have 

to satisfy (Isidori, 1985), (Slotine & Li, 1991) equation 

 

  
              (29) 

One of the possible choice is 

      

         
(30) 

The system (21) with performed linearization (22-

24) and used presented algorithm is not working 

properly. The reason for this is that the dependence 

of some variables on α is not monotonic as can be 

seen on figures (12-17).  

 

Figure 12: Output variable y1 in dependence on α. 

 

Figure 13: Output variable y2 in dependence on α. 

 

Figure 14: The variable x1 in dependence on α. 

 

Figure 15: The variable x2 in dependence on α. 
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Figure 16: Input variable u1 in dependence on α. 

 

Figure 17: Input variable u1 in dependence on α. 

In this case variables x2 and u1 changes in the 

undesirable manner as α increases. The main reasons 

for this result is the chosen variable z6=x1+x2 and 

that nonlinear functions described inputs (9) are 

fractions with nonlinear denominator dependent on 

α. 
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