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Abstract: In this paper, we introduce an implementation of the attribute selection algorithm, Correlation-based Feature 
Selection (CFS) integrated with our k-nearest neighbour (k-NN) framework. Binary neural networks 
underpin our k-NN and allow us to create a unified framework for attribute selection, prediction and 
classification. We apply the framework to a real world application of predicting bus journey times from 
traffic sensor data and show how attribute selection can both speed our k-NN and increase the prediction 
accuracy by removing noise and redundant attributes from the data. 

1 INTRODUCTION 

Prediction is the assumption that the future trend of 
variations in the value of a time-series variable will 
mirror the trend of variations in the value of the 
same variable for similar historical time-series. 
There is a wide variety of prediction algorithms 
including: ARCH (Engle, 1982), ARIMA (Box and 
Jenkins, 1970), neural networks (Bishop, 1995) and 
support vector machine regression (Brucker et al., 
1997). The prediction algorithms typically have two 
phases of operation: a training phase where the 
algorithm learns a representation of the data and a 
prediction phase where the algorithm generates 
predictions for new records using the learned model. 

For prediction, the quality of the input data is 
critical; redundant and irrelevant attributes can slow 
execution and reduce accuracy. Redundant attributes 
also push the data to the tails of the distribution as 
the higher dimensionality spreads the data’s convex 
hull. Attribute selectors reduce the dimensionality of 
data by selecting a subset of attributes (Kohavi and 
John, 1997). They remove irrelevant and redundant 
information, reduce the size of the data and clean it. 
This allows machine-learning algorithms such as 
predictors to operate more effectively. 

There is a wide variety of attribute selection 
including: Correlation-based Feature Selection (Hall, 
1998); Information Gain (Quinlan, 1986); Chi-
square Selection (Liu and Setiono, 1996); and, 
Support Vector Machines Selection (Guyon et al., 

2002). There are two approaches for attribute 
selection (Kohavi and John, 1997). Filters are 
independent of the actual algorithm and tend to be 
simple, fast and scalable. Wrappers use the 
algorithm to select attributes. Wrappers can produce 
better performance than filters as the attribute 
selection process is optimised for the particular 
algorithm. However, they can be computationally 
expensive for high dimensional data as they must 
evaluate many candidate sets using the classifier. 

Attribute selection is often used in conjunction 
with data mining algorithms such as k-NN. K-NN is 
a widely used algorithm (Cover and Hart, 1967); 
(Hodge, 2011) that examines vector distances to 
determine the nearest neighbours. However, 
standard k-NN is computationally slow for large 
datasets. We have previously developed a binary 
neural network-based k-NN (Hodge and Austin, 
2005) using the Advanced Uncertain Reasoning 
Architecture (AURA) framework. It is efficient and 
scalable, being up to four times faster than the 
standard k-NN (Hodge et al., 2004). We extended 
AURA k-NN to prediction in Hodge et al., (2011). 

The main contribution of this paper is to: 
introduce the CFS attribute selector into the AURA 
k-NN framework and demonstrate the attribute 
selector’s utility for prediction on a real world 
problem. Using attribute selection with prediction to 
reduce the data size will further speed processing. 
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2 AURA 

AURA (Austin, 1995) is a set of methods for pattern 
recognition. AURA is ideal to use as the basis of an 
efficient k-NN predictor as it is able to partial match 
during retrieval so it can rapidly find records that are 
similar to the input – the nearest neighbours.   It has 
a number of advantages over standard neural 
networks including rapid one-pass training, high 
levels of data compression, network transparency 
and a scalable architecture. These are enhanced with 
our robust data encoding method to map numeric 
attributes onto binary vectors for training and recall. 

2.1 Time-series 

To estimate bus journey times, the system must 
incorporate a time component. In this paper, the 
vectors represent time-series of spatially-distributed 
sets of traffic sensors. To produce the time-series 
vector Xj, we buffer each sensor’s readings for a 
preset time interval PT and concatenate the buffers 
to form the time series Xj

TS. Buffering always 
preserves the temporal ordering of the data. Xj

TS is  
{ x1t-2, x1t-1, x1t, x2t-2, … ,xyt-2, xyt-1, xyt} for PT of three 
time slices {t-2, t-1, t} and y sensors.   

