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Abstract: A model of spiking neuron based on the Lambert W function has been proposed. It is shown analytical 
dependence of spiking neuron firing time on input spikes can be obtained. Though such dependence is 
rather complex, it still allows of simplifying software implementation of spiking neural networks. It is 
demonstrated the proposed model software implementation operates faster than one of straightforward 
propagation of a spike through multiple synapse and soma of spiking neuron. 

1 INTRODUCTION 

From the software implementation standpoint, of 
greater importance is analytical representation of 
spiking neuron firing time dependence on input 
spikes inasmuch as firing time holds a central 
position both in conventional self-learning spiking 
neural networks (as a parameter to determine cluster 
that the input pattern belongs to (Natschlaeger and 
Ruf, 1998)) and in hybrid systems based on them (as 
a distance between input pattern and clusters, that is 
utilized for fuzzy partitioning (Bodyanskiy and 
Dolotov, 2009)). Such dependence has not been 
obtained till now so, when implementing a software 
model of spiking neural network, a researcher has to 
emulate dynamics of spiking neuron soma 
membrane potential in order to determine 
empirically the moment when it crosses firing 
threshold, which differs radically from conventional 
artificial neural networks where a neuron output is 
readily expressed on its inputs. Considering 
population coding is usually used in self-learning 
spiking neural networks (Bohte et al., 2002), and 
their synapses are compound structures (Gerstner 
and Kistler, 2002) – so even one input gives rise to a 
set of spikes that come to soma via different paths, 
software applications based on spiking neural 
networks may operate significantly slowly because 
of necessity to emulate spiking neuron membrane 
potential dynamics. 

In the next sections, it is shown that output spike 
firing time dependence on incoming spikes may be 
expressed analytically based on the Lambert W 

function and thus the mentioned difficulty in spiking 
neural networks implementation may be overcome. 
Performance of the proposed model of spiking 
neuron is compared with one of a straightforward 
model of spiking neuron. 

2 ANALYTICAL DEPENDENCE 
OF SPIKING NEURON FIRING 
TIME ON INPUT SPIKES 

In order to obtain an analytical dependence of 
spiking neuron firing time on input spikes, let us 
solve the simpler task first: obtaining firing time of a 
spiking neuron when it receives one incoming spike 
(we will use ‘conventional’ architecture of self-
learning spiking neural network introduced in 
(Bohte et al., 2002)). 

Spiking neuron receives input signal in a pulse-
position form (incoming spikes), transforms it into 
continuous-time form (membrane potential), and 
transforms it back to pulse-position form on its 
output (outgoing spike). Let us examine such 
transformation using spiking neuron j with a simple 
(not multiple) synapse without time delay that 
connects the i-the neuron of the previous layer (it 
may be either a receptive neuron or a spiking 
neuron) with the neuron. Its membrane potential is  

 ijij ttwtu )( , (1)

    i
ii

i ttH
tttt

tt 














 1exp  (2)

542 Bodyanskiy Y. and Dolotov A..
A Spiking Neuron Model based on the Lambert W Function.
DOI: 10.5220/0004631605420546
In Proceedings of the 5th International Joint Conference on Computational Intelligence (NCTA-2013), pages 542-546
ISBN: 978-989-8565-77-8
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



where it  is a spike produced by the i-th neuron, jiw  

is a synaptic weight between the i-th and the j-th 
neurons,  ε  is a spike-response function,   is the 

membrane potential decay time constant,  H  is 

the Heaviside step function. At the moment when 
)(tu j  reaches firing threshold s.n. , the spiking 

neuron generates outgoing spike jt  on its output. 

The task is to find dependence )( ij tt . 

In order to solve the problem, we have to utilize 
the function that is inverse to function 

zzezf )(  (3)

where z is a complex variable. Plot of function )(zf  

is depicted on Figure 1.  
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Figure 1: Function zzezf )( . 

The inversion function of )(zf  is the Lambert W 

function, also called the omega function, )(z  

(Corless, Gonnet, Hare, et al., 1996). It cannot be 
expressed in terms of elementary functions. It has 

two main branches on interval  0,1
e  (Figure 2): 

)(1 x  when 1)(  x  (dashed line) and 

)(0 x  when 1)(  x  (solid line). 

