Feature Extraction and Classification of Biosignals - Emotion Valence Detection from EEG Signals

A. M. Tomé, A. R. Hidalgo-Muñoz, M. M. López, A. R. Teixeira, I. M. Santos, A. T. Pereira, M. Vázquez-Marrufo, E. W. Lang

2013

Abstract

In this work a valence recognition system based on electroencephalograms is presented. The performance of the system is evaluated for two settings: single subjects (intra-subject) and between subjects (inter-subject). The feature extraction is based on measures of relative energies computed in short time intervals and certain frequency bands. The feature extraction is performed either on signals averaged over an ensemble of trials or on single-trial response signals. The subsequent classification stage is based on an ensemble classifier, i. e. a random forest of tree classifiers. The classification is performed considering the ensemble average responses of all subjects (inter-subject) or considering the single-trial responses of single subjects (intra-subject). Applying a proper importance measure of the classifier, feature elimination has been used to identify the most relevant features of the decision making.

References

  1. Bradley, M. M. and Lang, P. J. (2007). The International Affective Picture System (IAPS) in the Study of Emotion and Attention. In Bradley, M. M. and Lang, P. J., editors, Handbook of emotion elicitation and assessment, Series in Affective Science, chapter 2, pages 29-46. Oxford University Press.
  2. Breiman, L. (2001). Random forests. Mach. Learn., 45:5- 32.
  3. Calvo, R. A. and D'Mello, S. (2010). Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Transactions on Affective Computing, 1(1):18-37.
  4. Delorme, A. and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134:9-21.
  5. Frantzidis, C. A., Bratsas, C., Klados, M. A., Konstantinidis, E., Lithari, C. D., Vivas, A. B., Papadelis, C. L., Kaldoudi, E., Pappas, C., and Bamidis, P. D. (2010). On the classification of emotional biosignals evoked while viewing affective pictures: An integrated data-mining-based approach for healthcare applications. Information Technology in Biomedicine, IEEE Transactions on, 14(2):309-318.
  6. Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Mach. Learn., 46(1-3):389-422.
  7. Haag, A., Goronzy, S., Schaich, P., and Williams, J. (2004). Emotion recognition using bio-sensors: First steps towards an automatic system. In André, E., Dybkjae r, L., Minker, W., and Heisterkamp, P., editors, Affective Dialogue Systems, volume i, pages 36-48. Springer.
  8. Hidalgo-Munoz, A., López, M., Santos, I., Pereira, A., Vázquez-Marrufo, M., Galvao-Carmona, A., and Tomé, A.M. (2012). Application of SVM-RFE on EEG signals for detecting the most relevant scalp regions linked to affective valence processing. Expert Systems with Applications, in press(0).
  9. Jaiantilal, A. (2010). http://code.google.com/p/randomforestmatlab/
  10. Kim, K. H., Bang, S. W., and Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical & Biological Engineering & Computing, 42(3):419-427.
  11. Klados, M. A., Frantzidis, C., Vivas, A. B., Papadelis, C., Lithari, C., Pappas, C., and Bamidis, P. D. (2009). A Framework Combining Delta Event-Related Oscillations (EROs) and Synchronisation Effects (ERD/ERS) to Study Emotional Processing. Computational intelligence and neuroscience, 2009:549419.
  12. Lang, P., Bradley, M., and Cuthbert, B. (2008). International affective picture system (IAPS): Affective ratings of pictures and instruction manual.
  13. Macas, M., Vavrecka, M., Gerla, V., and Lhotska, L. (2009). Classification of the emotional states based on the EEG signal processing. In 2009 9th International Conference on Information Technology and Applications in Biomedicine, number November, pages 1-4. IEEE.
  14. Mathworks (2012). http://www.mathworks.com/help/signal /ref/filtfilt.html
  15. Olofsson, J. K., Nordin, S., Sequeira, H., and Polich, J. (2008). Affective picture processing: an integrative review of ERP findings. Biological Psychology, 77(3):247-265.
  16. Picard, R. W., Vyzas, E., and Healey, J. (2001). Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10):1175- 1191.
  17. Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6):1161- 1178.
  18. Schaaff, K. and Schultz, T. (2009). Towards emotion recognition from electroencephalographic signals. In 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, pages 1-6. IEEE.
Download


Paper Citation


in Harvard Style

M. Tomé A., R. Hidalgo-Muñoz A., M. López M., R. Teixeira A., M. Santos I., T. Pereira A., Vázquez-Marrufo M. and W. Lang E. (2013). Feature Extraction and Classification of Biosignals - Emotion Valence Detection from EEG Signals . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013) ISBN 978-989-8565-36-5, pages 54-60. DOI: 10.5220/0004233100540060


in Bibtex Style

@conference{biosignals13,
author={A. M. Tomé and A. R. Hidalgo-Muñoz and M. M. López and A. R. Teixeira and I. M. Santos and A. T. Pereira and M. Vázquez-Marrufo and E. W. Lang},
title={Feature Extraction and Classification of Biosignals - Emotion Valence Detection from EEG Signals},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)},
year={2013},
pages={54-60},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004233100540060},
isbn={978-989-8565-36-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)
TI - Feature Extraction and Classification of Biosignals - Emotion Valence Detection from EEG Signals
SN - 978-989-8565-36-5
AU - M. Tomé A.
AU - R. Hidalgo-Muñoz A.
AU - M. López M.
AU - R. Teixeira A.
AU - M. Santos I.
AU - T. Pereira A.
AU - Vázquez-Marrufo M.
AU - W. Lang E.
PY - 2013
SP - 54
EP - 60
DO - 10.5220/0004233100540060