
UMOC – A C Library for Clients of ONVIF Network Video
Transmitters

Library Design and Device Discovery Support

Sérgio F. Lopes1, Sérgio Silva2, José Cabral1 and João L. Monteiro1
1Centro Algoritmi, School of Engineering, University of Minho, Guimarães, Portugal

2

Keywords: Video Surveillance and Control, ONVIF, SOAP, WS-Discovery, WS-Security, Web Services, NVT.

Abstract: Video surveillance and control systems are becoming increasingly important as video analysis techniques
evolve. The interoperability of IP video equipment is a critical problem for surveillance systems and other
video application developers. Open Network Video Interface Forum (ONVIF) is one of the two
specifications addressing the standardization of networked devices interface, but it is a complex
specification and difficult to implement. This paper describes a library that helps to develop clients of
ONVIF video cameras, by taking advantage of opportunities to abstract useless details and to provide
higher-level functionalities. The library architecture is explained and it is shown how it can be used to
implement operations and features that present challenges to developers. The module supporting Device
Discovery is addressed. We demonstrate how the library reduces the complexity, without affecting
flexibility. The work presented has been validated by an industry partner.

1 INTRODUCTION

Since Internet Protocol (IP) digital cameras became
less expensive, video surveillance and control
systems are becoming increasingly important as
video analysis techniques evolve. Furthermore, this
equipment comes with digital outputs and inputs,
allowing more integration of control and automation
functions through the same network interface.

However, IP video cameras differ in a variety of
ways, from provided features, to network
configuration, user management, video
encoding/compression schemes, supported network
protocols, etc. The software interface offered by
manufacturers to configure and use this diversity of
features also varies. In this scenario, interoperability
becomes a serious challenge, with numerous
shortcomings for everyone (end users, integrators,
and manufacturers). To tackle the problem, two
industry groups – the Open Network Video Interface
Forum (ONVIF) and the Physical Security
Interoperability Alliance (PSIA) – were formed,
with the goal of standardizing IP video surveillance.
Both groups came out with specifications, both
based on web services.

Web Services (WS) enable machine
interoperability over a network by defining a
standard way to describe service operations, data
format and network protocol. Usually they are based
on open and well-established standards such as
HTTP for information transport and XML for data
serialization. Two main approaches exist: REST-
compliant and SOAP-based WSs. PSIA follows the
former (PSIA, 2011), while ONVIF follows the
latter (ONVIF, 2012). They have two other main
differences: PSIA has a broader scope, addressing
systems-level concerns like access control, while
ONVIF is more focused on the device-level
functionalities; and, ONVIF is built on WS
standards and specifies more constraints than PSIA.
For example, the former uses WS-BaseNotification
(OASIS, 2006a) for events, while the latter defines
only the format of message headers but not the
bodies. The current PSIA vagueness means more
complexity for implementing interoperability.

Our work focuses on ONVIF, which adopts a
significant number of web standards (e.g., WSDL,
SOAP, WS-Discovery (Beatty et al., 2005)) and
consists of several specifications. Consequently, it is
not trivial to implement, and to get acquainted with
all specification details. Moreover, some ONVIF

409F. Lopes S., Silva S., Cabral J. and L. Monteiro J..
UMOC – A C Library for Clients of ONVIF Network Video Transmitters - Library Design and Device Discovery Support.
DOI: 10.5220/0004489404090416
In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2013), pages 409-416
ISBN: 978-989-8565-71-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

specifications have a significant level of complexity
by themselves. This scenario applies to both service
provider and consumer development, and our
experience in using cameras from manufacturers not
involved in ONVIF specifications shows that they
are still making progress towards full support. We
address the difficulties of developing applications
that are clients of video cameras, called Network
Video Transmitters (NVT) in ONVIF, namely by
means of a library.

