
A Test-Driven Approach for Developing Software Languages

Omar Badreddin, Andrew Forward and Timothy C. Lethbridge
School of Electrical Engineering and Computer Science (EECS), University of Ottawa, Ottawa, Canada

Keywords: Test Driven Development, Model Oriented Programming Language, UML.

Abstract: Test-Driven Development (TDD) is the practice of attempting to use the software you intend to write,
before you write it. The premise is straightforward, but the specifics of applying it in different domains can
be complex. In this paper, we provide aTDD approach for language development. The essence is to apply
TDD at each of four levels of language processing, hence we call our approach Multi-Level TDD, or
MLTDD. MLTDD can be applied to programming languages, preprocessors, domain specific languages,
and transformation engines. MLTDD was used to build Umple, a model-oriented programming language
available for Java, Ruby, and PHP. We present two case studies where this approach was implemented to
develop two other domain specific languages.

1 INTRODUCTION

Test Driven Development (TDD) (Beck, 2002), and
its similarly-named practices (Test First
Development, Test Driven Design, and Behaviour
Driven Development (BDD)) provide a trusted
strategy for software development regardless of the
development lifecycle. The benefits of TDD are well
documented in (Gupta & Jalote, 2007). The focus in
this paper is not to convince the reader of the value
of TDD, but rather to demonstrate a TDD approach
geared for software language development.

The main contribution of this paper is what we
call Multi-Level TDD (MLTDD), which means
applying TDD to each level of the language
processing pipeline.

MLTDD has been successfully used to develop
Umple (Badreddin, 2010), (Lethbridge et al, 2013),
(Lethbridge et al, 2010), a general purpose model-
oriented programming language. It has also been
used to create Appstats, (Forward, 2012) a DSL for
managing usage statistics and Osl, a proprietary
DSL for describing network topologies. The
examples shown in the paper focus primarily on
Umple, publicly available at (Lethbridge et al,
2012). MLTDD has been extensively tested in
Umple development and has helped to keep Umple’s
overall quality high, and to facilitate its evolution.

The paper is organized as follows. We first

introduce the components of a language processor
and describe how TDD can be streamlined for each
component. We explain how this manages defects
and reduces regression by presenting a hypothetical
bug scenario. We then explain how this approach
was applied in practice.

2 DESIGN A NEW LANGUAGE
BY TESTING: MLTDD

The number of domain specific and general-purpose
software languages is increasing. There are several
reasons for creating such languages (Gronback,
2009). An approach to building new languages is
shown in Figure 1. The exact architecture of each
language processor may differ, but this workflow
provides a typical view. Variations of this
architecture were used in developing Umple,
Appstats, and Osl.

The four common steps in processing a language
are given below. Each step can be encapsulated in a
component in the language processing architecture:

 Parse the Source – Processing occurs according
to a grammar that finds matches for the language
constructs. The language text (or textual
representation of a visual language) is consumed
by the parser, which translates it into an an
abstract syntax tree (AST). The AST remains a
syntactic view of the system.

225Badreddin O., Forward A. and Lethbridge T..
A Test-Driven Approach for Developing Software Languages.
DOI: 10.5220/0004699502250234
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 225-234
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Building a new language.

 Populate the Metamodel – The AST is analyzed
and an instance of the language’s metamodel is
constructed. The metamodel includes additional
semantic details.

 Generate Artifacts – The metamodel instance is
used to generate work products of the language,
which may include code generation (e.g. for
preprocessor languages like CoffeeScript, Sass, or
Umple), or runtime code for virtual machines
(e.g. Java object-code, or ASP.Net CLI).
Alternatively, runtime interpretation of the
metamodel instance may occur (e.g. Ruby, Bash,
or SQL).

 Build Systems – Now that we have a new
language, we build real systems (the purpose for
creating the language). For general purpose
programming languages this may include using
the new language to build itself (i.e. using the
Umple language to create the Umple compiler).

For simple languages, generating language artifacts
could be performed directly against the AST,
skipping the second step . But in practice it is
worthwhile to introduce an intermediate stage (the
metamodel) to decouple the semantics of the
language from its specific syntax.

