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Abstract: In the paper, we investigate the deduction problem of a formula from a finite theory in the propositional
Product logic from a perspective of automated deduction. Our approach is based on translation of a formula to
an equivalent satisfiable finite order clausal theory, consisting of order clauses. An order clause is a finite set
of order literals of the form e1 � e2 where ei is either a conjunction of propositional atoms or the propositional
constant 0 (false) or 1 (true), and � is a connective either P or �. P and � are interpreted by the equality
and standard strict linear order on [0;1], respectively. A variant of the DPLL procedure, operating over order
clausal theories, is proposed. The DPLL procedure is proved to be refutation sound and complete for finite
order clausal theories.

1 INTRODUCTION

A considerable effort has been made in development
of SAT solvers for the problem of Boolean satisfi-
ability, especially in the last decade. SAT solvers
may exploit either complete solution methods (called
complete or systematic SAT solvers) or incomplete
or hybrid ones. Complete SAT solvers are mostly
based on the Davis-Putnam-Logemann-Loveland pro-
cedure (DPLL) (Davis and Putnam, 1960; Davis et al.,
1962) improved by various features. One of the lat-
est overviews of development of SAT solvers may
be found in (Biere et al., 2009). Research in many-
valued logics mainly concerns finitely-valued ones.
Thank to finiteness of truth value sets of these logics,
almost straightforward extensions of results achieved
in classical logic are feasible. The DPLL procedure
has been firstly generalised for regular clauses over
a linearly ordered truth value set (Hähnle, 1996). In
(Manyà et al., 1998), it is described an implemen-
tation of this regular DPLL procedure with the ex-
tended two-sided Jeroslow-Wang literal selection rule
defined in (Hähnle, 1996). A signed DPLL procedure
over a finite truth value set is introduced in (Beckert
et al., 2000). It is based on a branching rule form-
ing branches for every truth value. So, the branch-
ing factor equals the cardinality of the truth value set.
The branching factor can be decreased by a quotient
of the truth value set wrt. a suitable equivalence.
A slight modification of that equivalence enables a
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generalisation to an infinite truth value set as well
(Guller, 2009). Another signed variant of the DPLL
procedure for a countable clausal theory over an ar-
bitrary truth value set is proposed in (Guller, 2009).
In some sense, the DPLL procedure may be viewed
like ”anti-resolution”. Thus, its branching rule, with
finite branching factor, may be considered as if a
”signed anti-hyperresolution rule”. The procedure is
refutation complete if the finitary disjunction condi-
tion for the set of signs occurring in the input count-
able clausal theory is satisfied. Infinitely-valued log-
ics have not yet been explored so widely as finitely-
valued ones. It is not known any general approach
as signed logic one in the finitely-valued case. A so-
lution of the SAT and VAL problems strongly varies
on a chosen infinitely-valued logic. The same holds
for translation of a formula to clause form, the ex-
istence of which is not guaranteed in general. Re-
sults in this area have been achieved in several ways,
since infinite truth value sets form distinct algebraic
structures. One approach may be based on reduction
from the infinitely-valued case to the finitely-valued
one, as it has been done e.g. for the VAL problem in
the propositional infinitely-valued Łukasiewicz logic
in (Mundici, 1987; Aguzzoli and Ciabattoni, 2000).
Another approach exploits reduction of the SAT prob-
lem to mixed integer programming (MIP) (Hähnle,
1994a; Hähnle, 1997). In (Guller, 2010), we have
devised a variant of the DPLL procedure with clause
form translation for finite theories in the propositional
Gödel logic. The results have been generalised to the
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countable case in (Guller, 2012).
Product logic (Hájek et al., 1996; Metcalfe et al.,

2004; Savický et al., 2006) is one of the fundamental
fuzzy logics, based on the product t-norm. It has been
discovered much later than Gödel and Łukasiewicz
logics, known before the beginning of research on
fuzzy theory. In the paper, we investigate the de-
duction problem of a formula from a finite theory
in the propositional Product logic from a perspective
of automated deduction. Our approach is based on
translation of a formula to an equivalent satisfiable fi-
nite order clausal theory, consisting of order clauses,
Lemma 3.1, Theorem 3.2, Section 3. An order clause
is a finite set of order literals of the form e1 �e2 where
ei is either a conjunction of propositional atoms or
the propositional constant 0 (false) or 1 (true), and
� is a connective either P or �. P and � are in-
terpreted by the equality and standard strict order on
[0;1], respectively. The trichotomy over order literals:
either e1 � e2 or e1 P e2 or e2 � e1, naturally invokes
proposing a variant of the DPLL procedure with a tri-
chotomy branching rule as an algorithm for deciding
the satisfiability of a finite order clausal theory. The
DPLL procedure with its basic rules is proved to be
refutation sound and complete in the finite case, The-
orem 4.2, Section 4. The set of basic rules may be
augmented by some admissible ones, which are suit-
able for practical computing and considerably shorten
DPLL trees. For solving the deduction problem, we
exploit the fact that a formula f is a propositional con-
sequence of a finite theory T in Product logic if and
only if their translation to a finite order clausal the-
ory Sf

T is unsatisfiable, and the DPLL procedure pro-
duces a closed DPLL tree with the root Sf

T in this case,
Corollary 4.3, Section 4.

The paper is organised as follows. Section 2 gives
the basic notions, notation, and useful properties con-
cerning the propositional Product logic. Section 3
deals with clause form translation. In Section 4,
we propose a variant of the DPLL procedure with a
trichotomy branching rule and prove its refutational
soundness, completeness. Section 5 brings conclu-
sions.

2 PROPOSITIONAL PRODUCT
LOGIC

Throughout the paper, we shall use the common no-
tions of propositional many-valued logics. The set of
propositional atoms of Product logic will be denoted
as PropAtom. By PropForm we designate the set of
all propositional formulae of Product logic built up

from PropAtom using the propositional constants 0,
false, 1, true, and the connectives: :, negation, ^,
conjunction, _, disjunction, &, strong conjunction,
!, implication. In addition, we introduce new bi-
nary connectives P, equality, and �, strict order. By
OrdPropForm we designate the set of all so-called or-
der propositional formulae of Product logic built up
from PropAtom using the propositional constants 0,
1, and the connectives: :, ^, _, &,!, P, �.1 In the
paper, we shall assume that PropAtom is a countable
set. Let ei, 1� i� n, be either an expression or a set of
expressions or a set of sets of expressions, in general.
By atoms(e1; : : : ;em) � PropAtom we denote the set
of all propositional atoms of Product logic occurring
in e1; : : : ;em.