In the literature, there are few works involving
ONVIF. The more focused ones (Senst et al., 2011);
(Yi-Hsing et al., 2011) describe parts of ONVIF and
particular applications. They do not address the
difficulties of implementing an ONVIF library that
provides generic functionality to help to develop
NVT client applications. To our knowledge, ONVIF
Device Manager (Synesis, 2013) has the only non-
proprietary library available. It is an open source C#
library to manage NVT devices that comes with a
demo application. However, its API mirrors ONVIF
operations, not offering a higher-level API easier to
use. Additionally, industrial applications seek to
increase efficiency, to raise competitiveness and
mark a position on markets. So, computational
performance and resource usage is very important
and non-interpreted programing languages have
advantages in this matter.

This paper introduces a C library supporting the
development of NVT clients. The library was
developed for an industry partner that integrates IP
cameras to produce a complete line of surveillance
equipment. The main contributions are (1) the
library design and (2) an API that is much simpler
than a direct reflection of ONVIF commands, (3)
without affecting flexibility. More specifically, this
is achieved by taking advantage of several
opportunities, namely (4) abstract useless details, (5)
make use of context, (6) provide higher-level
functionalities, and (7) normalize some ONVIF
aspects. We demonstrate how the library reduces the
complexity by exemplifying how it supports the
implementation of operations and features that
present more challenges to developers.

In the next section ONVIF is briefly introduced,
and its relevance for control and automation systems
based on video is explained. The library architecture
is explained in section 3. In section 4 we describe
the API of Device Discovery module. The paper
ends with sections 5 and 6 which respectively
summarize the results and conclusions.

2 ONVIF OVERVIEW

ONVIF functions are defined as SOAP operations.
Core specification (ONVIF, 2012), contextualizes
the usage of WS-Discovery, WS-Security (OASIS,
2012a) and WS-BaseNotification, and defines
Device Management (DM) and Event services.
Other specifications define a single service. Besides
NVTs, ONVIF devices are classified in types – NV
Display, NV Storage and NV Analytics – for which
a set of mandatory (M), mandatory if the device has
a related feature (C), and optional (O) services are
defined. A NVT device has the following set of
services: M = {Device Management, Event, Media,
Streaming, Device IO}, C = {PTZ}, and O =
{Imaging, Video Analytics}.

Services’ operations are protected by user
authentication and a security policy. Authentication
credentials should be provided at either the
transport-level (HTTP), using Digest Access
Authentication (IETF, 1999), or the message-level
(SOAP), using any token profile defined by WS-
Security. Servers shall at least support the WS-
Security UsernameToken Profile (OASIS, 2012b),
which requires clients to send the username of an
existing account and respective password digest.

ONVIF enables the development of automation
systems based on NVTs, wherein the controller is a
client. The input of such systems can be both video
and digital inputs, and the control can be made
through NVT relay outputs or any other devices. The
detection of actuation scenarios can be made by
processing video streams at either ONVIF clients or
NVTs supporting the optional Video Analytics
service. NVT’s inputs sensing and outputs command
is made through the mandatory Device IO service.
Asynchronous real-time control can be implemented
by using the Event service. This service enables the
subscription of input and Video Analytics events
that, when detected by NVTs, are automatically sent
to the client controller (using Basic Notification
Interface (OASIS, 2012a); (ONVIF, 2012). Events
can also be received on request (using Real-time
Pull-point Notification Interface (ONVIF, 2012) and
through metadata streaming (Notification Streaming
Interface (ONVIF, 2012).

3 LIBRARY DESIGN

UMOC is a C library that provides functions to
manage ONVIF NVT devices. Figure 1 introduces
the library, showing how it is built and its

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

410

Figure 1: UMOC library development and integration in
client applications.

integration with application code. We have used
gSOAP toolkit (Engelen and Gallivan, 2002) to
develop the library, see (Lopes, 2013) for more
information. It is built on top of ONVIF client stubs
generated by gSOAP and plugins supporting base
web services (e.g., WS-Discovery, WS-Security)
from different organizations.

The library is composed of several modules, each
of which implements the features of an ONVIF
service, see figure 2. This approach does not require
applications to include all UMOC code, gives
structure and simplifies the library architecture, and
makes it easier to maintain individual services. The
exception is UMOC_Core, which is a module
common to all services. The application must always
include UMOC_Core.h, and others header files
according to the desired services.