2.2 Learning 

AURA uses binary input I and output O vectors to 
store records in a CMM, M as in fig. 1. First, any 
numeric attributes must be quantised (binned) as the 
data to be trained into the CMM is binary. 
Quantisation maps a range of input values for 
attribute a onto each bin. Each individual bin maps 
to a unique integer. This identifies the bit to set in 
the AURA input vector and a unique row in the 
CMM (see Hodge and Austin (2005) for details). 

Equi-width quantisation subdivides each attribute 
into b equal width bins across its range of values. 
The even widths of the bins ensures that the inter-bin 
distances are all equivalent and that the quantised 
data can be used to approximate the Euclidean 
distance. Once the bins and integer mappings have 
been determined, we map the records onto binary 
vectors to train into the CMM during learning. Each 
binary vector represents a pattern from the data set.  

For an attribute with five bins, the five binary 
representations are then bin0 = 00001, bin1 = 00010, 
bin2 = 00100 etc. The bins corresponding to the data 
values in Xj

TS are set to 1 and all other bins are set to 
0. The binary representations for all attributes and 
their respective time slices are concatenating to form 
Ij. Thus, Ij is a learning pattern stored in the CMM to 

allow the particular record to be stored and indexed. 
The CMM, M, is initialised with all weights set 

to 0. Training stores the binary patterns for all N 
records in the data set in M. Each binary pattern Ij is 
associated with a unique identifier pattern Oj. Each 
Oj has a single bit set to index a unique column in M 
and to uniquely index Ij. At each training step, any 
matrix elements excited by both the input and output 
patterns are set to 1. This process is given in eq. 1. 
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2.3 Recall 

AURA recall is the dot product of a recall input 
vector Rk and M. Rk may be either a binary vector or 
an integer vector. For prediction, we use an integer 
vector to allow us to emulate Euclidean distance. For 
attribute selection (described later), we use a binary 
vector to count attribute values and co-occurrences. 

For prediction, the integer recall vector Rk is 
generated for each new query using a set of 
concatenated parabolic kernels. The kernels 
represent scores which decrease in value with the 
distance from the query value and emulate Euclidean 
distance (see (Hodge and Austin, 2005) for details). 
Each kernel is centred on the bin representing each 
attribute value for the query record so that bin 
receives the highest score (the dotted values in Fig. 
1). The best matching historical records will receive 
the highest scores. Rk is applied to M to retrieve the k 
best matches and the values in Rk multiply the rows 
of the matrix as in eq.2 and Fig. 1. The columns of 
M are summed according to the values on the rows 
indexed by Rk multiplied by the CMM weights to 
produce a summed output vector Sk as given in eq. 2. 

 

MkR
T
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In Fig. 1, rows 0 to 4 represent traffic sensor 
Sensor1, the variable is vehicle flow and the time 
slice within the time-series is t-2. For row 4, 
columns 2 and 3 (indexing from 0 on the left) score  
9 as the set bits in columns 2 and 3 align with the 
score of 9 for row 4. In contrast, column 0 receives a 
score of 0 as the set bit in column 0 aligns with row 
0 which scores 0 from the recall pattern Rk. 

For partial matching, we use L-Max thresholding 
which retrieves at least L top matches. It finds the L 
highest values in the output vector Sk and sets the 
corresponding vector element to one in the binary 
output vector Tk. For AURA k-NN, L is set to the 
value of k; the number of nearest neighbours. 
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Figure 1: Diagram showing the application of kernels to a 
CMM to find the nearest neighbours. The retrieval input 
vector Rk is produced by applying kernels. The dot is the 
bin representing the query value for each attribute. AURA 
multiplies Rk*M, using the dot product, sums each column 
to produce Sk and thresholds Sk to produce Tk. 

2.4 Prediction 

We maintain a lookup table of values for the 
prediction attribute t+n time steps ahead for each 
historical record. After recall, AURA k-NN cross-
references the historical records from the set of 
column indices in Tk, sums the t+n attribute values 
for these matching columns and calculates the mean 
value for the prediction attribute n time steps ahead.  