Let X , Y , Z be sets, Z � X ; f : X �! Y be a map-
ping. By kXk we denote the set-theoretic cardinal-
ity of X . X being a finite subset of Y is denoted as
X �F Y . We designate f [Z] = f f (z) jz 2 Zg; f [Z] is
the image of Z under f ; and f jZ = f(z; f (z)) jz 2 Zg;
f jZ is the restriction of f onto Z. Let g � w. A
sequence d of X is a bijection d : g �! X . X is
countable if and only if there exists a sequence of
X . N j R designates the set of natural j real num-
bers and �, < the standard, standard strict order on
N j R, respectively. We denote R+

0 = fc j0� c 2 Rg,
R+ = fc j0 < c 2 Rg, [0;1] = fc j0 � c � 1;c 2 Rg;
[0;1] is the unit interval. Let c2R+. logc denotes the
binary logarithm of c. Let f ;g : N�!R+

0 . f is of the
order of g, in symbols f 2O(g), iff there exist n0 2N
and c� 2R+

0 such that for all n� n0, f (n)� c� �g(n).
Let f 2 OrdPropForm and T �F OrdPropForm. The
size of f, in symbols jfj> 0, is defined as the number
of nodes of its standard tree representation. We define
the size of T as jT j= åf2T jfj.

Product logic is interpreted by the standard P-
algebra augmented by binary operators PPP and ��� for
P and �, respectively.

P = ([0;1];�;___;^̂̂; �;))); ;PPP;���;0;1)

where___ j ^̂̂ denotes the supremum j infimum operator
on [0;1];

a)))b =

(
1 if a� b;
b
a else;

a =

�
1 if a = 0;
0 else;

aPPP b =

�
1 if a = b;
0 else;

a��� b =

�
1 if a < b;
0 else:

We recall that P is a complete linearly ordered lattice
algebra; ___ j ^̂̂ is commutative, associative, idempo-
tent, monotone; 0 j 1 is its neutral element; � is com-

1We assume a decreasing connective precedence: :, &,
^,!, P, �, _.
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mutative, associative, monotone; 1 is its neutral ele-
ment; the residuum operator))) of � satisfies the con-
dition of residuation:

for all a;b;c 2P;a �b� c() a� b)))c; (1)

Product (Gödel) negation satisfies the condition:

for all a 2P;a = a)))0; (2)

the following properties, which will be exploited later,
hold:2

for all a;b;c 2P;

a___b ^̂̂ c = (a___b)^̂̂(a___c);
(distributivity of ___ over ^̂̂) (3)

a ^̂̂(b___c) = a^̂̂ b___a^̂̂ c;
(distributivity of ^̂̂ over ___) (4)

a �(b___c) = a �b___a �c;
(distributivity of � over ___) (5)

a)))(b___c) = a)))b___a)))c; (6)

a)))b ^̂̂ c = (a)))b)^̂̂(a)))c); (7)

(a___b))))c = (a)))c)^̂̂(b)))c); (8)

a ^̂̂ b)))c = a)))c___b)))c; (9)

a)))(b)))c) = a �b)))c; (10)

((a)))b))))b))))b = a)))b: (11)

A propositional theory is a set of propositional
formulae of Product logic. An order propositional
theory is a set of order propositional formulae of
Product logic. A valuation V is a mapping V :
PropAtom �! [0;1]. A partial valuation V with
the domain dom(V ) � PropAtom, is a mapping V :
dom(V ) �! [0;1]. Let V be a (partial) valua-
tion; f;f0 2 OrdPropForm, T � OrdPropForm. Let
atoms(f);atoms(T ) � dom(V ) in case of V being a
partial valuation. The truth value of f in V , in sym-
bols kfkV , is defined by the standard way; the propo-
sitional constants 0, 1 are interpreted by 0, 1, respec-
tively, and the connectives by the respective operators
on P. V is a (partial) propositional model of f, in
symbols V j= f, iff kfkV = 1. V is a (partial) propo-
sitional model of T , in symbols V j= T , iff, for all
f 2 T , V j= f. f is a tautology iff, for every valuation
V , V j= f. f is equivalent to f0, in symbols f � f0,
iff, for every valuation V , kfkV = kf0kV .

2We assume a decreasing operator precedence: , �, ^̂̂,
))),PPP,���, ___.

3 TRANSLATION TO ORDER
CLAUSAL FORM

We now describe some translation of a formula to a
finite order clausal theory. To have the output theory
of polynomial size, our translation exploits interpola-
tion using new atoms. The output theory will be of
linearithmic size at the cost of being only equivalent
satisfiable to the input formula. A similar approach
exploiting the renaming subformulae technique can
be found in (Plaisted and Greenbaum, 1986; de la
Tour, 1992; Hähnle, 1994b; Nonnengart et al., 1998;
Sheridan, 2004; Guller, 2010). At first, we intro-
duce notions of a to the power of n and of conjunc-
tion of propositional atoms. Let a 2 PropAtom and
n > 0. a to the power of n is the pair (a;n), written
as an. The power a1 is denoted as a; if it does not
cause the ambiguity with the denotation of the sin-
gle propositional atom a in given context. We de-
fine the size of an as janj = n > 0. A conjunction
Cn of propositional atoms is a non-empty finite set
of powers such that for all am;bn 2 Cn, a 6= b. A
conjunction fam0

0 ; : : : ;amn
n g of propositional atoms is

written in the form am0
0 & � � �&amn

n . A conjunction
fpg of propositional atoms is called a unit conjunc-
tion of propositional atoms and denoted as p; if it
does not cause the ambiguity with the denotation of
the single power p in given context. The set of all
conjunctions of propositional atoms is designated as
PropConj. Let V be a (partial) valuation; p be a
power, Cn 2 PropConj, Cn1;Cn2 2 PropConj[f /0g.
Let atoms(Cn) � dom(V ) in case of V being a par-
tial valuation. The truth value of Cn = am0

0 & � � �&amn
n

in V is defined by

kCnkV = ka0kV � � � � � ka0kV| {z }
m0

� � � � �kankV � � � � � kankV| {z }
mn

:

We define the size of Cn as jCnj = åp2Cn jpj > 0.
By p&Cn we denote fpg[Cn where p 62 Cn. Cn1
is a subconjunction of Cn2, in symbols Cn1 v Cn2,
iff, for all am 2 Cn1, there exists an 2 Cn2 and m �
n. We define Cn1 uCn2 = famin(m;n) jam 2 Cn1;an 2
Cn2g 2 PropConj[f /0g. Cn1 and Cn2 are disjoint iff
Cn1uCn2 = /0. We finally introduce order clauses in
Product logic. l is an order literal of Product logic
iff l = e1 � e2 where either e1 2 PropAtom[ f0;1g,
e2 2 f0;1g, or e1 2 f0;1g, e2 2 PropAtom[ f0;1g,
or ei 2 PropConj, e1 u e2 = /0, � 2 fP;�g. The set
of all order literals of Product logic is designated as
OrdLit. Let l = e1 � e2 2 OrdLit. We define the size
of l as jlj = 1+ je1j+ je2j > 0. An order clause of
Product logic is a finite set of order literals of Prod-
uct logic; since = is commutative, we identify the
order literals e1 P e2 and e2 P e1. An order clause
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fl1; : : : ; lng is written in the form l1 _ �� � _ ln. The
order clause /0 is called the empty order clause and
denoted as �. An order clause flg is called a unit
order clause and denoted as l; if it does not cause
the ambiguity with the denotation of the single or-
der literal l in given context. We designate the set
of all order clauses of Product logic as OrdCl. Let
l; l0; : : : ; ln 2 OrdLit and C;C0 2 OrdClL . We define
the size of C as jCj = ål2C jlj. By l _C we denote
flg[C where l 62C. Analogously, by l0_ �� �_ ln_C
we denote fl0g[ � � �[flng[C where, for all i; i0 � n,
i 6= i0, li 62C and li 6= li0 . By C_C0 we denote C[C0.
C is a subclause of C0, in symbols C vC0, iff C �C0.
An order clausal theory is a set of order clauses. A
unit order clausal theory is a set of unit order clauses.

Let f;f0 2 PropOrdForm, T;T 0 � PropOrdForm,
S;S0 � OrdCl; V be a (partial) valuation. Let
atoms(l);atoms(C);atoms(S)� dom(V ) in case of V
being a partial valuation. Note that V j= l if and only
if either l = e1P e2, ke1P e2kV = 1, ke1kV = ke2kV ;
or l = e1 � e2, ke1 � e2kV = 1, ke1kV < ke2kV .
V is a (partial) propositional model of C, in sym-
bols V j=C, iff there exists l� 2C such that V j= l�.
V is a (partial) propositional model of S, in symbols
V j= S, iff, for all C 2 S, V j=C. f0 j T 0 j C0 j S0 is a
propositional consequence of f j T jC j S, in symbols
f jT jC jS j=P f0 jT 0 jC0 jS0, iff, for every propositional
model V of f j T jC j S, V j= f0 jT 0 jC0 jS0. f j T jC j
S is satisfiable iff there exists a propositional model of
f j T jC j S. Note that both� and�2 S are unsatisfi-
able. f j T jC j S is equisatisfiable to f0 j T 0 jC0 j S0 iff
f j T jC j S is satisfiable if and only if f0 j T 0 jC0 j S0 is
satisfiable. Let S�F OrdCl. We define the size of S as
jSj= åC2S jCj. Let l 2 OrdLit. l is a simplified order
literal of Product logic iff if l = e1 �e2, ei 2 PropConj,
then either e1 = a, e2 = b, or e1 = a, e2 = b&c, or
e1 = a&b, e2 = c. The set of all simplified order lit-
erals of Product logic is designated as SimOrdLit. We
denote SimOrdCl = fC jC 2 OrdCl;C � SimOrdLitg.
Let I = N�N; I is an infinite countable set of in-
dices. Let Ã = fãi ji 2 Ig � PropAtom; Ã is an in-
finite countable set of new propositional atoms. Let
A � Ã. We denote EA = fe je 2 E ;atoms(e)\ Ã �
Ag, E = PropForm j E = PropConj j E = OrdLit j
E = OrdCl j E = SimOrdLit j E = SimOrdCl. From a
computational point of view, the worst case time and
space complexity will be estimated using the logarith-
mic cost measurement. Let A be an algorithm. #OA
denotes the number of all elementary operations exe-
cuted by A . The translation to order clausal form is
based on the following lemma.

Lemma 3.1. Let f 2 PropForm /0, T �F PropForm /0;
F � I such that there exists n0 and F \ f(i; j) j i �
n0g= /0; nf � n0.

(i) There exist either Jf = /0 or Jf = f(nf; j) j j �
nJf
g, Jf�f(i; j) j i� n0g, Jf\F = /0, and Sf�F

SimOrdClfãj jj2Jfg such that

(a) kJfk � 2 � jfj;
(b) either Jf = /0, Sf = f�g or Jf = Sf = /0 or

Jf 6= /0, � 62 Sf 6= /0;
(c) there exists a partial valuation V ,

dom(V ) = atoms(f), and V j= f if
and only if there exists a partial valuation
V 0, dom(V 0) = atoms(f) [ fãj jj 2 Jfg,
and V 0 j= Sf, satisfying V = V 0jatoms(f);

(d) jSfj 2 O(jfj); the number of all elementary
operations of the translation of f to Sf, is in
O(jfj); the time and space complexity of the
translation of f to Sf, is in O(jfj � log jfj);

(e) if Sf 6= /0 and Sf 6= f�g, then Jf 6= /0; for all
C 2 Sf, /0 6= atoms(C)\ Ã� fãj jj 2 Jfg.

(ii) There exist JT �F f(i; j) j i � n0g, JT \F = /0,
and ST �F SimOrdClfãj jj2JT g such that

(a) kJTk � 2 � jT j;
(b) either JT = /0, ST = f�g or JT = ST = /0 or

JT 6= /0, � 62 ST 6= /0;
(c) there exists a partial valuation V ,

dom(V ) = atoms(T ), and V j= T if
and only if there exists a partial valuation
V 0, dom(V 0) = atoms(T ) [ fãj jj 2 JTg,
and V 0 j= ST , satisfying V = V 0jatoms(T );

(d) jST j 2O(jT j); the number of all elementary
operations of the translation of T to ST , is in
O(jT j); the time and space complexity of the
translation of T to ST , is in O(jT j � log(1+
jT j));

(e) if ST 6= /0 and ST 6= f�g, then JT 6= /0; for all
C 2 ST , /0 6= atoms(C)\ Ã� fãj jj 2 JTg.

Proof. Technical using interpolation.

Let q 2 PropForm /0. There exists q0 2
PropForm /0 such that

(a) q0 � q;
(b) jq0j � 2 � jqj; q0 can be built up via a pos-

torder traversal of q with #O 2 O(jqj),
the time and space complexity in O(jqj �
log jqj);

(c) q0 does not contain :;
(d) either q0 = 0, or 0 is a subformula of q0 if

and only if 0 is a subformula of a subfor-
mula of q0 of the form J! 0, J 6= 0;

(e) either q0 = 1 or 1 is not a subformula of q0.

