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Abstract: Test-Driven Development (TDD) is the practice of attempting to use the software you intend to write, 
before you write it. The premise is straightforward, but the specifics of applying it in different domains can 
be complex. In this paper, we provide aTDD approach for language development. The essence is to apply 
TDD at each of four levels of language processing, hence we call our approach Multi-Level TDD, or 
MLTDD. MLTDD can be applied to programming languages, preprocessors, domain specific languages, 
and transformation engines. MLTDD was used to build Umple, a model-oriented programming language 
available for Java, Ruby, and PHP. We present two case studies where this approach was implemented to 
develop two other domain specific languages. 

1 INTRODUCTION 

Test Driven Development (TDD) (Beck, 2002), and 
its similarly-named practices (Test First 
Development, Test Driven Design, and Behaviour 
Driven Development (BDD)) provide a trusted 
strategy for software development regardless of the 
development lifecycle. The benefits of TDD are well 
documented in (Gupta & Jalote, 2007). The focus in 
this paper is not to convince the reader of the value 
of TDD, but rather to demonstrate a TDD approach 
geared for software language development. 

The main contribution of this paper is what we 
call Multi-Level TDD (MLTDD), which means 
applying TDD to each level of the language 
processing pipeline. 

MLTDD has been successfully used to develop 
Umple (Badreddin, 2010), (Lethbridge et al, 2013), 
(Lethbridge et al, 2010), a general purpose model-
oriented programming language. It has also been 
used to create Appstats, (Forward, 2012) a DSL for 
managing usage statistics and Osl, a proprietary 
DSL for describing network topologies. The 
examples shown in the paper focus primarily on 
Umple, publicly available at (Lethbridge et al, 
2012). MLTDD has been extensively tested in 
Umple development and has helped to keep Umple’s 
overall quality high, and to facilitate its evolution. 

The paper is organized as follows. We first 

introduce the components of a language processor 
and describe how TDD can be streamlined for each 
component. We explain how this manages defects 
and reduces regression by presenting a hypothetical 
bug scenario. We then explain how this approach 
was applied in practice.  

2 DESIGN A NEW LANGUAGE 
BY TESTING: MLTDD 

The number of domain specific and general-purpose 
software languages is increasing. There are several 
reasons for creating such languages (Gronback, 
2009). An approach to building new languages is 
shown in Figure 1. The exact architecture of each 
language processor may differ, but this workflow 
provides a typical view. Variations of this 
architecture were used in developing Umple, 
Appstats, and Osl. 

The four common steps in processing a language 
are given below. Each step can be encapsulated in a 
component in the language processing architecture: 

 Parse the Source – Processing occurs according 
to a grammar that finds matches for the language 
constructs. The language text (or textual 
representation of a visual language) is consumed 
by the parser, which translates it into an an 
abstract syntax tree (AST). The AST remains a 
syntactic view of the system. 
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Figure 1: Building a new language. 

 Populate the Metamodel – The AST is analyzed 
and an instance of the language’s metamodel is 
constructed. The metamodel includes additional 
semantic details. 

 Generate Artifacts – The metamodel instance is 
used to generate work products of the language, 
which may include code generation (e.g. for 
preprocessor languages like CoffeeScript, Sass, or 
Umple), or runtime code for virtual machines 
(e.g. Java object-code, or ASP.Net CLI). 
Alternatively, runtime interpretation of the 
metamodel instance may occur (e.g. Ruby, Bash, 
or SQL). 

 Build Systems – Now that we have a new 
language, we build real systems (the purpose for 
creating the language). For general purpose 
programming languages this may include using 
the new language to build itself (i.e. using the 
Umple language to create the Umple compiler). 

For simple languages, generating language artifacts 
could be performed directly against the AST, 
skipping the second step . But in practice it is 
worthwhile to introduce an intermediate stage (the 
metamodel) to decouple the semantics of the 
language from its specific syntax.  

More complex languages may include modules 
such as a debugger, integrated-development tools 
and meta-language extension mechanisms. The 
focus of this paper remains on the four steps above 
and the components that implement these steps. 
These form a general architecture for software 
language development. 