3 ATTRIBUTE SELECTION 

In Hodge et al., (2006), we developed two attribute 
selection approaches in AURA: univariate Mutual 
Information (MI) and multivariate Probabilistic Las 
Vegas. MI selected the attributes up to 100 times 
faster when implemented using AURA compared to 
a standard technique. Here we develop another 
attribute selector in AURA. This will provide a 
range of attribute selectors so that the most suitable 
may be chosen for each application.  

3.1 CFS Selection 

Hall (1998) proposed the multivariate Correlation-
based Feature Subset Selection (CFS) which 
measures the association strength between pairs of 
attributes. The advantage of a multivariate filter such 
as CFS compared to a univariate filter such as MI 
lies in the fact that a univariate filter does not 
account for attribute interactions. Hall and Smith 
(1997) demonstrated that CFS chooses attribute 

subsets that improve the accuracy of common 
machine learning algorithms (including k-NN). 

3.1.1 Quantisation 

In AURA CFS, any numeric attributes (including 
class attributes) are quantised to map the data to 
AURA using Fayyad and Irani’s (1993) quantisation 
method which aims to minimise the entropy, see 
Hall (1998) for details. 

3.1.2 Symmetrical Uncertainty 

Hall and Smith (1997) use a revised information 
gain measure to estimate the correlation between 
discrete attributes. If a and b are discrete random 
attributes, the entropy for all records in the training 
data set for value i of attribute a is given by eq. 3: 
 





ai

ipipaEnt ))((2log)()(  (3)
 

The data values of a can be partitioned according to 
the values of the second attribute b. If the entropy of 
a with respect to the partitions induced by b is less 
than the entropy of a prior to partitioning then there 
is a correlation (information gain) between attributes 
a and b, this is given in eq. 4 and 5 where i and j are 
attribute values of attributes a and b respectively. 
 








ai

jipjip
bj

jpbaEnt ))|((2log)|()()|( (4)
 

)|()(),( baEntaEntbaGain   (5)
 

Information Gain is biased toward attributes that 
have a larger number of data values. Hence, Hall and 
Smith (1997) use symmetrical uncertainty (SU) to 
replace information gain as given by eq. 6. 
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3.2 Mapping CFS to AURA 

For attribute selection, the class values are also 
trained into the CMM as extra rows; the class is 
treated as an extra attribute as shown in Fig. 2. 

AURA is used to calculate Ent(a), Ent(b) and 
Gain(a,b). Ent(a) is based on the calculation of the 
total count of data records for a particular attribute 
value ai. AURA excites the row in the CMM 
corresponding to ai which produces a summed 
output vector as described in eq. 2 with a one for 
every record that has value ai. The total count is the 
count of the number of ones in Tk in Fig. 2. Ent(b) in 
eq. 6 calculates the total count of data records for a 
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particular attribute value bj as per ai. 

 

Figure 2: Diagram showing the use of the CMM for 
attribute selection. The class attribute is included. The 
retrieval input vector Rk is binary for attribute selection 
whereas Fig. 2 has an integer retrieval vector. The dot is 
the value for each attribute (a quantisation bin). 

Gain(a, b) is based on the calculation of Ent(a) 
and Ent(a|b). Ent(a|b) counts the number of co-
occurrences of ai with bj. AURA excites both CMM 
rows corresponding to ai and bj as in Fig. 2. Sk has a 
two in the column of every record with a co-
occurrence of ai with bj. By thresholding Sk at 2, we 
find all co-occurrences. The total co-occurrence 
count is the count of the number of ones in Tk. 

3.3 Selecting the Attribute Subset 

CFS uses Best First Forward Search (Hall, 1998) to 
search the attribute space, greedily adding individual 
attributes to the chosen subset. Search terminates 
when five consecutive fully expanded subsets show 
no improvement over the current best subset. 