More complex languages may include modules
such as a debugger, integrated-development tools
and meta-language extension mechanisms. The
focus of this paper remains on the four steps above
and the components that implement these steps.
These form a general architecture for software
language development.

The following sections investigate each of the
four components and demonstrates how TDD is
applied, using Umple as a case study.

2.1 Parser Testing

The primary intent of the parser is to correctly
interpret the source code according to the language’s
syntax. Driving parser design through tests requires
explicit test cases to make these assertions: a)
Asserting the parser properly tokenizes the input,
and b) Asserting the parserproperly populates the

metamodel instance
A template for testing parser in JUnit is:

@Test
 public void someSyntaxToVerify() {
 // Step 1: Load the source code
 // Step 2: Parse file and assert its success
 // Step 3: Assert correct tokenization
 // Step 4: Clean up }

A simplified excerpt from the Umple codebase is
shown below that demonstrates the proper parse of a
simple Umple class.

@Test
public void emptyClass() {
 String input = "class Student{}";
 String expectedOutput =
 "[classDefinition][name:Student]";
 UmpleModel model = new
 UmpleModel(new UmpleFile("empty.ump"));
 UmpleParser parser = new UmpleParser(model);
 boolean answer = parser.parse(
 "program", input).getWasSuccess();
 Assert.assertEquals(true, answer,
 "Unable to parse Umple code");
 answer = parser.analyze(false).getWasSuccess();
 Assert.assertEquals(true, answer,
 "Unable to analyze Umple code");
 Assert.assertEquals(expectedOutput,
 parser.toString()); }

This tests the empty class case; a class with no
content except possibly white spaces and new line
characters.

The parser testing must also handle invalid input,
or negative cases. The extent of negative test cases
depends on the proficiency of the target audience,
the complexity of the language and the desired
debugger feature set. A template for testing invalid
input is shown below:

@Test
public void someSyntaxErrorToVerify()
{
 // Step 1: Load the source code
 // Step 2: Parse file and assert its failure
 // Step 3: Assert correct error in formation
 // Step 4: Clean up }

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

226

2.2 Metamodel Testing

The objective of metamodel testing is to ensure that
the compiler is able to maintain a valid internal
representation of the input language. It can be
argued that parser testing (above) and artifacts
generation testing (discussed on the next section) are
sufficient. However, from experience we find that
testing the metamodel instance is crucial step to help
maintain the language as it evolves, and facilitates
debugging by isolating issues into either problems
with syntax analysis (testing the parser) or language
metamodel semantics (testing the metamodel).

Metamodel tests use the following standard unit
testing pattern.

@Test
public void someSpecification() {
 // Step 1: SetUp
 // Step 2: Execute
 // Step 3: Verify
 // Step 4: TearDown }

It is important to document not only how the system
behaves under normal conditions, but also how it
behaves in abnormal scenarios where, for example,
preconditions are not satisfied.

Here is a sample test case for the Multiplicity
metamodel class. Below we see that setting the
range on a Multiplicity properly sets both the upper
and lower bound.

@Test
public void setRange_ExplicitBounds() {
 Multiplicity m = new Multiplicity();
 m.setRange("1","2");
 Assert.assertEquals(1,m.getLowerBound());
 Assert.assertEquals(2,m.getUpperBound());
}

Some may question the value of such simplistic
tests. It should be noted that the test is merely an
example to demonstrate the structure of a metamodel
test. But, more importantly, the spirit of following
test-driven design (as well other driven approaches)
is the concept of evolving design through tests. By
following a test-driven approach, the tests (and the
ability to run them over and over again in an
automated fashion) is a welcome side effect, but the
true power of the approach is in the initial design
whereby you first exploit the common uses of your
metamodel and only then do you concern yourself
with the implementation.

2.3 Artifact Generation Testing

The end result of any language compiler is a set of
generated artifacts. Take Java for example, the Java
interpreter generates byte code. Even for visual
languages such as UML, the generated artifacts can
be either high level programming language code
(such as Java or C++), or XML based artifacts (such
as XMI) that are used for saving and interchanging
models. The objective of this category of tests is to
ensure that the compiler is able to generate artifacts
that match what is expected.