The following sections investigate each of the 
four components and demonstrates how TDD is 
applied, using Umple as a case study.  

2.1 Parser Testing 

The primary intent of the parser is to correctly 
interpret the source code according to the language’s 
syntax. Driving parser design through tests requires 
explicit test cases to make these assertions: a) 
Asserting the parser properly tokenizes the input, 
and b) Asserting the parserproperly populates the 

metamodel instance 
A template for testing parser in JUnit is: 

 

@Test 
  public void someSyntaxToVerify() { 
    // Step 1: Load the source code 
    // Step 2: Parse file and assert its success 
    // Step 3: Assert correct tokenization 
    // Step 4: Clean up } 

 

A simplified excerpt from the Umple codebase is 
shown below that demonstrates the proper parse of a 
simple Umple class.  

 

@Test 
public void emptyClass() { 
  String input = "class Student{}"; 
  String expectedOutput = 
    "[classDefinition][name:Student]"; 
  UmpleModel model = new 
  UmpleModel(new UmpleFile("empty.ump"));      
  UmpleParser parser = new UmpleParser(model); 
  boolean answer = parser.parse( 
    "program", input).getWasSuccess();     
  Assert.assertEquals(true, answer, 
    "Unable to parse Umple code");    
  answer = parser.analyze(false).getWasSuccess();  
  Assert.assertEquals(true, answer, 
    "Unable to analyze Umple code");    
  Assert.assertEquals(expectedOutput, 
    parser.toString()); } 

 

This tests the empty class case; a class with no 
content except possibly white spaces and new line 
characters.  

The parser testing must also handle invalid input, 
or negative cases. The extent of negative test cases 
depends on the proficiency of the target audience, 
the complexity of the language and the desired 
debugger feature set. A template for testing invalid 
input is shown below: 

 
@Test 
public void someSyntaxErrorToVerify()  
{ 
  // Step 1: Load the source code 
  // Step 2: Parse file and assert its failure  
  // Step 3: Assert correct error in formation 
  // Step 4: Clean up } 
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2.2 Metamodel Testing 

The objective of metamodel testing is to ensure that 
the compiler is able to maintain a valid internal 
representation of the input language. It can be 
argued that parser testing (above) and artifacts 
generation testing (discussed on the next section) are 
sufficient. However, from experience we find that 
testing the metamodel instance is crucial step to help 
maintain the language as it evolves, and facilitates 
debugging by isolating issues into either problems 
with syntax analysis (testing the parser) or language 
metamodel semantics (testing the metamodel). 

Metamodel tests use the following standard unit 
testing pattern. 

 

@Test 
public void someSpecification() { 
  // Step 1: SetUp  
  // Step 2: Execute 
  // Step 3: Verify 
  // Step 4: TearDown } 

 

It is important to document not only how the system 
behaves under normal conditions, but also how it 
behaves in abnormal scenarios where, for example, 
preconditions are not satisfied. 

Here is a sample test case for the Multiplicity 
metamodel class. Below we see that setting the 
range on a Multiplicity properly sets both the upper 
and lower bound. 

 

@Test 
public void setRange_ExplicitBounds() { 
 Multiplicity m = new Multiplicity();   
 m.setRange("1","2");  
 Assert.assertEquals(1,m.getLowerBound());  
 Assert.assertEquals(2,m.getUpperBound()); 
} 

 

Some may question the value of such simplistic 
tests. It should be noted that the test is merely an 
example to demonstrate the structure of a metamodel 
test. But, more importantly, the spirit of following 
test-driven design (as well other driven approaches) 
is the concept of evolving design through tests. By 
following a test-driven approach, the tests (and the 
ability to run them over and over again in an 
automated fashion) is a welcome side effect, but the 
true power of the approach is in the initial design 
whereby you first exploit the common uses of your 
metamodel and only then do you concern yourself 
with the implementation. 