To simplify usage without losing flexibility and
options, the library is designed in two layers: High
Level (HL) and Low Level (LL).

3.1 Low-Level Layer

LL functions invoke stubs (see figure 3) but provide
a higher level API much easier to use. They abstract
several details (including gSOAP, in its totality), by
handling internally and hiding the parameters:
 SOAP context and message action (which are

respectively the 1st and 3rd parameters of all
stubs); and,
 empty requests and responses; and automating a

set of crucial operations:
 verify mandatory request data before calling any

stub (i.e., sending a message);
 add authentication; and,
 identify errors returned by stubs and register their

description.

UMOC

«Source»
Application.c

«link» «include» «include»
«optional»

«include» «include»

«Library»
libumoc.a

«File»
UMOC_Core.h

«File»
Onvif_<Services>.h

«File»
Stubs & Plugins.h

Figure 2: UMOC structure and usage.

Moreover, LL functions also abstract parts of
ONVIF messages, namely (optional) extensions and
a few other (mandatory) fields. Extensions allow
vendor specific functionalities to be provided and
also ONVIF to evolve while preserving backwards
compatibility (because they are optional). Therefore,
they are not supported by many devices (which is
the case of all that we have used). The library only
supports extensions that are used by ONVIF and are
important for automation and control, namely the
configurations concerning AudioOuput (of Media
profile). Other fields are, for example, the
mandatory UseCount of all Media configurations,
which are automatically updated. Consequently,
simplified structures are defined for function
parameters types, which in turn is an opportunity to
also shorten their generated name.

For example, consider the differences between
the stub and setNTP_LL functions, respectively in
figures 4 and 5. As mentioned earlier in this section,
stub’s context (1st), action (3rd) and empty response

UMOC Library

gSOAP Stubs & Plugins

HL
Variables

Error
Variables

HL
Functions

LL
Functions

LS Functions

getError
getErrorDetail

getOnvifErrorCodes

setHLDeviceAndUser

Client Application

(deviceAddress,
username,
password)

(deviceAddress,
username,
password,
simplifiedONVIFArgs...)

(simplifiedONVIFArgs...)

Figure 3: UMOC architecture.

UMOC�-�A�C�Library�for�Clients�of�ONVIF�Network�Video�Transmitters�-�Library�Design�and�Device�Discovery�Support

411

Figure 4: SetNTP stub and input parameters’ structure.

(5th) parameters are hidden, and credentials’
parameters are added to the library function for
authentication. (The 2nd stub parameter becomes the
1st parameter of setNTP_LL.) Besides this, stub’s
request (4th) parameter is a pointer to a structure that
contains three fields, respectively: indication to
update NTP server list via DHCP or manually,
number of manual servers, and an array with
servers’ identities. Each element of the latter is
another structure which contains: type of server
identity (IPv4, IPv6, or DNS), server address/name,
and optional extension. The setNTP_LL function
contrasts with such a complicated structure nesting
and indirections, by offering a minimalist set of
request parameters: number of servers, and array of
strings with addresses/names. This is possible
because setNTP_LL automatically detects each kind
of server identity that is passed to it (according to
RFC 1123 rules). The optional and (in this case)
non-standard extension is discarded. Hence, the
inner structure of stub parameter is replaced by a
single string. Furthermore, for the library function an
argument of zero servers means that DHCP should
be used, thus making redundant the DHCP/manual
boolean of stub’s parameter outer structure.

This way the function greatly simplifies the
interface by reducing the number and complexity of
parameters, and, in a smart way, it accordingly sets
the proper stub arguments.

In sum, LL functions offer the same
functionalities and freedom as stubs with several
advantages: much simpler interface, avoidance of
incomplete requests, automatic authentication and

Figure 5: setNTP_LL function.

registration of error descriptions.