4 JOURNEY TIME ESTIMATION 

We analyse our prediction framework to see if it 
could form part of a system to analyse mean bus 
journey times in York, UK. This system would 
provide an estimate of the level of congestion 
encountered by buses so other vehicles can be routed 
to less congested roads We plan to estimate the bus 
journey times using other traffic sensor data to plug 
the gaps when actual bus data is not available. 

To combine different bus routes along a road into 
an overall congestion estimate, we use journey time 
ratio. For buses, the bus journey time ratio is the 
journey time for a particular bus travelling the route 
between a particular pair of bus stops divided by the 
90th percentile historical journey time for that route. 

Mean journey time ratio is defined as the mean ratio 
across all buses travelling all routes along the road in 
a particular time period p as given by eq. 7. 
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Where bjt(r:,x,y) is the bus journey time for route r 
between stops x and y; bjt(r:x,y)

90 is the 90th percentile 
historical bus journey time for route r between stops 
x and y and N is the number of buses during the time 
period. Meanp will be <1 if the road is uncongested 
and ≥ 1 if the road is congested as bus journey times  
will exceed the 90th percentile journey times. 

The sensors on the roads in York output vehicle 
flow (the number of vehicles passing over the sensor 
during a specific time period). The sensor data forms 
a pattern of the current traffic conditions for a time 
period p which we associate with the bus journey 
time ratio meanp for the same time period p, using 
the data’s timestamps. AURA k-NN uses the sensor 
patterns as the input vectors and predicts the 
expected bus journey time ratio from the matching 
sensor pattern associations. 

5 EVALUATION 

The data comprises traffic sensor and inbound bus 
journey data from Fulford Road in York from 
05/10/2010 to 28/03/2011. There are ten sensors 
each generating a flow value every five minutes. We 
use 12 time steps representing one hour’s duration as 
our time series. There are five possible bus routes 
along the road section under investigation. Bus 
journeys are aggregated over five minute periods to 
match the periodicity of the traffic sensors. 

We only consider time periods when two or more 
buses departed the final stop to smooth any 
anomalous readings. The data have been cleaned by 
removing erroneous bus journey times (80 seconds ≤ 
valid ≤ 2400 seconds). The data are still very noisy 
but will allow a thorough test of the algorithms and 
configurations under evaluation. The data set has 
1932 records which we split 2/3 for training and 1/3 
for testing giving 1288 training records and 644 test 
records. We perform the attribute selection on 
training data only. Each algorithm’s parameters were 
optimised using only the training data: we evaluated 
a similar number of parameter sets for each 
algorithm for fairness. The test data was applied to 
each learned model to get the prediction accuracy. 
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We produced three data configurations: all 
records in chronological order (DataSet1); all 
records in alphabetical order of date/time 
(DataSet2); and, all records in reverse alphabetical 
order of date/time (DataSet3). 

The evaluation compares the RMSE of a multi-
layer perceptron (MLP) used by Vlahogianni et al. 
(2005), a support vector machine (SVM) used by 
Labeeuw et al. (2009) and three configurations of 
the AURA k-NN: no time-series data (AURAnts); 
time-series length 12 (AURAts) and time-series 
length 12 but only the sensors selected by CFS 
(AURACFSts). For CFS, we split the class (meanp) 
into two bins (as in Fig. 2), if meanp <1 then map to 
binuncongested otherwise map to bincongested. 

Each algorithm was applied to the three data sets 
using all attributes unless stated and a mean RMSE 
was calculated across the three data sets. The results 
are listed in table 1. In table 2, we compare the 
RMSE of the algorithms using just the chronological 
(true) order, DataSet1. Table 3 lists the parameter 
settings for AURA k-NN using CFS across the three 
data sets to demonstrate whether the variation in 
parameters is needed. Table 4 lists the training times 
on all of DataSet1 for AURA k-NN and AURA k-
NN learning only the attributes selected using CFS.  

6 RESULTS 

We examine the attributes selected and the 
prediction accuracy of the various algorithms next. 