 
 

2.3 Artifact Generation Testing 

The end result of any language compiler is a set of 
generated artifacts. Take Java for example, the Java 
interpreter generates byte code. Even for visual 
languages such as UML, the generated artifacts can 
be either high level programming language code 
(such as Java or C++), or XML based artifacts (such 
as XMI) that are used for saving and interchanging 
models. The objective of this category of tests is to 
ensure that the compiler is able to generate artifacts 
that match what is expected. 

Many of the defects of the language processor 
are likely to be discovered against these types of 
tests.  While parser and metamodel tests (are related 
code) are important to continued success of your 
project, the desired output of your language is really 
the generated artifacts (e.g. byte code). 

Umple generates a wide range of artifacts. Given 
an Umple source, the compiler generates a number 
of high level programming languages code (Java, 
PhP, Ruby, and C++). The compiler also generates 
XML based artifacts, such as Ecore, and Papyrus 
XMI, as well as other artifacts such as SQL and 
TextUML. We explain here the testing platform to 
support this wide range of artefact types. 

The code generator typically takes a populated 
metamodel instance as input. The output is one or 
more target artifacts or a transformation into another 
modeling syntax. In addition to overall setup and 
tear down, the high-level approach to testing code 
generation is shown below. 

 

@Test 
public void verifyGeneratedCode() { 
  // Step 1: Prepare Metamodel  
  // Step 2: Run Code Generator  
  // Step 3: Verify results } 

 

To prepare the metamodel instance, there are two 
approaches: populating the model by direct calls to 
the available API of the metamodel (or perhaps 
using a mock object facility; or, parsing source code 
using the existing infrastructure. 

The first approach (to populate the metamodel 
instance directly using the API) has several 
drawbacks: The setup code can become quite 
cumbersome and complex, which could make the 
test code less readable and maintainable. And, it can 
also be error prone, as the testing developer must 
properly populate the metamodel prior to testing. 
The primary benefit of this approach is the isolation 
of the code generator's behaviour from that of the 
code that parsed the source and generated the 
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metamodel instance. Issues related to the parsing 
phase (translating code into a populated metamodel 
instance) would not interfere with testing the code 
generator. 

For example, the following code creates a 
Student class with three attributes (id, name, and 
program).  

 

UmpleModel m = new UmpleModel(null); 
UmpleClass student =  m.addUmpleClass("Student"); 
student.addAttribute( 
  new Attribute("id","Integer", null,null,true));  
student.addAttribute( 
  new Attribute("program","String", null,"SEG",false)); 

 

The second approach where the test uses raw source 
code that is then parsed into the Metamodel instance 
(which is then used as input to the code generators) 
has two primary benefits. First, it is easier to express 
a system in its own syntax as opposed to building it 
using a metamodel's API. Second, you provide an 
important integration between the external inputs 
and outputs of your language. The obvious 
drawback is that these tests are no longer pure unit 
tests, and that failing tests in this component could 
be resulting from the parser or the code generator. 

Here is the same example from above written 
using the source language (Umple) syntax directly. 

 

class Student { 
  Integer id;  
  name; 
  program = "SEG"; } 

 

Regardless of the approach, the metamodel instance 
must be populated before the code generation can be 
tested. Instead of crafting a new means to populate 
that model, we favour the more pragmatic approach 
of simply reusing the existing (and tested) parsing 
approach as described in the previous section. 

By parsing the model code directly, an added 
benefit is that you can create a generic TemplateTest 
to manage the test artefacts (i.e. input model code, 
expected output system code); leaving the testing 
mostly boilerplate-code free. 

The outline of such a template class is shown 
below. 
The method signatures will vary slightly depending 
on the type of code generator that is being created; 
but the overall structure remains intact. 