3.2 High-level Layer

HL functions do not require the service address and
security credentials (username and password) to be
provided. For that purpose the setHLDeviceAndUser
function was introduced, which receives as
arguments a service address, username and
password, and stores them internally in HL
variables. This is illustrated in figure 3 that shows
the library architecture. setHLDeviceAndUser uses
its arguments to consult the capabilities of the
selected device and saves (in HL variables) the
address of each supported service (such as Event,
PTZ, etc.). Whenever a HL function is called by the
application, the library will use (from HL variables)
the proper service address, and username+password
as security credentials.

Since ONVIF has optional services, HL
functions check if the respective services are
provided by the selected device before sending any
requests (i.e., calling LL functions). For example, if
the application calls a function that uses PTZ and
capabilities do not include a PTZ service address, an
error is automatically returned, thus saving time and
network bandwidth.

It is also very important to validate requests’
content before sending any message. As mentioned
in previous section, LL functions check if mandatory
request data is present. HL functions go further, and
implement the validation of arguments whose values
depend on configuration options (of Media, Imaging
and PTZ services). HL functions that retrieve
possible options, store them in HL variables. HL
functions with input arguments containing
configuration options check if every option value is
valid. In case of invalid arguments, these functions
return an error and identify the argument. It should
be noted that LL functions cannot validate
configurations options, unless they request them,
because they operate with any camera (i.e., they do
not know what a selected device is), and thus cannot
store valid options.

To summarize, HL functions offer the most
simplified interface, maximum avoidance of

struct schema__NetworkHost {
 enum schema__NetworkHostType Type;
 char **IPv4Address;
 char **IPv6Address;
 char **DNSname;
 struct schema__NetworkHostExtension
 *Extension;
};

struct _device__SetNTP {
 enum xsd__boolean FromDHCP;
 int __sizeNTPManual;
 struct schema__NetworkHost *NTPManual;
};

int soap_call___device__SetNTP(
 struct soap *soap,
 const char *soap_endpoint,
 const char *soap_action,
 struct _device__SetNTP
 *device__SetNTP,
 struct _device__SetNTPResponse
 *device__SetNTPResponse);

int setNTP_LL (
 const char *devMgmtAddress,
 const char *user,
 const char *pass,
 int numOfManualServers;
 char **manualServerAddressOrName);

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

412

Figure 6: API functions pattern (in black) and exceptions (in gray).

worthless messages, and highest automation level,
usually without any limitations.

3.3 Error Management

All library functions return an integer value, wherein
zero means success and a different value is the
number of the occurred error. When an error occurs
in a library function, it registers the respective
description in dedicated variables. After the function
returns, the application can consult error information
using three library functions: getError,
getErrorDetail and getOnvifErrorCodes.

Errors can occur at different levels: HTTP,
SOAP, ONVIF and library itself. Therefore, error
values are divided in four separate ranges:
 {1} for all ONVIF errors, which do not have an

actual value and are coded in text;
 [2, 99] for SOAP errors (being 48 the current

maximum);
 [100, 899] for HTTP errors (keeping their original

value, currently limited to 599); and,
 [900, 999] for library specific errors.

getError and getErrorDetail functions can be
used to obtain descriptions of all errors except
ONVIF. The former function returns the reason for
error occurrence, and the latter obtains additional
information, if available.

For example, when the application invokes a
function with invalid input arguments, it returns a
library error code and getError retrieves the generic
message “Invalid argument passed to library
function”. Detailed error descriptions are available
for functions’ specific errors, namely regarding their
particular arguments. For instance, if setNTP_LL
receives an incorrect server address in its 5th
argument (see figure 5), for example in the 1st string,
then getErrorDetails obtains “The 1st NTP server
address is not a valid IPv4, IPv6 or name”.

Whenever possible, getError also provides
semantically rich error descriptions, though still
generic. For example, when the application invokes
any HL function without first calling
setHLDeviceAndUser, it gets a library error and
getError retrieves the message
“setHLDeviceAndUser must be called before HL
functions”. In such cases getErrorDetail does not
offer any further information.