(12)

The proof is by induction on the structure of q.
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Let q 2 PropForm /0�f0;1g; (12c–e) hold for
q; G � I such that there exists n1 and G \
f(i; j) j i � n1g = /0; nq � n1; i = (nq; ji) 2
f(i; j) j i � n1g, ãi 2 Ã, i 62 G. There exist
J = f(nq; j) j ji + 1 � j � nJg � f(i; j) j i �
n1g, ji � nJ , J \ (G[ fig) = /0, and Ss �F
SimOrdClfãig[fãj jj2Jg, s =+;�, such that for
both s,

(a) kJk � jqj�1;
(b) there exists a partial valuation V ,

dom(V ) = atoms(q) [ fãig, and
V j= ãi ! q 2 PropFormfãig if and
only if there exists a partial valuation V 0,
dom(V 0) = atoms(q)[fãig[fãj jj 2 Jg,
and V 0 j= S+, satisfying V =
V 0jatoms(q)[fãig;

(c) there exists a partial valuation V ,
dom(V ) = atoms(q) [ fãig, and
V j= q ! ãi 2 PropFormfãig if and
only if there exists a partial valuation V 0,
dom(V 0) = atoms(q)[fãig[fãj jj 2 Jg,
and V 0 j= S�, satisfying V =
V 0jatoms(q)[fãig;

(d) jSsj � 20 � jqj, Ss can be built up from q via
a preorder traversal of q with #O 2O(jqj);

(e) for all C 2 Ss, /0 6= atoms(C)\ Ã� fãig[
fãj jj 2 Jg; ãi P 1; ãi � 1 62 Ss.

(13)

The proof is by induction on the structure of q using
the interpolation rules in Table 1.

(i) By (12) for f, there exists f0 2 PropForm /0 such
that (12a–e) hold for f0. We then distinguish three
cases for f0.

Case 1: f0 = 0. We put Jf = /0 � f(i; j) j i � n0g,
Jf\F = /0, and Sf = f�g �F SimOrdCl /0.

Case 2: f0 = 1. We put Jf = /0 � f(i; j) j i � n0g,
Jf\F = /0, and Sf = /0�F SimOrdCl /0.

Case 3: f0 6= 0;1. We have nf � n0. We put
i = (nf;0) 2 f(i; j) j i � n0g. Then ãi 2 Ã. We
get by (13) for f0, F , n0, nf, i, ãi that there ex-
ist J = f(nf; j) j1 � j � nJg � f(i; j) j i � n0g, J \
(F [ fig) = /0, S+ �F SimOrdClfãig[fãj jj2Jg, and
(13a–e) hold for f0, ãi, J, S+. We put nJf

= nJ ,
Jf = fig[ J � f(i; j) j i � n0g, Jf \F = /0, and Sf =
fãi P 1g[S+ �F SimOrdClfãj jj2Jfg.

(ii) straightforwardly follows from (i).

We conclude this section by the following theorem.

Theorem 3.2. Let f2PropForm /0, T �F PropForm /0;
F � I such that there exists n0 and F \ f(i; j) j i �
n0g= /0. There exist Jf

T �F f(i; j) j i� n0g, Jf

T \F =

/0, and Sf

T �F SimOrdClfãj jj2Jf

T g
such that

(i) T j=P f if and only if Sf

T is unsatisfiable;

(ii) kJf

Tk 2 O(jT j+ jfj); jSf

T j 2 O(jT j+ jfj); the
number of all elementary operations of the
translation of T and f to Sf

T , is in O(jT j+ jfj);
the time and space complexity of the translation
of T and f to Sf

T , is in O((jT j+ jfj) � log(jT j+
jfj)).

Proof. (i) We put Jn0 = f(n0; j) jg � f(i; j) j i � n0g
and G = F [ Jn0 � I. We get by Lemma 3.1(ii) for T ,
G, n0 + 1 that there exist JT �F f(i; j) j i � n0 + 1g,
JT \G = /0, ST �F SimOrdClfãj jj2JT g, and 3.1(ii a–e)
hold for T , JT , ST . By (12) for f, there exists f0 2
PropForm /0 such that (12a–e) hold for f0. We then
distinguish three cases for f0.

Case 1: f0= 0. We put Jf

T = JT �F f(i; j) j i� n0g,
Jf

T \F = /0, and Sf

T = ST �F SimOrdClfãj jj2Jf

T g
.

Case 2: f0 = 1. We put Jf

T = /0�F f(i; j) j i� n0g,
Jf

T \F = /0, and Sf

T = f�g �F SimOrdCl /0.
Case 3: f0 6= 0;1. We put i = (n0;0) 2 f(i; j) j i�

n0g. Then ãi 2 Ã. We get by (13) for f0, F ,
n0, n0, i, ãi that there exist J = f(n0; j) j1 � j �
nJg � f(i; j) j i � n0g, J \ (F [ fig) = /0, S� �F
SimOrdClfãig[fãj jj2Jg, and (13a–e) hold for f0, ãi,

J, S�. We put Jf

T = JT [ fig [ J �F f(i; j) j i �
n0g, Jf

T \ F = /0, and Sf

T = ST [ fãi � 1g [ S� �F
SimOrdClfãj jj2Jf

T g
.

(ii) straightforwardly follows. The theorem is
proved.

4 DPLL PROCEDURE

We devise a variant of the DPLL procedure
over finite order clausal theories. Let a; : : : ; f 2
PropAtom, Cn;Cn1; : : : ;Cn4 2 PropConj, �1;�2 2
fP;�g, l; l1; l2; l3 2 OrdLit, C 2 OrdCl, T � OrdCl.
l is a contradiction iff either l = 0P 1 or l = 0� 0 or
l = 1 � 0 or l = 1 � 1 or l = a � 0 or l = 1 � a or
l = Cn � Cn. l is a tautology iff either l = 0 P 0 or
l = 1P 1 or l = 0� 1 or l = CnP Cn. 0P a_0� a
is a 0-dichotomy. a � 1_ a P 1 is a 1-dichotomy.
Cn1 � Cn2_Cn1 P Cn2_Cn2 � Cn1 is a trichotomy.
Some auxiliary operations are defined in Table 2. We
define a transitivity operation in Table 3. For exam-ple,

(a&b� c&e)I (c&d P a& f ) =

(a&b&d � c&d &e)I (c&d P a& f ) =

a&b&d � a&e& f =

b&d � e& f :
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Table 1: Interpolation rules for ^, _, &,!.