With the infrastructure shown above in place, 
adding new code generation tests is straightforward, 
as the template encapsulates the distracting elements 
of the test setup. A sample code generator test is 
shown below. 

public class TemplateTest { 
@Before 
public void setUp() 
{ 
  // configure paths to Umple data files 
  // this can be configured to support  
  // multiple languages } 
@After 
public void tearDown() { 
  // clean up any temporary or generated files } 
public void assertTemplate ( 
  String modelFile, 
  String expectedGeneratedFile) { 
  // Parse / tokenize modelFile 
  // Create an instance of meta model 
  // Generate code for the underlying system 
  // Compare the actual generated code  
  // with the expectedGeneratedFile } } 

 
@Test 
public void Association() { 
  assertUmpleTemplateFor("AttributeTest.ump", 
  languagePath + "/ AttributeTest." 
    + languagePath +".txt","Student"); } 

 

The test above requires a model file 
(AttributeTest.ump), as well as a source code file 
based on the selected language. In Umple, we 
currently support Java, PHP, Ruby, and C++. Using 
the test case above, the same model file can be 
reused to test against all the supported languages. 
This infrastructure can easily be extended to add 
testing for other generated artifacts. 

2.4 Testing of End-user Systems  

The previous sections described testing the language 
compiler / code generator itself in what can be 
termed white-box testing. So far, we only asserted 
that the system outputs what we expect, but not 
necessarily what the target platform requires. This 
class of testing only applies if the language compiler 
generates either executable artifacts (i.e, bytecode), 
or artifacts that themselves can generate executable 
artifacts (i.e, Java or C++), or artifacts that serves a 
tangible purpose (i.e, an XMI artifact that is used for 
model versioning or interchanging). 

The objective of this category of tests is to 
ensure the appropriate behaviour of the resulting 
system. This is a powerful concept because it 
enables the language developer to assert the 
semantics of the generated system (not just its 
syntax).   

The semantics of Umple’s modeling components 
are quite rich so it is important to provide adequate 
testing of generated systems to ensure that the 
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semantics of an Umple model is upheld in the 
underlying base language (i.e. Java, PHP or Ruby). 
This level of testing ensures the appropriate 
behaviour of the generated Umple executable 
artefacts, which is essential to support our industrial 
case studies. 

Let us consider a simple example of testing the 
semantics of a class attribute. 

 

class Student { name; } 
 

The specifications for an attribute as defined above 
include the following properties and behaviours: the 
attribute is included as a constructor argument, the 
attribute can also be modified and retrieved. Based 
on the above description of an attribute, we could 
write the following tests (the tests are written using 
JUnit4 syntax). 

 

@Test 
public void attributeBehaviour() { 
 Student s = new Student("james");      
 Assert.assertEquals("james",s.getName()); 
 s.setName("henry");  
 Assert.assertEquals("henry",s.getName()); } 

This test can be equally expressed in PHP using 
PHPUnit (an xUnit testing framework for PHP 
applications) as shown below. 

 

public function test_attributeBehaviour() { 
  $s = new Student("james");  
   $this->assertEqual("james", 
   $s->getName());    
   $s->setName("henry"); 
   $this->assertEqual("henry", 
   $s->getName()); } 

 

By capturing the properties and behaviour of 
systems built with Umple, we are able to build up an 
extensive library of executable specifications which 
more concretely demonstrate the realized behaviour 
of the system, as opposed to its documented 
behaviour (and as is common knowledge amongst 
most software practitioners, it is common for 
documentation to quickly get stale and out of sync). 

Tests under this class are not limited to simple 
systems. In the case of Umple for example, the 
whole of Umple compiler and development 
environment are implemented using Umple itself. In 
that sense, Umple provides itself is a very large 
system test case (as each new version of Umple is 
re-tested against itself to ensure it continues to abide 
by it’s own semantics). 

Tests in this category provide both an excellent 
test-bed for experimenting with code generation 
techniques (i.e. testing the effects of changing the 

code generation on the resulting system), as well 
provided added confidence generated systems (not 
just your own language platform) work as expected.  
Meanwhile, test failures in this category potentially 
identify issues in any of the previous test categories 
and will most likely require additional exploratory 
tests to uncover the true cause of the semantic error.  

3 MANAGING DEFECTS AND 
MINIMIZING REGRESSION 

Despite having over 2,500 automated Umple tests 
that span all facets of the toolset from parsing to 
code generation, any compiler inevitably will 
contain defects. In this section, we discuss how the 
testing infrastructure described above allows for 
better defect management by representing bugs as 
failing tests, effectively diminishing the time and 
effort required to perform regression testing. 