When ONVIF errors occur, all three functions
can be used to obtain the text received in the
command response message. In this case, getError,
getErrorDetail and getOnvifErrorCodes return
respectively the Reason, Detail, and ErrorCodes of
ONVIF message, see (ONVIF, 2012).

3.4 API Rationale

The two library layers have a pattern of
characteristics and relationships that are common
across almost all services/functions, see figure 6: (1)
LL functions wrap stubs in a 1:1 relationship, (2) LL
functions have the names of HL functions suffixed
with “_LL”, and (3) both provide the same base
functionalities, with LL functions adding only input
parameters for service IP address, username and
password. For different reasons, the exceptions are
all Device Discovery (DD) service functions, Basic
Notification functions of Event service, and profile-
related functions of Media service. (The latter two to
be addressed in a future paper due to their
complexity and space required.)

The free<getOperOutArgs> functions are
provided to help the application developer to release
non-contiguous memory allocated by HL and LL
functions that obtain data whose size is not fixed (or
known a priori). The respective output arguments
are pointers to structures that, in turn, contain
pointers to other structures. The getCapabilities
(both HL and LL) functions are examples of them,

UMOC�-�A�C�Library�for�Clients�of�ONVIF�Network�Video�Transmitters�-�Library�Design�and�Device�Discovery�Support

413

Figure 7: Example of a structure with independently
(de)allocated memory blocks.

for which there is a freeCapabilities function, shown
in figure 7, to free the Capabilities structure. The
structure has six (possibly NULL) pointers to
memory blocks be independently de-allocated, each
of which with its own (sub-)pointers to further
independent blocks (not described in the figure). By
offering free<getOperOutArgs> functions the library
frees the developer from the burden of traversing the
tree of pointers specific to each different structure.
The setHLDeviceAndUser and three error functions
(described in previous section) belong to the Library
Specific (LS) functions group, once they do not
execute any specific ONVIF operation but rather set
HL variables to be used by HL functions, and
consult the last occurred error information,
respectively. This group is included in the
UMOC_Core module, which also contains the HL
and error variables.

4 DEVICE DISCOVERY

ONVIF adopts WS-Discovery 1.0 (with a few
extensions) to search for devices in local or remote
networks. gSOAP supports WS-Discovery, offering
a plugin that provides functions to send all service
messages (Probe and Resolve for clients; Hello, Bye,
ProbeMatch and ResolveMatch for servers). The
plugin API also includes a function to listen to (and
receive) any discovery messages and declares
handlers for each message. The library implements
the discovery of devices: it sends Probes, listens for
discovery messages, collects ProbeMatches, and
finally returns only the most relevant data of
matches. Resolve messages are not needed because
ONVIF requires devices to have a transport address
and therefore it must be included in the XAddrs of
ProbeMatches (according to both ONVIF and WS-
Discovery).

int find(DeviceTypesCode dtc, char* scopes[],
int *numDevices, DeviceInfo** list);

int findNVTs(NvtScope code, char* locations[],
char* hardware[], char* names[], char* other[],
int *numDevices, DeviceInfo** list);

int freeDeviceList(int numDevices, DeviceInfo* list);

Discovery

Figure 8: Discovery Module API.

Devices can be found according to the following
search parameters:
 Types (the device implements);
 Scopes (the device is in), allowing devices to be

organized into logical groups;
 Matching rule, defining how scopes are matched.

ONVIF specific discovery behaviour is achieved
by using its device types and scopes. It defines
“tds:Device” generic type for all devices, and
“dn:NetworkVideoTransmitter” type for NVTs.
ONVIF defines standard scopes with the syntax
“onvif://www.onvif.org/<category>/<value>”, and
five categories: “Profile”, “location”, “hardware”,
“name” and “type”. Each category is followed by a
value, which can be constrained to belong to a
predefined set. Device owners can define other
(specific) scopes not subject to this syntax. ONVIF
defines RFC 3986 as the mandatory matching rule
for all devices.

The library provides two functions to search for
devices, shown in figure 8, and function
freeDeviceList to release memory allocated by both
of them. As illustrated in figure 6, Device Discovery
service functions have all the same level (neither LL
nor HL).