Many of the defects of the language processor
are likely to be discovered against these types of
tests. While parser and metamodel tests (are related
code) are important to continued success of your
project, the desired output of your language is really
the generated artifacts (e.g. byte code).

Umple generates a wide range of artifacts. Given
an Umple source, the compiler generates a number
of high level programming languages code (Java,
PhP, Ruby, and C++). The compiler also generates
XML based artifacts, such as Ecore, and Papyrus
XMI, as well as other artifacts such as SQL and
TextUML. We explain here the testing platform to
support this wide range of artefact types.

The code generator typically takes a populated
metamodel instance as input. The output is one or
more target artifacts or a transformation into another
modeling syntax. In addition to overall setup and
tear down, the high-level approach to testing code
generation is shown below.

@Test
public void verifyGeneratedCode() {
 // Step 1: Prepare Metamodel
 // Step 2: Run Code Generator
 // Step 3: Verify results }

To prepare the metamodel instance, there are two
approaches: populating the model by direct calls to
the available API of the metamodel (or perhaps
using a mock object facility; or, parsing source code
using the existing infrastructure.

The first approach (to populate the metamodel
instance directly using the API) has several
drawbacks: The setup code can become quite
cumbersome and complex, which could make the
test code less readable and maintainable. And, it can
also be error prone, as the testing developer must
properly populate the metamodel prior to testing.
The primary benefit of this approach is the isolation
of the code generator's behaviour from that of the
code that parsed the source and generated the

A�Test-Driven�Approach�for�Developing�Software�Languages

227

metamodel instance. Issues related to the parsing
phase (translating code into a populated metamodel
instance) would not interfere with testing the code
generator.

For example, the following code creates a
Student class with three attributes (id, name, and
program).

UmpleModel m = new UmpleModel(null);
UmpleClass student = m.addUmpleClass("Student");
student.addAttribute(
 new Attribute("id","Integer", null,null,true));
student.addAttribute(
 new Attribute("program","String", null,"SEG",false));

The second approach where the test uses raw source
code that is then parsed into the Metamodel instance
(which is then used as input to the code generators)
has two primary benefits. First, it is easier to express
a system in its own syntax as opposed to building it
using a metamodel's API. Second, you provide an
important integration between the external inputs
and outputs of your language. The obvious
drawback is that these tests are no longer pure unit
tests, and that failing tests in this component could
be resulting from the parser or the code generator.

Here is the same example from above written
using the source language (Umple) syntax directly.

class Student {
 Integer id;
 name;
 program = "SEG"; }

Regardless of the approach, the metamodel instance
must be populated before the code generation can be
tested. Instead of crafting a new means to populate
that model, we favour the more pragmatic approach
of simply reusing the existing (and tested) parsing
approach as described in the previous section.

By parsing the model code directly, an added
benefit is that you can create a generic TemplateTest
to manage the test artefacts (i.e. input model code,
expected output system code); leaving the testing
mostly boilerplate-code free.

The outline of such a template class is shown
below.
The method signatures will vary slightly depending
on the type of code generator that is being created;
but the overall structure remains intact.

With the infrastructure shown above in place,
adding new code generation tests is straightforward,
as the template encapsulates the distracting elements
of the test setup. A sample code generator test is
shown below.

public class TemplateTest {
@Before
public void setUp()
{
 // configure paths to Umple data files
 // this can be configured to support
 // multiple languages }
@After
public void tearDown() {
 // clean up any temporary or generated files }
public void assertTemplate (
 String modelFile,
 String expectedGeneratedFile) {
 // Parse / tokenize modelFile
 // Create an instance of meta model
 // Generate code for the underlying system
 // Compare the actual generated code
 // with the expectedGeneratedFile } }

@Test
public void Association() {
 assertUmpleTemplateFor("AttributeTest.ump",
 languagePath + "/ AttributeTest."
 + languagePath +".txt","Student"); }

The test above requires a model file
(AttributeTest.ump), as well as a source code file
based on the selected language. In Umple, we
currently support Java, PHP, Ruby, and C++. Using
the test case above, the same model file can be
reused to test against all the supported languages.
This infrastructure can easily be extended to add
testing for other generated artifacts.