When a defect is uncovered, it might be one of 
the following: 

1. Defects in the way in which the language is 
tokenized into an abstract syntax tree 

2. Incorrect population of the metamodel instance 
from the tokenized language. 

3. Inappropriate behaviour of the metamodel 
classes. 

4. Syntax errors in the generated artefacts. 

5. Semantic errors (i.e. incorrect behaviour) in the 
generated base code 

6. Execution errors in the generated systems. 
In addition to the defect scenarios above, there is 

always the possibility of usability defects. Dealing 
with this type of defect is outside the scope of our 
work, and instead, we focus our attention on well-
defined, repeatable issues. 

As defects are uncovered, it is not always 
apparent which category of defects has been 
uncovered. Where the root cause of a defect is 
unknown, it is recommended to resort to bottom-up 
defect resolution. We start by verifying the 
tokenization, then the metamodel, followed by the 
generated artifact, and finally, the system level 
testing. 

3.1 Step 1: Identify the Problematic 
Input Language Code and Expose 
It with a failing Test 

The first step is to identify the component 
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responsible for the problematic output. This process 
may involve a few iterations to isolate the exact 
symptoms causing the issue, but that is not always 
necessary. 

For illustration purposes, our sample defect is 
that un-typed Umple attributes are not reflected in 
the generated code. The following code shows the 
potentially problematic Umple code. 

 

class Student { id; } 
 

The test case would perform an end-to-end high 
level test that properly documents the identified 
issue with a failing test. 

 

3.2 Step 2: Verify the Tokenization 
of the Problematic Umple Code 

With our high-level failing test in place, we now 
analyze each step of the process to identify the root 
cause of the problem. We start with the Umple 
parser. 

The process for verifying the parser is already 
available. We simply add an additional test using the 
problematic Umple code as the input and we verify 
the output. 

To continue with the example above, we first 
make sure that un-typed attributes are properly 
parsed and tokenized. The expected result 
[class][name:Student][attribute][name:id] 
represents a toString view of the tokenization 
sequence used to assert equality in a human readable 
form. 

 

@Test 
public void untypedAttributes() { 
  assertParse("untyped.ump", 
    "[class][name:Student]"+ 
    "[attribute][name:id]"); } 

 

If this test fails, we resolve it and re-run our test 
from Step 1. If that test succeeds, then it is likely 
that the problem is now properly resolved and the 
debugging process is complete. If not, then we move 
on to the next step. 

3.3 Step 3: Verify the Instance 
of the Umple Metamodel 

Once the Umple source has been shown to parse 
correctly (but that the observed issue persists), we 
then validate that the instance of the Umple 
metamodel is consistent with the Umple input. Here, 
we are ensuring that the metamodel was properly 

populated following the parser tokenization process. 
To test the metamodel, we enhance the test 

identified in Step 2 as follows.  
 

@Test 
public void untypedAttributes() { 
  assertParse("untyped.ump", "[class][name:Student]"+ 
      "[attribute][name:id]"); 
   
  UmpleClass aClass = model.getUmpleClass( 
    "Student");    
  Assert.assertEquals("Student", aClass.getName()); 
  Attribute attr = aClass.getAttribute("id"); 
  Assert.assertEquals("id", attr.getName()); 
  Assert.assertEquals("String",  attr.getType()); } 
 

 

Here, we assert that the Student class is created, and 
that it has an attribute of type String with the name 
id. If this test fails, we follow the same procedure 
starting from the previous step: re-test our high-level 
test and proceed to the next step only if that test still 
fails. 

3.4 Step 4: Validate the Proper 
Behaviour of the Metamodel 

Once the Umple code appears to be parsed correctly, 
and the metamodel is properly populated, we then 
investigate if there is any special behaviour that is 
performed by the metamodel instance that may not 
be handled properly. 

For example, an Attribute has an operation 
isPrimitive which checks for the Umple predefined 
types, and perhaps this operation is not functioning 
as expected. Below is a test case demonstrating the 
expected behaviour.  