Case: Laws

q = q1 ^q2

Positive interpolation
ãi! q1 ^q2n

ãi � ãi1 _ ãi P ãi1 ; ãi � ãi2 _ ãi P ãi2 ; ãi1 ! q1; ãi2 ! q2

o (7) (14)

jConsequentj= 12+ jãi1 ! q1j+ jãi2 ! q2j � 20+ jãi1 ! q1j+ jãi2 ! q2j

Negative interpolation
q1 ^q2! ãin

ãi1 � ãi _ ãi1 P ãi _ ãi2 � ãi _ ãi2 P ãi;q1! ãi1 ;q2! ãi2

o (9) (15)

jConsequentj= 12+ jq1! ãi1 j+ jq2! ãi2 j � 20+ jq1! ãi1 j+ jq2! ãi2 j

q = q1 _q2

Positive interpolation
ãi! (q1 _q2)n

ãi � ãi1 _ ãi P ãi1 _ ãi � ãi2 _ ãi P ãi2 ; ãi1 ! q1; ãi2 ! q2

o (6) (16)

jConsequentj= 12+ jãi1 ! q1j+ jp̃i2 ! q2j � 20+ jãi1 ! q1j+ jp̃i2 ! q2j

Negative interpolation
(q1 _q2)! ãin

ãi1 � ãi _ ãi1 P ãi; ãi2 � ãi _ ãi2 P ãi;q1! ãi1 ;q2! ãi2

o (8) (17)

jConsequentj= 12+ jq1! ãi1 j+ jq2! ãi2 j � 20+ jq1! ãi1 j+ jq2! ãi2 j

q = q1 &q2

Positive interpolation
ãi! q1 &q2n

ãi � ãi1 & ãi2 _ ãi P ãi1 & ãi2 ; ãi1 ! q1; ãi2 ! q2

o (18)

jConsequentj= 8+ jãi1 ! q1j+ jãi2 ! q2j � 20+ jãi1 ! q1j+ jãi2 ! q2j

Negative interpolation
q1 ^q2! ãin

ãi1 & ãi2 � ãi _ ãi1 & ãi2 P ãi;q1! ãi1 ;q2! ãi2

o (19)

jConsequentj= 8+ jq1! ãi1 j+ jq2! ãi2 j � 20+ jq1! ãi1 j+ jq2! ãi2 j

q = q1! 0

Positive interpolation
ãi! (q1! 0)n

ãi P 0_ ãi1 P 0;q1! ãi1

o (10) (20)

jConsequentj= 6+ jq1! ãi1 j � 20+ jq1! ãi1 j

Negative interpolation
(q1! 0)! ãin

0� ãi1 _ ãi = 1; ãi1 ! q1

o (21)

jConsequentj= 6+ jãi1 ! q1j � 20+ jãi1 ! q1j

q = q1! q2;q2 6= 0

Positive interpolation
ãi! (q1! q2)n

ãi & ãi1 � ãi2 _ ãi & ãi1 P ãi2 ;q1! ãi1 ; ãi2 ! q2

o (10) (22)

jConsequentj= 8+ jq1! ãi1 j+ jãi2 ! q2j � 20+ jq1! ãi1 j+ jãi2 ! q2j

Negative interpolation
(q1! q2)! ãin

ãi1 � ãi2 _ ãi1 P ãi2 _ ãi2 � ãi1 & ãi _ ãi2 P ãi1 & ãi; ãi2 � ãi1 _ ãi = 1; ãi1 ! q1;q2! ãi2

o (23)

jConsequentj= 20+ jãi1 ! q1j+ jq2! ãi2 j � 20+ jãi1 ! q1j+ jq2! ãi2 j
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Table 2: Auxiliary operations.

Cn1�Cn2 = fam+n jam 2 Cn1;an 2 Cn2g[fam jam 2 Cn1;a 62 atoms(Cn2)g[
fan jan 2 Cn2;a 62 atoms(Cn1)g 2 PropConj[f /0g;

Cn1+Cn2 = fam�n jam 2 Cn1;an 2 Cn2;m > ng[fam jam 2 Cn1;a 62 atoms(Cn2)g 2 PropConj[f /0g
if Cn2 v Cn1;

Cn1 B Cn2 = fan�m jam 2 Cn1;an 2 Cn2;n > mg[fan jan 2 Cn2;a 62 atoms(Cn1)g 2 PropConj[f /0g

Cn1;Cn2 2 PropConj[f /0g.

Table 3: Transitivity operation.

(Cn1 �1 Cn2)I (Cn3 �2 Cn4) =

8>>>>><>>>>>:

1�1 if Cn7 = Cn8 = /0;

� if Cn7 = /0;Cn8 6= /0;

� if Cn7 6= /0;Cn8 = /0;�=P;
1P 1 if Cn7 6= /0;Cn8 = /0;�=�;
Cn7 �Cn8 if Cn7 6= /0;Cn8 6= /0;

Cn5 = (Cn1� (Cn2 B Cn3));

Cn6 = (((Cn2� (Cn2 B Cn3))+Cn3)�Cn4);

Cn7 = (Cn5+(Cn5uCn6));

Cn8 = (Cn6+(Cn5uCn6));

�=
�
P if �1 = �2 =P;

� else;

(Cn1 �1 Cn2)I (Cn3 �2 Cn4) 2 OrdCl

Cn1; : : : ;Cn4 2 PropConj, �1;�2 2 fP;�g.

An auxiliary simplification function is defined in Ta-
ble 4. Basic rules are defined as follows:

(Contradiction simplification rule) (24)

T
T �fl_Cg[fCg

l_C 2 T; l is a contradiction.

(One literal 0-simplification rule) (25)

T
T �fl_Cg[ simpl(aP 0; l_C)

aP 0; l_C 2 T;a 2 atoms(l).

(One literal 1-simplification rule) (26)
T

T �fl_Cg[ simpl(aP 1; l_C)

aP 1; l_C 2 T;a 2 atoms(l).

(0-dichotomy branching rule) (27)

T
T [fl1g

�� T [fl2g

l1_ l2 is a 0-dichotomy; atoms(l1_ l2)� atoms(T ).