2.4 Testing of End-user Systems

The previous sections described testing the language
compiler / code generator itself in what can be
termed white-box testing. So far, we only asserted
that the system outputs what we expect, but not
necessarily what the target platform requires. This
class of testing only applies if the language compiler
generates either executable artifacts (i.e, bytecode),
or artifacts that themselves can generate executable
artifacts (i.e, Java or C++), or artifacts that serves a
tangible purpose (i.e, an XMI artifact that is used for
model versioning or interchanging).

The objective of this category of tests is to
ensure the appropriate behaviour of the resulting
system. This is a powerful concept because it
enables the language developer to assert the
semantics of the generated system (not just its
syntax).

The semantics of Umple’s modeling components
are quite rich so it is important to provide adequate
testing of generated systems to ensure that the

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

228

semantics of an Umple model is upheld in the
underlying base language (i.e. Java, PHP or Ruby).
This level of testing ensures the appropriate
behaviour of the generated Umple executable
artefacts, which is essential to support our industrial
case studies.

Let us consider a simple example of testing the
semantics of a class attribute.

class Student { name; }

The specifications for an attribute as defined above
include the following properties and behaviours: the
attribute is included as a constructor argument, the
attribute can also be modified and retrieved. Based
on the above description of an attribute, we could
write the following tests (the tests are written using
JUnit4 syntax).

@Test
public void attributeBehaviour() {
 Student s = new Student("james");
 Assert.assertEquals("james",s.getName());
 s.setName("henry");
 Assert.assertEquals("henry",s.getName()); }

This test can be equally expressed in PHP using
PHPUnit (an xUnit testing framework for PHP
applications) as shown below.

public function test_attributeBehaviour() {
 $s = new Student("james");
 $this->assertEqual("james",
 $s->getName());
 $s->setName("henry");
 $this->assertEqual("henry",
 $s->getName()); }

By capturing the properties and behaviour of
systems built with Umple, we are able to build up an
extensive library of executable specifications which
more concretely demonstrate the realized behaviour
of the system, as opposed to its documented
behaviour (and as is common knowledge amongst
most software practitioners, it is common for
documentation to quickly get stale and out of sync).

Tests under this class are not limited to simple
systems. In the case of Umple for example, the
whole of Umple compiler and development
environment are implemented using Umple itself. In
that sense, Umple provides itself is a very large
system test case (as each new version of Umple is
re-tested against itself to ensure it continues to abide
by it’s own semantics).

Tests in this category provide both an excellent
test-bed for experimenting with code generation
techniques (i.e. testing the effects of changing the

code generation on the resulting system), as well
provided added confidence generated systems (not
just your own language platform) work as expected.
Meanwhile, test failures in this category potentially
identify issues in any of the previous test categories
and will most likely require additional exploratory
tests to uncover the true cause of the semantic error.

3 MANAGING DEFECTS AND
MINIMIZING REGRESSION

Despite having over 2,500 automated Umple tests
that span all facets of the toolset from parsing to
code generation, any compiler inevitably will
contain defects. In this section, we discuss how the
testing infrastructure described above allows for
better defect management by representing bugs as
failing tests, effectively diminishing the time and
effort required to perform regression testing.

When a defect is uncovered, it might be one of
the following:

1. Defects in the way in which the language is
tokenized into an abstract syntax tree

2. Incorrect population of the metamodel instance
from the tokenized language.

3. Inappropriate behaviour of the metamodel
classes.

4. Syntax errors in the generated artefacts.

5. Semantic errors (i.e. incorrect behaviour) in the
generated base code

6. Execution errors in the generated systems.
In addition to the defect scenarios above, there is

always the possibility of usability defects. Dealing
with this type of defect is outside the scope of our
work, and instead, we focus our attention on well-
defined, repeatable issues.

As defects are uncovered, it is not always
apparent which category of defects has been
uncovered. Where the root cause of a defect is
unknown, it is recommended to resort to bottom-up
defect resolution. We start by verifying the
tokenization, then the metamodel, followed by the
generated artifact, and finally, the system level
testing.