 

@Test 
public void isPrimitive() { 
  Attribute av; 
  av = new Attribute("a",null,null,null,false);    
   
  Assert.assertEquals(true, av.isPrimitive()); 
  av.setType("String"); 
  
  Assert.assertEquals(true, av.isPrimitive()); 
  av.setType("Address"); 
   
  Assert.assertEquals(false, av.isPrimitive()); } 
 

 

Dealing with this type of testing is difficult to 
categorize, and each scenario will need to be 
analyzed individually. If the behaviour of the 
metamodel appears to be working correctly (but our 
high-level test still fails), we continue to the next 
step. 
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3.5 Step 5: Compare the Expected 
versus Actual Generated Code 

Next, we analyze the expected code versus actual 
generated code. Here, we are testing that the 
syntactic translation of the Umple metamodel 
instance into the generated base language is correct. 

The example test case would resemble the 
following code. 

 

@Test 
public void untypedAttributes() { 
 assertUmpleTemplateFor("attribute.ump", 
   "attribute.java.txt”, "Student"); } 
 

Where the “attribute.ump” would be the problematic 
Umple code and the “attribute.java.txt” would 
contain the desired Java code to be generated from 
the model. 

3.6 Step 6: Test the Behaviour 
of the Generated Code 

If all other tests are passing successfully, the final 
aspect to testing the Umple system is that the 
generated code conforms to the semantics of the 
model. It might be the case where we are producing 
what is believed to be the correct code, when in fact 
the generated code does not behave as the intended 
by the model. 

In our on-going example presented above, we 
write unit tests against a sample application that 
contains a Student with an id attribute. 

 

@Test 
public void constructor() { 
  Student s = new Student("x"); 
  Assert.assertEquals("x",s.getId()); } 
 
@Test 
public void setAndGetStringAttribute() { 
  Student s = new Student("x");   
  s.setId("y"); 
  Assert.assertEquals("y",s.getId()); } 

The steps outlined above provide a high-level 
approach to deal with issues as they arise. The most 
important first step is to create a failing test that 
exhibits the invalid behaviour of the system. The 
granularity of this test is not that important, as we 
have developed a systematic approach to verify each 
step of the Umple compiler to help determine the 
root cause of the issue. 

By adopting a test-driven approach, the 
regression test suite continues to grow to deal with 

new issues and at the same time mitigate the risk of 
regressing on existing functionality. In the next 
section, we look at how the current infrastructure 
supports future potential enhancements. 

4 APPLYING MLTDD 
TO A LANGUAGE WRITTEN 
IN ITSELF 

As the core features of the language become 
available, a new feature can be described as a defect; 
in other words, something is missing that should not 
be missing. The approach of adding new features 
should follow a similar path as described in the 
previous sections whenever possible. In this section, 
we describe how to manage new features by means 
of ‘dog-feeding’ examples. 

By following the steps described above, it is 
possible to specify the desired behaviour of a new 
language feature without that feature being available 
yet. And if the language is written in itself, it is 
required to implement most behaviour using the 
existing language constructs. 

In the example below, we demonstrate this 
process using Umple. The example illustrates adding 
an OCL-like constraint syntax to be specified against 
attributes. The semantic test below assumes the OCL 
constraint that age >= 18 for any Student. 

Before implementing the change, we first write a 
test in the base language demonstrating the desired 
functionality. This test would need to be translated 
into each language supported. Below is a sample test 
written for Java. 

 

@Test 
public void cannotSetTo17() { 
 Student s = new Student(18);  
 Assert.assertEquals(18,m.getAge());  
 Assert.assertEquals(false,s.setAge(17));  
 Assert.assertEquals(18,m.getAge()); } 

Next, we use Umple itself to implement the feature 
using existing constructs. 

 

class Student { 
  Integer age; before setAge { 
    if (aAge < 18) { return false; } 
  } 
  after getAge { 
    if (age < 18) { 
     throw new RuntimeException("Age must be >= 18") 
    } 
  } } 

Once the behaviour is validated with sufficient (and 
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passing) tests within our base languages, we then 
enhance the parser and metamodel with the new 
language constructs. 

The potential Umple syntax might look like the 
following. 