Let us solve now the equation 

s.n.)( tu j  (4)

for t (t is apparently less than simulation interval 
time simt ). Using (1), (2), and the Heaviside step 
function definition, we can express membrane 
potential of the j-th neuron as follows: 
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Case itt   doesn’t make sense as a spiking neuron 

can’t fire until the only incoming spike it  reaches it 
so the equation (4) takes from  

s.n.
1
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Figure 2: Function )(x . 

It should be noted that, from practical 
considerations, parameters of equation (6) may be 
bounded as follows: 

0jiw , (7)

0 , (8)

0s.n. . (9)

Now, applying definition of )(0 x (as we aim to 

get time when membrane potential crosses firing 
threshold from below), we obtain 
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Let us consider now more complex case when two 
spikes 1t  and 2t  generated by neurons of the 
previous layer reach the j-th spiking neuron, and the 
first neuron in the previous layer has fired earlier 
than the second one, i.e. 

21 tt  . (12)

Equation (4) will take the following form in such 
case: 
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or in an expanded form: 
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Taking into account (9) and (12), the first and the 
second systems of equations from (14) do not make 
sense. Solution of the third system of equations is 
similar to (11), namely 
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By solving the fourth system of equations from (14), 
we obtain the following dependence 
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It is notable that equation (16) is substantially 
generalization of equation (15): it defines a wave 
whose inverse form is identical to a separate 
postsynaptic potential and that considers effect of 
the preceding spike on the neuron’s membrane 
potential. 

3 A SPIKING NEURON MODEL 

Let us generalize equation (16) now for case of 
arbitrary number of incoming spikes.  

It is worthy of note that solution (15), (16) of 
equation (13) defines two time intervals –  21, tt  

and  sim2,tt  where on each interval, membrane 

potential of spiking neuron’s soma takes wave-like 

form that is caused by two incoming spikes. 
Utilizing )(0 x  in (15), (16), we consider on the 

mentioned interval only those lapses where 
membrane potential monotonically increases since 
we need to obtain moment when membrane potential 
reaches firing threshold from below. Solution (15), 
(16) gives firing time of neuron when its membrane 
potential reaches firing threshold either on the 
interval when its value monotonically increases for 
the first time (soma receives incoming spike 1t ) or 
on the interval when it increases for the second time 
(soma receives incoming spike 2t ). If solution (15) 
does not produce a real value, it means the 
membrane potential has not reached firing threshold 
still so the second interval should be analyzed. If 
solution (16) has not produces a real value either, it 
means two incoming spikes are not sufficient to fire 
the neuron. 

Evidently the reasoning above may be applied to 
arbitrary number of incoming spikes so in order to 
obtain a generalized solution, we have to analyze 
each interval one by one where membrane potential 
increases to find the first moment when it reaches 
firing threshold. Such exhaustive search apparently 
requires much less number of comparisons as 
opposed to continual comparing on each time step in 
straightforward modelling of spiking neurons. To 
perform the comparison, all spikes incoming to the j-
th neuron should be arranged in order of firing time 
magnitude (so the set of incoming spikes 

 niitttT jiji ,1,0| max   where maxt  is the latest 

possible firing time of neuron of the previous layer, 
n is the number of neurons in the previous layer, 
should be transformed to linearly ordered set 

 niiTtttt ijijijij ,1ˆ,ˆ,| ˆˆ1ˆ,ˆ  ). Then the 

simulation interval should be broken down with 
respect to the ordered set of incoming spikes 
(intervals        simˆ1ˆ,3,2,2,1, ,...,,...,,,, tttttttt jnijijjjjj  ). 

Finally, each interval should be analyzed 
sequentially whether membrane potential reached 
firing threshold – once the first real value is 
obtained, the search should be stopped. 

By increasing number of addends to current 
number of intervals that have been analyzed, we can 
generalize equations (15), (16) as follows: 
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where î  is the number of interval currently being 
analyzed; kjt ˆ  is an enumerated spike, kjw ˆ  is a 

weight of synapse that spikes comes to soma 
through. Now if one calculates jt  according to (17)-

(19) on each time interval until a real value is 
received, he can obtain spiking neuron firing time 
for an arbitrary number of incoming spikes (Figure 3 
illustrates case with three incoming spikes).  