3.1 Step 1: Identify the Problematic
Input Language Code and Expose
It with a failing Test

The first step is to identify the component

A�Test-Driven�Approach�for�Developing�Software�Languages

229

responsible for the problematic output. This process
may involve a few iterations to isolate the exact
symptoms causing the issue, but that is not always
necessary.

For illustration purposes, our sample defect is
that un-typed Umple attributes are not reflected in
the generated code. The following code shows the
potentially problematic Umple code.

class Student { id; }

The test case would perform an end-to-end high
level test that properly documents the identified
issue with a failing test.

3.2 Step 2: Verify the Tokenization
of the Problematic Umple Code

With our high-level failing test in place, we now
analyze each step of the process to identify the root
cause of the problem. We start with the Umple
parser.

The process for verifying the parser is already
available. We simply add an additional test using the
problematic Umple code as the input and we verify
the output.

To continue with the example above, we first
make sure that un-typed attributes are properly
parsed and tokenized. The expected result
[class][name:Student][attribute][name:id]
represents a toString view of the tokenization
sequence used to assert equality in a human readable
form.

@Test
public void untypedAttributes() {
 assertParse("untyped.ump",
 "[class][name:Student]"+
 "[attribute][name:id]"); }

If this test fails, we resolve it and re-run our test
from Step 1. If that test succeeds, then it is likely
that the problem is now properly resolved and the
debugging process is complete. If not, then we move
on to the next step.

3.3 Step 3: Verify the Instance
of the Umple Metamodel

Once the Umple source has been shown to parse
correctly (but that the observed issue persists), we
then validate that the instance of the Umple
metamodel is consistent with the Umple input. Here,
we are ensuring that the metamodel was properly

populated following the parser tokenization process.
To test the metamodel, we enhance the test

identified in Step 2 as follows.

@Test
public void untypedAttributes() {
 assertParse("untyped.ump", "[class][name:Student]"+
 "[attribute][name:id]");

 UmpleClass aClass = model.getUmpleClass(
 "Student");
 Assert.assertEquals("Student", aClass.getName());
 Attribute attr = aClass.getAttribute("id");
 Assert.assertEquals("id", attr.getName());
 Assert.assertEquals("String", attr.getType()); }

Here, we assert that the Student class is created, and
that it has an attribute of type String with the name
id. If this test fails, we follow the same procedure
starting from the previous step: re-test our high-level
test and proceed to the next step only if that test still
fails.

3.4 Step 4: Validate the Proper
Behaviour of the Metamodel

Once the Umple code appears to be parsed correctly,
and the metamodel is properly populated, we then
investigate if there is any special behaviour that is
performed by the metamodel instance that may not
be handled properly.

For example, an Attribute has an operation
isPrimitive which checks for the Umple predefined
types, and perhaps this operation is not functioning
as expected. Below is a test case demonstrating the
expected behaviour.

@Test
public void isPrimitive() {
 Attribute av;
 av = new Attribute("a",null,null,null,false);

 Assert.assertEquals(true, av.isPrimitive());
 av.setType("String");

 Assert.assertEquals(true, av.isPrimitive());
 av.setType("Address");

 Assert.assertEquals(false, av.isPrimitive()); }

Dealing with this type of testing is difficult to
categorize, and each scenario will need to be
analyzed individually. If the behaviour of the
metamodel appears to be working correctly (but our
high-level test still fails), we continue to the next
step.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

230

3.5 Step 5: Compare the Expected
versus Actual Generated Code

Next, we analyze the expected code versus actual
generated code. Here, we are testing that the
syntactic translation of the Umple metamodel
instance into the generated base language is correct.

The example test case would resemble the
following code.

@Test
public void untypedAttributes() {
 assertUmpleTemplateFor("attribute.ump",
 "attribute.java.txt”, "Student"); }

Where the “attribute.ump” would be the problematic
Umple code and the “attribute.java.txt” would
contain the desired Java code to be generated from
the model.