 

class Student { 
  Integer x; 
  // this is the potential invariant syntax  
  [x >= 18] } 

 

Next, we migrate the custom code written in the 
behaviour tests into the code generation process to 
validate the generated syntax. Following that, we 
deploy a new version of Umple itself and update the 
original behaviour tests to use the new language 
constructs (as opposed to having to write the 
behaviour by hand, as was required before the 
feature was available). These tests themselves 
remain relatively unchanged; we simply update the 
tests to use the new language constructs. 

In pure TDD methodology, the process is not just 
about testing; but rather about designing the system 
in a modular fashion maintaining low coupling and 
well-defined interfaces. The process is also about 
capturing the intention of the software (i.e. 
automated tests) that can be easily verified (i.e. re-
running the test suite) effectively enhancing 
reusability. 

For example, the act of manually testing and 
modifying (i.e. debugging) an application until it 
works benefits only the developer performing the 
task. It cannot be replicated easily, as the debugging 
steps are not documented and are lost once the 
debugging exercise is complete. Conversely, by 
capturing the testing process through automation, all 
developers can benefit as knowledge is gained about 
the true behaviour of the system that can be easily 
re-run and re-verified. 

In the case of building a new programming 
language (or in the case of Umple, extending 
existing base languages), we first need to be 
concerned with testing the tooling itself. But, 
because the outputs of such systems are systems too, 
they can also be tested (i.e. semantic testing of 
systems generated using the new language). 

In addition, because Umple is implemented in 
itself, we are able to capture the debugging effort of 
new code generation behaviour in automated tests, 
and then modify the underlying Umple language to 
replicate that behaviour natively, as shown with the 
OCL constraint example. In summary, we enhance 
the Umple language so that we can refactor Umple 
(which is written in Umple) to make use of the 
enhanced language elements; ‘eating our own dog 
food’, so-to-speak. 

5 CASE STUDIES 

To further explore and validate our MLTDD 
approach, we applied it to two industrial projects, 
Appstats and OSL. These were undertaken in a 
software company specializing in the development 
of online process solutions. 

5.1 Case Study 1: Appstats 

Appstats (Forward, 2012) is a small open-source 
logging and statistics library that provides a 
"counting" framework with features such as built-in 
caching, delayed processing, as well as the creation 
of ad-hoc and scheduled reporting.  The language 
provides a simple, yet effective, DSL. The source 
code is about 2 KLOCs with 97% coverage from 
over 650 tests. The basic structure of an appstats 
query is  

 

# <action> <timeframe> <host/server> <context 
filter> <group filter> 

Actions are user defined and could include things 
like # logins, # objects created, # exceptions.  Date 
ranges support several formats such as "between 
Mar, 2010 and Mar, 2011", "today", "last 
year|month|week|day", etc.  The host/server simply 
allows the user to grab statistics from a particular 
server such as testing, versus staging versus 
production. Finally, all data logged by appstats is 
tagged with, and is searchable / groupable by any 
number of contexts (as defined by the user - not 
appstats), examples include tracking the logged in 
user, the address searched, number of results found, 
duration of request etc. 

By instrumenting an application appstats logs, 
you enable very powerful and efficient queries with 
a simple DSL. In addition, developers can write 3rd 
party plug-ins to augment the "logging" statistics 
with other data sources to facilitate a uniform API 
between the raw data and any application reporting 
functionality. 

The approach used to test Appstats was the same 
as that used by Umple.  Below, we discuss the 
unique characteristics of testing the statistics 
collection mechanism of Appstats. Just like any 
other type of test, you need to emulate the situation 
you are testing, and then verify that the right things 
has occurred. For Appstats statistics, there are a few 
items that require configuration, otherwise it is no 
different than testing other aspects of the system. 

The examples below are written in Ruby using 
the RSpec testing framework. 
1) Reset the logged and simulate the current time. 
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This will ensure the log starts empty, and that your 
logs will occur at a specific (and testable) time.  
You will also want to remove the log file after 
each test to ensure all tests start with a clean slate. 