Thus, having analytical model of spiking neuron, 
a researcher can easily implement a software 
application of self-learning spiking neural network 
(learning procedures of spiking neural networks are 
out of scope of this paper). Under easy software 
implementation, we understand the fact that a 
researcher does not have to program spike 
propagation form a receptive neuron or a spiking 
neuron through multiple synapse to soma of the 
spiking neuron whose firing time is being obtained. 
In a sense, the proposed model of spiking neuron is 
akin to conventional models of artificial neural 
networks of the second generation as they are 
constructed in terms of matrix algebra, thus allowing 
developers and researcher to avoid biological aspect 
of neurons operating. 

An additional advantage of the proposed model 
is that it can operate in a sequence mode when new 
spikes constantly come to spiking neuron inputs. 
However, we have to note here that spiking neuron 
refractoriness and effect of spike-after potential on 
further neuron firing are not considered in this work 
as in any case they play no part in the most of 
spiking neural networks used in actual practice.  

4 SPIKING NEURON SOFTWARE 
IMPLEMENTATIONS 
PERFORMANCE 

Nowadays software applications of the designed 
models and systems are in most common use due to 
their simplicity and low price as compared to 
hardware implementations. This brings up an 
important question on performance of different 
spiking neuron software implementations. 
Surprisingly, ways to improve spiking neural 
network models for software implementation are 
poorly researched. This section describes results of 
performance testing of two spiking neuron software 
implementations – straightforward model and the 

model introduced in this paper based on the Lambert 
W function. 

The straightforward model of spiking neuron (an 
example of it can be found in (De Berredo, 2005)) 
emulates spiking neuron membrane potential 
dynamics and has to check whether its value crossed 
firing threshold on each time step.  

Software implementation of the spiking neuron 
model introduced on the Lambert W function base 
rests on the procedure described in the previous 
section: incoming spikes are put in order of their 
firing time magnitude and jt  is calculated with 

(17)-(18) on each time interval formed; the first real 
value of jt  indicates firing time of spiking neuron. 

As seen from Table 1, the introduced model is 
always faster than the straightforward model though 
its operating time raises as size of input spikes 
vector increases. 

Table 1: Results of performance testing of straightforward 
model of spiking neuron and the model proposed in this 
paper. 

Size of input 
spikes vector 

Firing time calculation speed, s 

Straightforward 
model 

Model based on 
the Lambert W 

function 
10 0.0019 0.0012 
50 0.254 0.148 
100 0.706 0.308 
300 2.129 1.524 
500 4.018 1.757 

We have to note here that in practice, a range of 
various techniques are used to improve performance 
of software implementations (e.g., methods of 
matrix algebra). We used just ‘pure’ models for the 
sake of reference models comparison. 

5 CONCLUSIONS 

The major conclusion of the research is that 
analytical dependence of spiking neuron firing time 
on input spikes can be expressed – but in an intricate 
way. That fact complicates comprehensive analysis 
of spiking neural networks behavior and features. 
However, the proposed spiking neuron model allows 
of improving spiking neural networks software 
implementations performance. It also allows a 
researcher to abstract away from biological specific 
of spiking neural networks when implementing them 
and to use them just as a regular tool for data 
processing. Another advantage of the proposed 
model  is  its  precision   level   of   the   firing   time 
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Figure 3: Spiking neuron firing time obtaining in case of three incoming spikes. Left: Spiking neuron soma membrane 
potential dynamics caused by incoming spikes (solid line) is presented as a sum of single postsynaptic potentials defined by 
spike-response function (2) (dashed line). Two different firing thresholds are marked with horizontal dash-and-dot lines. In 
the straightforward model of spiking neuron, neuron firing event occurrence is checked on each sampled time step. Sampled 
time when that event occurred defines jt  (vertical dash-and-dot line). Right: Dependence of jt  on firing threshold 

indicates equation (4) solution based on )(0 x  (solid line) and )(1 x  (dashed line). Considered firing threshold values 

are marked with vertical dash-and-dot lines. In the model based on the Lambert W function, there may be three checks at 
most to obtain jt . Given firing threshold is 0.5, firing time is obtained on the first step (bottom horizontal dash-and-dot 

line), and given firing threshold is 1.5, firing time is obtained on the second step (top horizontal dash-and-dot line).  

calculation that is important in fuzzy spiking neural 
networks: contrary to the straightforward model 
where precision is bounded with the sampled 
interval value, precision in the proposed model is 
bounded only by precision of the system in the 
Lambert W function calculation. 
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