3.6 Step 6: Test the Behaviour
of the Generated Code

If all other tests are passing successfully, the final
aspect to testing the Umple system is that the
generated code conforms to the semantics of the
model. It might be the case where we are producing
what is believed to be the correct code, when in fact
the generated code does not behave as the intended
by the model.

In our on-going example presented above, we
write unit tests against a sample application that
contains a Student with an id attribute.

@Test
public void constructor() {
 Student s = new Student("x");
 Assert.assertEquals("x",s.getId()); }

@Test
public void setAndGetStringAttribute() {
 Student s = new Student("x");
 s.setId("y");
 Assert.assertEquals("y",s.getId()); }

The steps outlined above provide a high-level
approach to deal with issues as they arise. The most
important first step is to create a failing test that
exhibits the invalid behaviour of the system. The
granularity of this test is not that important, as we
have developed a systematic approach to verify each
step of the Umple compiler to help determine the
root cause of the issue.

By adopting a test-driven approach, the
regression test suite continues to grow to deal with

new issues and at the same time mitigate the risk of
regressing on existing functionality. In the next
section, we look at how the current infrastructure
supports future potential enhancements.

4 APPLYING MLTDD
TO A LANGUAGE WRITTEN
IN ITSELF

As the core features of the language become
available, a new feature can be described as a defect;
in other words, something is missing that should not
be missing. The approach of adding new features
should follow a similar path as described in the
previous sections whenever possible. In this section,
we describe how to manage new features by means
of ‘dog-feeding’ examples.

By following the steps described above, it is
possible to specify the desired behaviour of a new
language feature without that feature being available
yet. And if the language is written in itself, it is
required to implement most behaviour using the
existing language constructs.

In the example below, we demonstrate this
process using Umple. The example illustrates adding
an OCL-like constraint syntax to be specified against
attributes. The semantic test below assumes the OCL
constraint that age >= 18 for any Student.

Before implementing the change, we first write a
test in the base language demonstrating the desired
functionality. This test would need to be translated
into each language supported. Below is a sample test
written for Java.

@Test
public void cannotSetTo17() {
 Student s = new Student(18);
 Assert.assertEquals(18,m.getAge());
 Assert.assertEquals(false,s.setAge(17));
 Assert.assertEquals(18,m.getAge()); }

Next, we use Umple itself to implement the feature
using existing constructs.

class Student {
 Integer age; before setAge {
 if (aAge < 18) { return false; }
 }
 after getAge {
 if (age < 18) {
 throw new RuntimeException("Age must be >= 18")
 }
 } }

Once the behaviour is validated with sufficient (and

A�Test-Driven�Approach�for�Developing�Software�Languages

231

passing) tests within our base languages, we then
enhance the parser and metamodel with the new
language constructs.

The potential Umple syntax might look like the
following.

class Student {
 Integer x;
 // this is the potential invariant syntax
 [x >= 18] }

Next, we migrate the custom code written in the
behaviour tests into the code generation process to
validate the generated syntax. Following that, we
deploy a new version of Umple itself and update the
original behaviour tests to use the new language
constructs (as opposed to having to write the
behaviour by hand, as was required before the
feature was available). These tests themselves
remain relatively unchanged; we simply update the
tests to use the new language constructs.

In pure TDD methodology, the process is not just
about testing; but rather about designing the system
in a modular fashion maintaining low coupling and
well-defined interfaces. The process is also about
capturing the intention of the software (i.e.
automated tests) that can be easily verified (i.e. re-
running the test suite) effectively enhancing
reusability.

For example, the act of manually testing and
modifying (i.e. debugging) an application until it
works benefits only the developer performing the
task. It cannot be replicated easily, as the debugging
steps are not documented and are lost once the
debugging exercise is complete. Conversely, by
capturing the testing process through automation, all
developers can benefit as knowledge is gained about
the true behaviour of the system that can be easily
re-run and re-verified.

In the case of building a new programming
language (or in the case of Umple, extending
existing base languages), we first need to be
concerned with testing the tooling itself. But,
because the outputs of such systems are systems too,
they can also be tested (i.e. semantic testing of
systems generated using the new language).