(1-dichotomy branching rule) (28)

T
T [fl1g

�� T [fl2g

l1_ l2 is a 1-dichotomy; atoms(l1_ l2)� atoms(T ).
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Table 4: Auxiliary simplification function.

simpl(aP 0;a� e_C) = f0� e_Cg if aP 0 6= a� e_C;

simpl(aP 0;e�a_C) = fe�0_Cg if aP 0 6= e�a_C;

simpl(aP 0;Cn1 P Cn2_C) = f
_

b2atoms(Cn2)

bP 0_Cg if a 2 atoms(Cn1);

simpl(aP 0;Cn1 � Cn2_C) = f0� b_C jb 2 atoms(Cn2)g if a 2 atoms(Cn1);

simpl(aP 0;Cn1 � Cn2_C) = fCg if a 2 atoms(Cn2);

simpl(aP 1;a� e_C) = f1� e_Cg if aP 1 6= a� e_C;

simpl(aP 1;e�a_C) = fe�1_Cg if aP 1 6= e�a_C;

simpl(aP 1;Cn1 P Cn2_C) = f(Cn1�fang)P Cn2_Cg if fag � atoms(Cn1);an 2 Cn1;

simpl(aP 1;Cn1 P Cn2_C) = fbP 1_C jb 2 atoms(Cn2)g if fag= atoms(Cn1);

simpl(aP 1;Cn1 � Cn2_C) = f(Cn1�fang)� Cn2_Cg if fag � atoms(Cn1);an 2 Cn1;

simpl(aP 1;Cn1 � Cn2_C) = fCg if fag= atoms(Cn1);

simpl(aP 1;Cn1 � Cn2_C) = fCn1 � (Cn2�fang)_Cg if fag � atoms(Cn2);an 2 Cn2;

simpl(aP 1;Cn1 � Cn2_C) = f
_

b2atoms(Cn1)

b� 1_Cg if fag= atoms(Cn2);

simpl(l;C)�F OrdCl

a 2 PropAtom, e 2 f0;1g, Cn1;Cn2 2 PropConj, l 2 faP 0;aP 1g, C 2 OrdCl.

(One literal transitivity rule) (29)

T
T [f(Cn1 �1 Cn2)I (Cn3 �2 Cn4)g

T is a unit order clausal theory;
Cn1 �1 Cn2;Cn3 �2 Cn4 2 T;

for all a 2 atoms(Cn1; : : : ;Cn4); 0� a;a� 1 2 T .

(Trichotomy branching rule) (30)

T
T �fl1_Cg[fl1g

��
T �fl1_Cg[fCg[fl2g

��
T �fl1_Cg[fCg[fl3g

l1_C 2 T; C 6=�; l1_ l2_ l3 is a trichotomy;
for all a 2 atoms(l1; l2; l3); 0� a;a� 1 2 T .

Rules (24)–(30) are sound in view of satisfiabil-
ity. The proof is straightforward. The refutational
completeness argument of the basic rules, Theo-
rem 4.2(ii), can be provided using the excess literal
technique (Anderson and Bledsoe, 1970). From this
point of view, Rules (24) and (29) handle the base
case: T is a unit order clausal theory; while Rule (30)
handles the induction one: it subtracts the excess lit-
eral measure of T at least by 1 for the clausal theory

in every branch of its consequent.
T is closed under Rules (24) and (29) iff for every

application of Rules (24) and (29) of the form
T
T 0

,

T 0 = T . By trans(T )� OrdCl we denote the least set
such that trans(T ) � T and trans(T ) is closed under
Rules (24), (29).

Using the basic rules, one can construct a finitely
generated tree with the input theory as the root in
the usual manner, so as the classical DPLL procedure
does; for every parent vertex, there exists an appli-
cation of Rule (24)–(30) such that the theory in its
antecedent is in the parent vertex and the theories in
its consequent are in the children vertices. A branch
of a tree is closed iff it contains a vertex T 0 such that
� 2 T 0. A branch of a tree is open iff it is not closed.
A tree is closed iff every branch of it is finite and
closed. A closed tree is finite by König’s Lemma. A
tree is open iff it is not closed. A tree is linear iff it
consists of only one branch, beginning in its root and
ending in its only leaf.

The following lemma shows that Rules (24) and
(29) are refutation complete for a special kind of
(countable) unit order clausal theory, which will be
exploited in the base case of Theorem 4.2(ii).

Lemma 4.1. Let T = trans(T ) � OrdCl be a count-
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able unit order clausal theory such that for all a 2
atoms(T ), either there exists a P e 2 T , e 2 f0;1g,
satisfying, for all C 2 T and C 6= aP e, a 62 atoms(C);
or 0� a;a� 1 2 T . There exists a partial model A of
T , dom(A) = atoms(T ).

Proof. By the lemma assumption that T is a unit or-
der clausal theory, � 62 T = trans(T ). In addition,
by the lemma assumption that T is a countable set,
there exist g � w and a sequence d : g �! atoms(T )
of atoms(T ). At first, we define a partial valuation Va

by recursion on a� g in Table 5. It is straightforward
to prove the following statements:

For all a � g, Va is a partial valuation,
dom(Va) = d[a]; and for all a� a0 � g, Va �
Va0 .

(31)

The proof is by induction on a� g.

For all a � g and l 2 T such that atoms(l) �
dom(Va), Va j= l.

(32)

The proof is by induction on a� g.
We put A = Vg. By (31), A is a partial valua-

tion, dom(A)
(31)
== d[g] = atoms(T ). Let l 2 T . Then

atoms(l) � atoms(T ) = dom(A) and A j=(32)
== l. So,

A j= T . We conclude that A is a partial model of T ,
dom(A) = atoms(T ).

The DPLL procedure is refutation sound and com-
plete.

Theorem 4.2 (Refutational Soundness and Complete-
ness of the DPLL Procedure). Let S�F OrdCl.

(i) If there exists a closed tree Tree with the root
S constructed using Rules (24)–(30), then S is
unsatisfiable.

(ii) There exists a finite tree Tree with the root S con-
structed using Rules (24)–(30) with the follow-
ing properties:

if S is unsatisfiable, then Tree is closed; (33)

if S is satisfiable, then Tree is open
and there exists a partial model A of S,
dom(A) = atoms(S), related to Tree.

(34)

Proof. (i) The proof is by induction on the structure
of Tree using Rules (24)–(30).

(ii) In the first phase, we can construct a finite tree
Tree� with leaves Si, i� n, using Rules (24)–(28) such
that for all i � n, atoms(Si) � atoms(S), Si j=P S; for
all a 2 atoms(Si), either there exists a P e 2 Si, e 2
f0;1g, satisfying, for all C 2 Si and C 6= a P e, a 62
atoms(C); or 0 � a;a � 1 2 Si; S is satisfiable if and
only if there exists i� � n such that Si� is satisfiable.
The proof is by induction on katoms(S)k.

In the second phase, we exploit the excess lit-
eral technique. Let SF �F OrdCl. We define
elmeasure(SF) = (åC2SF kCk)�kSFk. For all i � n,
there exists a finite tree Treei with the root Si con-
structed using Rules (24), (29), (30) with the follow-
ing properties:

if Si is unsatisfiable, then Treei is closed; (35)

if Si is satisfiable, then Treei is open and there
exists a partial model Ai of Si, dom(Ai) =
atoms(Si), related to Treei.