The find function searches for all ONVIF
devices, and has as input parameters: a code to select
among any subset of the 4 device types, and an
optional list of scopes to narrow down the results.
The 1st parameter is a bit field that can be
conveniently set up by making an OR statement of
enumerated constants that are provided. Figure 9
shows an example search for devices that are either
NVT or NVS, and are located (physically, if
properly configured) in the campus of Azurém. The
library also provides a constant (“ALL_TYPES”) to
allow more practical search for devices of any type.
The list of scopes is an array of pointers to strings,
that must be terminated with an empty string or a
NULL pointer, a solution that was preferred over
parsing some URI delimiting scheme.

The findNVTs function searches exclusively for
NVT devices, having as input parameters: a code to
select types of NVTs (according, to the “type”
category of standard NVT scopes), and, optionally,

typedef struct Capabilities_Info
{
 AnalyticsC *Analytics;
 DeviceC *Device;
 EventC *Events;
 ImagingC *Imaging;
 MediaC *Media;
 PTZC *PTZ;
} Capabilities;

int getCapabilities(Capabilities** cap);

int freeCapabilities(Capabilities* cap);

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

414

Figure 9: Example to discover NVT and NVS devices
located in Azurém campus.

values for the standard scope categories “location”,
“hardware” and “name”, and a list of user-specific
scopes (that can be used in the same manner as the
2nd parameter of find function). The 1st parameter is
a bit field that (similarly to find) can be set up using
a set of enumerated constants that are provided:
“none”, “video_encoder”, “ptz”, “audio_encoder”,
and “video_analytics”. For example, in figure 10,
the function is used to search for any NVTs that are
located in the building named “B” of Azurém
campus. Note that the “locations” parameter only
needs the value part of “location” category scopes.
This is so because it is a standard scope category,
which also applies to the “hardware” and “names”
parameters.
Both functions have two output parameters: the first
returns the number of devices that are found, and the
second is an array that provides for each device a
subset of ProbeMatch message data: type, address of
device management service, and scopes (divided by
same categories as the 2nd to 5th input parameters of
findNVTs).

It should be noted that the library uses the only
matching rule that ensures full compatibility with
ONVIF devices: “http://schemas.xmlsoap.org/ws/
2005/04/ discovery/rfc3986”.

5 RESULTS

The library supports the following features: device
discovery, consulting of device capabilities and
information, configuration of date/time, NTP, DNS
and Dynamic DNS settings, management of user
accounts, consulting and actuation of physical
outputs, setting of image parameters, subscription
and reception of events, control of PTZ unit, media
profiles management and requesting snapshot and
stream URIs.
We have developed a NVT client application that
demonstrates the usage of the complete API. This
application has been used to test the library using
several IP cameras with ONVIF support, from

Figure 10: Example to discover all NVT devices located in
building B of Azurém campus.

different manufacturers. All library features were
tested successfully, although we faced minor
problems in cameras’ implementation of ONVIF.
These problems are considered as normal, since
ONVIF specifications are recent and evolving.
Consequently, manufacturers that do not participate
in the specifications are still making progresses to
implement flawlessly all ONVIF services.
The library has already been delivered to the
industry partner and is being easily integrated,
replacing legacy code. The library offers
functionalities designed to be generically applicable,
and the only request we had was the addition of a
function that addresses specific needs of the partner:
provide resolutions of all codecs supported by a
device (whether or not included in
VideoEncoderConfigurations of existing profiles),
and all existing streaming URIs.
This library enables an easier development of
controllers for automation systems, wherein a
controller is a client of a group of NVTs. The
industry partner is starting to make their controllers
this way. Gradually they are integrating NVTs that
explore ONVIF capabilities to command alarms and
other security systems based on video analysis
techniques.