In addition, because Umple is implemented in
itself, we are able to capture the debugging effort of
new code generation behaviour in automated tests,
and then modify the underlying Umple language to
replicate that behaviour natively, as shown with the
OCL constraint example. In summary, we enhance
the Umple language so that we can refactor Umple
(which is written in Umple) to make use of the
enhanced language elements; ‘eating our own dog
food’, so-to-speak.

5 CASE STUDIES

To further explore and validate our MLTDD
approach, we applied it to two industrial projects,
Appstats and OSL. These were undertaken in a
software company specializing in the development
of online process solutions.

5.1 Case Study 1: Appstats

Appstats (Forward, 2012) is a small open-source
logging and statistics library that provides a
"counting" framework with features such as built-in
caching, delayed processing, as well as the creation
of ad-hoc and scheduled reporting. The language
provides a simple, yet effective, DSL. The source
code is about 2 KLOCs with 97% coverage from
over 650 tests. The basic structure of an appstats
query is

<action> <timeframe> <host/server> <context
filter> <group filter>

Actions are user defined and could include things
like # logins, # objects created, # exceptions. Date
ranges support several formats such as "between
Mar, 2010 and Mar, 2011", "today", "last
year|month|week|day", etc. The host/server simply
allows the user to grab statistics from a particular
server such as testing, versus staging versus
production. Finally, all data logged by appstats is
tagged with, and is searchable / groupable by any
number of contexts (as defined by the user - not
appstats), examples include tracking the logged in
user, the address searched, number of results found,
duration of request etc.

By instrumenting an application appstats logs,
you enable very powerful and efficient queries with
a simple DSL. In addition, developers can write 3rd
party plug-ins to augment the "logging" statistics
with other data sources to facilitate a uniform API
between the raw data and any application reporting
functionality.

The approach used to test Appstats was the same
as that used by Umple. Below, we discuss the
unique characteristics of testing the statistics
collection mechanism of Appstats. Just like any
other type of test, you need to emulate the situation
you are testing, and then verify that the right things
has occurred. For Appstats statistics, there are a few
items that require configuration, otherwise it is no
different than testing other aspects of the system.

The examples below are written in Ruby using
the RSpec testing framework.
1) Reset the logged and simulate the current time.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

232

This will ensure the log starts empty, and that your
logs will occur at a specific (and testable) time.
You will also want to remove the log file after
each test to ensure all tests start with a clean slate.

before(:each) do
 Appstats::Logger.reset
 Appstats::Logger.filename_template =
 "test_appstats_lookup_controller"
 Time.stub!(:now).and_return(
 Time.parse('2010-09-21 23:15:20 UTC'))
 end
 after(:each)do
 File.delete(Appstats::Logger.filename)
If File.exists?(Appstats::Logger.filename)
 end

2) Write the test that should "gather" some type of
statistic.

get :lookup, :address =>
 "123 Victoria Ave, Ottawa, K1P 1P2",
 :radius => "0.05"
 Appstats::Logger.raw_read.should ==
 Appstats::Logger.entry_to_s(
 "buyer-address-lookup",
 :accuracy => "4",
 :area => "Ottawa area",
 :total_results => 123)
 end end

Each project requires unique testing, and the above
demonstrates the use of the appstats API. Such
testing is not (yet) required in Umple as Umple
exposes itself only as a language (and related tools),
whereas Appstats is both a language and an API.

5.2 Another Case Study: OSL

Another language that has benefited from the TDD
approach described in this paper is OSL. OSL is a
proprietary language developed by CENX Inc. to
manage the inventory, ordering and monitoring of
Ethernet back-haul networks. OSL is comprised of a
mark-up language, using YAML as its base as well
as a runtime environment which is its own set of
commands. The description language provides the
building blocks to describe network topologies
whereas the runtime language helps to compile
telecom planning spreadsheets into actual network
assets. OSL has also been used to help large
telecom companies properly complete circuit orders.

OSLs use of dynamic language constructs such
as multiple inheritance, object mix-ins and duck-
typing have allowed network engineers to build
various network topologies between various
organizations with little duplication. To date, OSL is

about 7 KLOCs of production code and are 96%
covered by 1100 automated tests, structured using
MLTDD.