(36)

Let i� n. We proceed by induction on elmeasure(Si).
Case 1: elmeasure(Si) = 0. We distinguish two

cases.
Case 1.1: � 2 Si. We put Treei = Si. Then Si is

unsatisfiable; Treei is a closed tree with the root Si;
(35) holds and (36) holds trivially.

Case 1.2: � 62 Si. Then Si is a unit order clausal
theory; there exists a finite linear tree Treei with
the root Si and the leaf trans(Si) constructed using
Rules (24) and (29). We get two cases.

Case 1.2.1: � 2 trans(Si). Then Treei is closed;
its only branch from Si to trans(Si) is closed; by (i)
for Treei, Si is unsatisfiable; (35) holds and (36) holds
trivially.

Case 1.2.2: � 62 trans(Si). Then Treei is open;
its only branch from Si to trans(Si) is open; trans(Si)
is a unit order clausal theory; we have, for all a 2
atoms(Si), either there exists a P e 2 Si, e 2 f0;1g,
satisfying, for all C 2 Si and C 6= aP e, a 62 atoms(C);
or 0 � a;a � 1 2 Si; for all C 2 trans(Si)�Si, for all
a 2 atoms(C), 0� a;a� 1 2 Si � trans(Si); the proof
is by induction on ktrans(Si)� Sik using Rule (29);
for all a 2 atoms(Si) = atoms(trans(Si)), either there
exists aP e2 Si� trans(Si), e2 f0;1g, satisfying, for
all C 2 trans(Si) and C 6= aP e, a 62 atoms(C); or 0�
a;a� 12 Si � trans(Si); by Lemma 4.1 for trans(Si),
there exists a partial model Ai of trans(Si), dom(Ai)=
atoms(trans(Si)); Ai, dom(Ai) = atoms(trans(Si)) =
atoms(Si), is a partial model of Si � trans(Si) related
to Treei; Si is satisfiable; (36) holds and (35) holds
trivially.

Case 2: elmeasure(Si) > 0. Then there exist
l1; l2; l3 2OrdLit,� 6=C 2OrdCl, and l1_C 2 Si, l1_
l2_ l3 is a trichotomy. We put S1

i = (Si�fl1_Cg)[
fl1g �F OrdCl, S2

i = (Si�fl1_Cg)[fCg[fl2g �F
OrdCl, S3

i = (Si�fl1 _Cg)[fCg[fl2g �F OrdCl.
Then

Si

S1
i

�� S2
i

�� S3
i

is an application of Rule (30); for all 1 � j � 3,
elmeasure(S j

i ) < elmeasure(Si); for all 1 � j � 3, by
induction hypothesis for S j

i , there exists a finite tree
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Table 5: Va.

V0 = /0;

Va = Va�1[f(d(a�1);la�1)g (1� a� g is a successor ordinal);

Ea�1 =

( 
kCn1kVa�1

kCn2kVa�1

! 1
n ���� Cn1 P d(a�1)n &Cn2 2 T;Cn1;Cn2 2 PropConj;atoms(Cn1;Cn2)� dom(Va�1)

)
[(�

kCn1kVa�1
� 1

n
���� Cn1 P d(a�1)n 2 T;Cn1 2 PropConj;atoms(Cn1)� dom(Va�1)

)
[n

kekVa�1 jd(a�1)P e 2 T;e 2 f0;1g
o
;

Da�1 =

( 
kCn1kVa�1

kCn2kVa�1

! 1
n ���� Cn1 � d(a�1)n &Cn2 2 T;Cn1;Cn2 2 PropConj;atoms(Cn1;Cn2)� dom(Va�1)

)
[(�

kCn1kVa�1
� 1

n
���� Cn1 � d(a�1)n 2 T;Cn1 2 PropConj;atoms(Cn1)� dom(Va�1)

)
;

Ua�1 =

( 
kCn1kVa�1

kCn2kVa�1

! 1
n ���� d(a�1)n &Cn2 � Cn1 2 T;Cn1;Cn2 2 PropConj;atoms(Cn1;Cn2)� dom(Va�1)

)
[(�

kCn1kVa�1
� 1

n
���� d(a�1)n � Cn1 2 T;Cn1 2 PropConj;atoms(Cn1)� dom(Va�1)

)
;

la�1 =

8<:
WWW
Da�1 +

VVV
Ua�1

2
if Ea�1 = /0;WWW

Ea�1 else;

Vg =
[
a<g

Va (g is a limit ordinal)

Tree j
i with the root S j

i constructed using Rules (24),
(29), (30), and (35), (36) hold for Tree j

i . We put

Treei =
Si

Tree1
i

�� Tree2
i

�� Tree3
i
:

Then Treei is a finite tree with the root Si constructed
using Rules (24), (29), (30). We get two cases.

Case 2.1: Si is unsatisfiable. Then, for all 1 �
j � 3, S j

i is unsatisfiable; by (35) for Tree j
i , Tree j

i is
closed; Treei is closed; (35) holds and (36) holds triv-
ially.

Case 2.2: Si is satisfiable. Then there exists
1 � j� � 3 and S j�

i is satisfiable; by (36) for Tree j�
i ,

Tree j�
i is open, there exists a partial model A

j�
i

of S j�
i , dom(A

j�
i ) = atoms(S j�

i ), related to Tree j�
i ;

Treei is open; we have l1 _ l2 _ l3 is a trichotomy;
atoms(l1) = atoms(l2) = atoms(l3), atoms(S j�

i ) �
atoms(Si), S j�

i j=P Si. We put Ai = A
j�
i [f(a;0) ja 2

atoms(Si) � atoms(S j�
i )g, dom(Ai) = atoms(Si), a

partial valuation. Then Aijatoms(S j�
i )

= A
j�
i j= S j�

i ,

Ai j= Si, Ai, dom(Ai) = atoms(Si), is a partial model
of Si, related to Treei; (36) holds and (35) holds triv-
ially. The induction is completed.

We construct Tree from Tree� by replacing the leaf
Si with Treei for every i � n. We have Tree�, for all
i� n, Treei are finite. Hence, Tree is finite. It remains
to prove (33) and (34).

Let S be unsatisfiable. We have S is satisfiable if
and only if there exists i� � n such that Si� is satisfi-
able. Then, for all i � n, Si is unsatisfiable; by (35)
for Treei, Treei is closed; Tree is closed; (33) holds.