6 CONCLUSIONS

This paper introduces a C library supporting the
development of ONVIF NVT clients. The goal of
the library is to help developers to handle the
complexity of ONVIF specifications, by providing a
simpler API and higher-level functionalities, without
affecting flexibility. We have explained the library
design and how it takes advantage of several aspects
of the specification and the integration of features to
simplify the API. We demonstrate how the library
reduces the complexity by exemplifying how it
supports the implementation of operations and
functionalities that present challenges to developers.

This work has been validated by an industry
partner that is using the library to develop its

char* location[] = {"Azurem",
 "building/B", NULL};
int numDevices = 0;
DeviceInfo* listDevices = NULL;
resp = findNVTs(NONE,
 location, NULL, NULL, NULL,
 &numDevices, &listDevices);

char* scope[] =
{"onvif://www.onvif.org/location/Azurem",
 NULL};
int numDevices = 0;
DeviceInfo* listDevices = NULL;
resp = find(NVT_TYPE || NVS_TYPE,
 scope,
 &numDevices, &listDevices);

UMOC�-�A�C�Library�for�Clients�of�ONVIF�Network�Video�Transmitters�-�Library�Design�and�Device�Discovery�Support

415

products. Future work includes adding support for
multithreading and other ONVIF services besides
NVT.

REFERENCES

Engelen, R. and Gallivan, K., 2002. The gSOAP Toolkit
for Web Services and Peer-To-Peer Computing
Networks. In 2nd IEEE International Symposium on
Cluster Computing and the Grid (CCGrid2002),
Berlin, Germany, pp. 128-135.

IETF, June 1999. RFC 2617, HTTP Authentication: Basic
and Digest Access Authentication. [Online].
Available: http://www.ietf.org/rfc/rfc2617.txt.

J. Beatty, et al, April 2005. XMLSOAP, Web Services
Dynamic Discovery (WS-Discovery). [Online].
Available: http://specs.xmlsoap.org/ws/2005/04/
discovery/ws-discovery.pdf.

Lopes, S. F., Silva, S., Mendes, J., Metrolho, J. C. and
Duque, D., February 2013. Development of a library
for clients of ONVIF video cameras: challenges and
solutions. In Proceedings of the IEEE International
Conference on Industrial Technology (ICIT'13), IEEE
Industrial Electronics Society.

OASIS, October 2006. Web Services Base Notification
1.3 (WS-BaseNotification). [Online]. Available:
http://docs.oasis-open.org/wsn/wsn-ws_base_notifi
cation-1.3-spec-os.pdf.

OASIS, October 2006. Web Services Topics 1.3 (WS-
Topics). [Online]. Available: http://docs.oasis-
open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf.

OASIS, May 2012. Web Services Security: SOAP
Message Security 1.1 (WS-Security). [Online].
Available: http://www.oasis-open.org/committees/
download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf.

OASIS, May 2012. Web Services Security
UsernameToken Profile 1.1.1. [Online]. Available:
http://www.oasis-open.org/committees/download.php/
16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf.

ONVIF, December 2012. ONVIF™ Core Specification,
Version 2.2.1. [Online]. Available:
http://www.onvif.org/specs/DocMap.html.

PSIA, August 2011. PSIA Service Model, Version 1.2.
[Online]. Available: http://www.psialliance.org/
documents.html.

Senst, T., Patzold, M., et al, September 2001. On building
decentralized wide-area surveillance networks based
on ONVIF. In 8th IEEE International Conference on
Advanced Video and Signal-Based Surveillance
(AVSS 2011), pp.420-423.

Synesis, March 2013. ONVIF Device Manager (Onvifdm)
v2.2.231. [Online]. Available: http://sourceforge.net/
projects/onvifdm.

Yi-Hsing Tsai, Jung-Kuang Hsu, Yun-Ei Wu, Wei-Feng
Huang, June 2011. Distributed Multimedia Content
Processing in ONVIF Surveillance System. In
International Conference on Future Computer

Sciences and Application (ICFCSA 2011), pp.70-73.
W3C, April 2012. XML Schema Definition Language

(XSD) 1.1 Part 2: Datatypes. [Online]. Available:
http://www.w3.org/TR/xmlschema11-2.

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

416