6 RELATED WORK

Since agile methodologies emphasize the delivery of
working executable code in a repeatable manner, the
notion of automatically testing these deliverables is
appealing. Since the emergence of such
methodologies, one can notice the increase of work
on the value of TDD. The literature is rich with work
reporting and assessing the benefits of test driven
development methodologies. One study in IBM
reported that adoption of TDD has reduced the
number of defects by 50% (Maximilien & Williams,
2003). Our work goes beyond arguing for or against
TDD, but rather studies how TDD can be applied to
a specific application domain (Forward &
Lethbridge, 2008), software language development.

Steel (Steel & Lawley, 2004) reports on a study
of the methodology of TDD of a model
transformation engine. Similar to our work, steel’s
study emphasizes the importance and value of TDD,
emphasises the need of structuring tests. Steel also
concludes that there is a need for maintaining tests in
a structured format (i.e, in XML) rather than
programmatically as we have done in Umple.

One core difference in approach between our
work and Steel’s is the way tests are structured. We
advocate structuring tests around application tiers or
components (i.e, parsing, metamodel instance
creation, code generation and system creation).
Steel, on the other hand, advocates structuring tests
around features. Our view is that at the high level,
tests must be streamlined and organized by level.
Within each level, tests can be grouped by feature
and sub-features. The benefit of the high-level
grouping by levels is evident in the following:
 Bugs and features are organized and reported

against levels (parser, etc.).
 A bug report against a feature often spans a

number of levels. Further work is therefore needed
to isolate the concerned level.

 As a language grows, features overlap. If tests
were grouped by feature it is not always clear
which tests belongs to which feature.

7 CONCLUSIONS

This paper has presented a methodology we call

A�Test-Driven�Approach�for�Developing�Software�Languages

233

multi-level TDD (MLTDD) for applying Test
Driven Development to software languages.
Motivated by the success we achieved with applying
MLTDD to Umple, as well applying it to other
projects including Appstats and OSL, we strongly
believe that MLTDD can and should easily be
applied to all general purpose programming
languages, domain languages, model-to-model
transformations and model-to-code transformations.

REFERENCES

Badreddin, O. "Umple: A Model-Oriented Programming
Language," in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-
Volume 2, 2010. pp. 337-338.

Beck, K. Test Driven Development: By Example. Boston,
MA, USA: Addison-Wesley Longman Publishing Co.,
Inc, 2002.

Forward, A. and Lethbridge, T. C. "A Taxonomy of
Software Types to Facilitate Search and Evidence-
Based Software Engineering," in CASCON '08:
Proceedings of the 2008 Conference of the Center for
Advanced Studies on Collaborative Research, 2008.
pp. 179-191.

Forward, A, 2012. Appstats. Accessed 2013.
https://rubygems.org/gems/appstats.

Gronback, R. C. "Eclipse Modeling Project: A Domain-
Speci c Language (DSL)Toolkit". 2009. Addison-
Wesley Longman.

Gupta, A. and Jalote, P. "An Experimental Evaluation of
the Effectiveness and Efficiency of the Test Driven
Development". 2007. Empirical Software Engineering
and Measurement, 2007.ESEM 2007.First
International Symposium on, pp. 285-294.

Lethbridge, T. C., Forward, A. and Badreddin, O. " Umple
Language Online.", accessed 2013, http://
try.umple.org.

Lethbridge, T. C., Forward, A. and Badreddin, O. "Umple
Google Code Project". 2012. Available:
code.umple.org.

Lethbridge, T. C., Forward, A. and Badreddin, O.
"Umplification: Refactoring to Incrementally Add
Abstraction to a Program," in Working Conference on
Reverse Engineering, 2010. pp. 220-224.

Maximilien, E. M. and Williams, L. "Assessing Test-
Driven Development at IBM," in Software
Engineering, 2003. Proceedings. 25th International
Conference on, 2003. pp. 564-569.

Steel, J and Lawley, M. "Model-Based Test Driven
Development of the Tefkat Model-Transformation
Engine". 2004. 15th International Symposium on
Software Reliability Engineering, pp. 151-160.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

234