 

before(:each) do 
   Appstats::Logger.reset 
   Appstats::Logger.filename_template =  
     "test_appstats_lookup_controller" 
   Time.stub!(:now).and_return( 
      Time.parse('2010-09-21 23:15:20 UTC')) 
 end 
 after(:each)do  
    File.delete(Appstats::Logger.filename)  
If File.exists?(Appstats::Logger.filename) 
 end 

 

2) Write the test that should "gather" some type of 
statistic.  

get :lookup, :address => 
  "123 Victoria Ave, Ottawa, K1P 1P2", 
  :radius => "0.05" 
     Appstats::Logger.raw_read.should == 
 Appstats::Logger.entry_to_s( 
  "buyer-address-lookup", 
  :accuracy => "4", 
  :area => "Ottawa area", 
  :total_results => 123 ) 
  end   end 

 

Each project requires unique testing, and the above 
demonstrates the use of the appstats API. Such 
testing is not (yet) required in Umple as Umple 
exposes itself only as a language (and related tools), 
whereas Appstats is both a language and an API. 

5.2 Another Case Study: OSL 

Another language that has benefited from the TDD 
approach described in this paper is OSL. OSL is a 
proprietary language developed by CENX Inc. to 
manage the inventory, ordering and monitoring of 
Ethernet back-haul networks.  OSL is comprised of a 
mark-up language, using YAML as its base as well 
as a runtime environment which is its own set of 
commands.  The description language provides the 
building blocks to describe network topologies 
whereas the runtime language helps to compile 
telecom planning spreadsheets into actual network 
assets.  OSL has also been used to help large 
telecom companies properly complete circuit orders.   

OSLs use of dynamic language constructs such 
as multiple inheritance, object mix-ins and duck-
typing have allowed network engineers to build 
various network topologies between various 
organizations with little duplication. To date, OSL is 

about 7 KLOCs of production code and are 96% 
covered by 1100 automated tests, structured using 
MLTDD. 

6 RELATED WORK 

Since agile methodologies emphasize the delivery of 
working executable code in a repeatable manner, the 
notion of automatically testing these deliverables is 
appealing. Since the emergence of such 
methodologies, one can notice the increase of work 
on the value of TDD. The literature is rich with work 
reporting and assessing the benefits of test driven 
development methodologies. One study in IBM 
reported that adoption of TDD has reduced the 
number of defects by 50% (Maximilien & Williams, 
2003). Our work goes beyond arguing for or against 
TDD, but rather studies how TDD can be applied to 
a specific application domain (Forward & 
Lethbridge, 2008), software language development. 

Steel (Steel & Lawley, 2004) reports on a study 
of the methodology of TDD of a model 
transformation engine. Similar to our work, steel’s 
study emphasizes the importance and value of TDD, 
emphasises the need of structuring tests. Steel also 
concludes that there is a need for maintaining tests in 
a structured format (i.e, in XML) rather than 
programmatically as we have done in Umple. 

One core difference in approach between our 
work and Steel’s is the way tests are structured. We 
advocate structuring tests around application tiers or 
components (i.e, parsing, metamodel instance 
creation, code generation and system creation). 
Steel, on the other hand, advocates structuring tests 
around features. Our view is that at the high level, 
tests must be streamlined and organized by level. 
Within each level, tests can be grouped by feature 
and sub-features. The benefit of the high-level 
grouping by levels is evident in the following: 
 Bugs and features are organized and reported 

against levels (parser, etc.). 
 A bug report against a feature often spans a 

number of levels. Further work is therefore needed 
to isolate the concerned level. 

 As a language grows, features overlap. If tests 
were grouped by feature it is not always clear 
which tests belongs to which feature. 

7 CONCLUSIONS 

This paper has presented a methodology we call 
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multi-level TDD (MLTDD) for applying Test 
Driven Development to software languages. 
Motivated by the success we achieved with applying 
MLTDD to Umple, as well applying it to other 
projects including Appstats and OSL, we strongly 
believe that MLTDD can and should easily be 
applied to all general purpose programming 
languages, domain languages, model-to-model 
transformations and model-to-code transformations. 
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