Let S be satisfiable. We have S is satisfiable if
and only if there exists i� � n such that Si� is sat-
isfiable. Then, there exists i� � n and Si� is satisfi-
able; by (36) for Treei� , Treei� is open, there exists
a partial model Ai� of Si� , dom(Ai�) = atoms(Si�),
related to Treei� ; Tree is open; we have, for all
i � n, atoms(Si) � atoms(S), Si j=P S; atoms(Si�) �
atoms(S), Si� j=P S. We put A = Ai� [ f(a;0) ja 2
atoms(S)� atoms(Si�)g, dom(A) = atoms(S), a par-
tial valuation. Then Ajatoms(Si� ) = Ai� j= Si� , A j= S,
A, dom(A) = atoms(S), is a partial model of S related
to Tree; (34) holds. The theorem is proved.

The set of basic rules has been proposed as a min-
imal one, which is suitable for theoretical purposes;
i.e. not to get complicated soundness and complete-
ness arguments. For practical computing, it may be
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Table 6: Translation of f to Sf.

f = a! 0_ (a! a&b)! b

fã0 � 1;
�

a! 0| {z }
ã1

_(a! a&b)! b| {z }
ã2

�
! ã0g (17)

fã0 � 1; ã1 � ã0 _ ã1 P ã0; ã2 � ã0 _ ã2 P ã0;( a|{z}
ã3

! 0)! ã1;((a! a&b| {z }
ã4

)! b|{z}
ã5

)! ã2g (21);(23)

fã0 � 1; ã1 � ã0 _ ã1 P ã0; ã2 � ã0 _ ã2 P ã0;0� ã3 _ ã1 P 1; ã3 � a_ ã3 P a; ã4 � ã5 _ ã4 P ã5 _ ã5 � ã4 & ã2 _ ã5 P ã4 & ã2; ã5 � ã4 _ ã2 P 1;

b� ã5 _b P ã5; ã4! ( a|{z}
ã6

! a&b|{z}
ã7

)g (22)

fã0 � 1; ã1 � ã0 _ ã1 P ã0; ã2 � ã0 _ ã2 P ã0;0� ã3 _ ã1 P 1; ã3 � a_ ã3 P a; ã4 � ã5 _ ã4 P ã5 _ ã5 � ã4 & ã2 _ ã5 P ã4 & ã2; ã5 � ã4 _ ã2 P 1;

b� ã5 _b P ã5; ã4 & ã6 � ã7 _ ã4 & ã6 P ã7;a� ã6 _a P ã6; ã7! a|{z}
ã8

& b|{z}
ã9

g (18)

Sf = fã0 � 1 [1] ã1 � ã0 _ ã1 P ã0 [2] ã2 � ã0 _ ã2 P ã0 [3] 0� ã3 _ ã1 P 1 [4]

ã3 � a_ ã3 P a [5] ã4 � ã5 _ ã4 P ã5 _ ã5 � ã4 & ã2 _ ã5 P ã4 & ã2 [6] ã5 � ã4 _ ã2 P 1 [7] b� ã5 _b P ã5 [8]

ã4 & ã6 � ã7 _ ã4 & ã6 P ã7 [9] a� ã6 _a P ã6 [10] ã7 � ã8 & ã9 _ ã7 P ã8 & ã9 [11] ã8 � a_ ã8 P a [12]

ã9 � b_ ã9 P b [13]g

augmented by additional admissible rules, which do
not change the semantics of the DPLL procedure. For
example, we can add a rule:

(Tautology simplification rule) (37)

T
T �fl_Cg

l_C 2 T; l is a tautology.

We can strengthen Rule (29), denoted as (29)#, by
omitting the application condition: T is a unit or-
der clausal theory. Such admissible rules are obvi-
ously sound and helpful for constructing more com-
pact DPLL trees in many cases, however, superfluous
for the completeness argument. Concerning the de-
duction problem of a formula from a finite theory, we
conclude.

Corollary 4.3. Let f 2 PropForm /0 and T �F
PropForm /0. There exist Af

T �F Ã, Sf

T �F
SimOrdCl

Af

T
, a finite tree Tree with the root Sf

T con-
structed using Rules (24)–(30) with the following
properties:

if T j=P f, then Tree is closed; (38)

if T 6j= f, then Tree is open and there exists a
partial model A of T , dom(A) = atoms(T;f),
related to Tree such that A 6j= f.

(39)

Proof. An immediate consequence of Theorems 3.2
and 4.2.

Let f = a! 0_ (a! a&b)! b 2 PropForm /0,
a;b 2 PropAtom /0. Using Corollary 4.3, we show
that f is a tautology. At first, we translate f to
Sf �F SimOrdCl in Table 6. Before we start DPLL
derivation, it is suitable to investigate several cases
when the input atoms a, b get the truth values 0, 1.
Case 1: kak = 0. Then kfk = 1. Case 2: kak = 1.
Then kfk = kbk)))kbk = 1. Hence, in all the cases,
kfk= 1, and it remains to investigate whether kfk= 1
for the case 0 � a, a � 1, 0 � b, b � 1 by the DPLL
procedure.

Case 3: We add 0� a [14], a� 1 [15], 0� b [16],
b � 1 [17]. Primarily using Rules (27) and (28), we
can derive a branch in the constructed tree such that
for all i � 9, 0 � ãi, ãi � 1; the other branches are
closed, ending in �. We then lengthen this branch by
deriving

ã5 � ã4 [18] : [7]
ã5 � ã4 & ã2_ ã5 P ã4 & ã2 [19] : [6] [18]
b� ã4 & ã2_bP ã4 & ã2 [20] : [19] [8]
ã7 � a&b_ ã7 P a&b [21] : [11] [12] [13]
ã4 &a� ã7_ ã4 &aP ã7 [22] : [9] [10]
ã4 � b_ ã4 P b [23] : [22] [21]
� [24] : [20] [23] (29)#;

ã2 � 1.

Hence, all the cases-branches of the constructed tree
are closed; we have reached � in all of them. We get
the constructed tree by the DPLL procedure is closed.
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So, we have proved /0 j=P f and f is a tautology.

5 CONCLUSIONS

We have investigated the deduction problem of a for-
mula from a finite theory in the propositional Prod-
uct logic. The deduction problem has been solved
via translation of a formula to an equivalent satisfi-
able finite order clausal theory, consisting of order
clauses. An order clause is a finite set of order liter-
als of the form e1 � e2 where ei is either a conjunction
of propositional atoms or the propositional constant
0 (false) or 1 (true), and � is a connective either P
or �. P and � are interpreted by the equality and
standard strict order on [0;1], respectively. The tri-
chotomy over order literals: either e1 � e2 or e1 P e2
or e2 � e1, has naturally led to a variant of the DPLL
procedure with a trichotomy branching rule, which is
refutation sound and complete in the finite case.
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Hájek, P., Godo, L., and Esteva, F. (1996). A complete
many-valued logic with product-conjunction. Arch.
Math. Log., 35(3):191–208.
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