6.1 Attribute Selection 

For the three data sets, CFS selected: 
DataSet1: Sensor3, Sensor6, Sensor9 
DataSet2: Sensor1, Sensor2, Sensor3, Sensor6 
DataSet3: Sensor3, Sensor6, Sensor9 

CFS has reduced the data dimensionality from 10 
sensors to 3 for two of the data configurations and 
reduced the dimensionality to 4 for the other. This 
will speed both training and prediction for k-NN. 
The subsets for DataSet1 and DataSet3 are identical 
and sensors 3 and 6 are present in all subsets 
indicating some consistency. This data is noisy and 
temporal data is likely to have trends. These will 
affect the data when it is split into train and test sets 
which may explain the differences in DataSet2. Next 
we evaluate the prediction accuracy to ensure that 
this dimensionality reduction has not compromised 
the accuracy. 

6.2 Prediction Accuracy 

Table 1: Table comparing the mean RMSE (RMSEµ) for 
the prediction algorithms over the three data sets. The 
highest prediction accuracy is shown in bold. 

Algorithm MLP SVM AURAnts AURAts AURACFSts 
RMSEµ 0.1795 0.1722 0.1799 0.1750 0.1709 

Table 2: Table comparing the mean RMSE (RMSEµ) for 
the algorithms over the chronologically ordered DataSet1. 
The highest prediction accuracy is shown in bold. 

Algorithm MLP SVM AURAnts AURAts AURACFSts 
RMSEµ 0.1826 0.1626 0.1695 0.1671 0.1603 

Tables 1 and 2 show that CFS attribute selection 
coupled with time-series data improves the 
prediction accuracy of AURA k-NN. Thus, CFS has 
both reduced the dimensionality and increased the 
accuracy. Only the AURA k-NN using CFS attribute 
selection is able to outperform the SVM benchmark. 

6.3 Parameters 

Table 3: Table listing the parameter settings for AURACFSts 
across the three data sets. The three parameter variables 
are the number of neighbours retrieved (k), the number of 
quantisation bins and the range of values for quantisation. 

Dataset K value Bins Range 
1 19 15 [0, 120] 
2 24 15 [0, 120] 
3 14 11 [0, 120] 

 

Table 3 shows that across the three data sets the 
AURA k-NN parameters require tuning to maximise 
prediction accuracy. This variation also applied to 
the parameters of both the MLP and SVM. It is 
important that a prediction algorithm can perform 
this optimisation quickly and efficiently. Using CFS 
to reduce the data dimensionality will speed the 
parameter optimisation further as shown in table 4. 
Both standard MLPs and SVMs are slow to train as 
they require multiple passes through the data. Zhou 
et al. (1999) determined that the AURA k-NN trains 
up to 450 times faster than an MLP. 

6.4 Training Time 

For AURA k-NN, the training time contributes the 
bulk of the processing time whereas retrieving the 
matches is much quicker (Hodge et al., 2004). Using 
attribute selection prior to training reduces the 
training time by almost half by reducing the data 
size. Attribute selection is a one off cost whereas the 
AURA CMM must be trained each time the system 
is started so the key is minimising the training time. 
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Table 4: Table comparing the mean training time for 
AURA k-NN using time-series data compared to AURA 
k-NN with CFS on the same data. The mean was 
calculated over five runs. 

 AURAts AURACFSts 
Training time (secs) 0.30 0.17 

7 CONCLUSIONS 

In this paper, we have introduced a unified 
framework for attribute selection and prediction. 
Classification is also available in the framework 
(Hodge and Austin, 2005); (Krishnan et al., 2010).  

Previously, we demonstrated two attribute 
selection approaches in AURA (Hodge et al., 2006). 
We have now added the multivariate CFS selector 
which is based on entropy. No attribute selector 
excels on all data or all tasks so we need a range of 
selectors to select the best for each task. We showed 
that CFS improved the prediction accuracy of the 
AURA k-NN on the real world task of bus journey 
prediction. We demonstrated that using attribute 
selection to reduce the dimensionality reduces the 
training time allowing larger data to be processed. 

The AURA framework described is flexible and 
easily extended to other attribute selection 
algorithms. Ultimately, we will provide a parallel 
and distributed data mining framework for attribute 
selection, classification and prediction drawing on 
our previous work on parallel (Weeks et al., 2002) 
and distributed AURA (Jackson et al., 2004). 
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