
Non-rigid Surface Registration using Cover Tree based Clustering 
and Nearest Neighbor Search 

Manal H. Alassaf 1, 2, Yeny Yim3 and James K. Hahn1 
1Department of Computer Science, George Washington University, Washington DC, U.S.A. 

2Department of computer science, Taif University, Taif, Saudi Arabia 
3Samsung Electronics, Suwon, Geonggi-Do, Republic of Korea 

Keywords: Non-rigid Registration, Iterative Closest Point Algorithm, ICP, Cover Tree, Clustering, Nearest Neighbor 
Search. 

Abstract: We propose a novel non-rigid registration method that computes the correspondences of two deformable 
surfaces using the cover tree. The aim is to find the correct correspondences without landmark selection and 
to reduce the computational complexity. The source surface S is initially aligned to the target surface T to 
generate a cover tree from the densely distributed surface points. The cover tree is constructed by taking 
into account the positions and normal vectors of the points and used for hierarchical clustering and nearest 
neighbor search. The cover tree based clustering divides the two surfaces into several clusters based on the 
geometric features, and each cluster on the source surface is transformed to its corresponding cluster on the 
target. The nearest neighbor search from the cover tree reduces the search space for correspondence 
computation, and the source surface is deformed to the target by optimizing the point pairs. The correct 
correspondence of a given source point is determined by choosing one target point with the best 
correspondence measure from the k nearest neighbors. The proposed energy function with Jacobian penalty 
allows deforming the surface accurately and with less deformation folding. 

1 INTRODUCTION 

Iterative closest point algorithm (ICP) has been 
widely used for registration of the surfaces (Besl and 
McKay 1992; Zhang 1992). The ICP efficiently 
calculates the transformation between two surfaces 
by minimizing the Euclidean distance of the 
correspondent point pairs. However, this distance 
based measure can lead the optimization to the local 
minima when the two surfaces are not close enough. 
Another limitation of ICP algorithm is that it 
requires searching all the points of a surface to 
determine the best correspondence for a point of 
another surface. Therefore, its time complexity is 
O(n2).  

The correspondence computation can be 
accelerated using efficient nearest neighbor (NN) 
search algorithms (Greenspan and Godin 2001). The 
k-d tree has been widely used to limit the search 
space to one set which is the nearest (Bentley 1975). 
The k-d tree is a binary tree that is built by 
repeatedly dividing the space into subspaces using 
hyper planes. The k-d tree construction is simple and 

it is quite efficient especially for low dimensional 
data. However, its axis-aligned point division 
regardless of point distribution can result in poor 
search performance (Kumar et al. 2008). Greenspan 
and Godins proposed a variant of k-d tree with 
spherical triangular constraint that specifies the 
neighborhood which lie within a sphere of radius  
(Greenspan and Godin 2001). Kumar et al. used the 
vantage point tree (vp-tree) that divides the space by 
using hyper shells with increasing radius instead of 
using hyper planes (Kumar et al. 2008).  

It is important to find the correct correspondence 
as well as to accelerate the computation. To 
determine the robust correspondences, Anguelov et 
al. proposed a joint probabilistic model that enforces 
the correlation between all correspondences in terms 
of geodesic distance and penalizes the stretching and 
twisting of the links between points (Anguelov et al. 
2005). Huang et al. also constrained the geodesic 
distances between points to be preserved by the 
correspondences (Huang et al. 2008). They 
initialized the candidate correspondences of all 
points by finding the closest in Euclidean space and 
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feature space and pruned inconsistent mappings 
based on the geodesic distance constraint.  

In this paper, we propose an accurate non-rigid 
ICP registration method that finds the correct 
correspondences and reduces the computation 
complexity with an efficient tree search. We address 
the two challenges of the naïve ICP algorithm: the 
optimization to the local minima and high time 
complexity for correspondence computation. The 
main idea of our method is to reduce the number of 
possible correspondences from two surfaces by 
using a hierarchical cover tree structure and find the 
point pairs with the best correspondence measures. 
A cover tree is constructed from the points of the 
two surfaces which are target T and initially 
matched source S. Given a point p on S, the 
candidate corresponding points on T are determined 
by traversing the cover tree and finding the nearest 
neighbors from the tree instead of searching all the 
points on T. This correspondence search is applied 
for rigid ICP as well as non-rigid ICP. For rigid 
registration, the nearest neighbors are determined by 
dividing the tree nodes into several clusters. The 
search space is limited to the leaf nodes of the 
cluster which p belongs to. For non-rigid ICP, k-NN 
search is performed on the tree to find the k-nearest 
leaf nodes from T. We propose a correspondence 
measure which takes into account local geometric 
similarity.  

For registration of the two surfaces, energy 
minimization frameworks that minimize the distance 
function between the surfaces have been proposed. 
The distance energy function has been used to fit 
one surface to another in conjunction with marker 
error term between manually selected feature 
correspondences. Allen et al. proposed a non-rigid 
ICP algorithm that determines local affine 
transformation per point by optimizing the distance 
function (Allen et al. 2003). They added stiffness 
term to force neighboring points to have similar 
transformations and marker error term to avoid the 
optimization to the local minima. Amberg et al. 
optimized a similar energy function for fixed 
stiffness and correspondences (Amberg et al. 2007). 
They demonstrated accurate registration results for 
the surface with a large missing region. Pauly et al. 
optimized a distance function that calculated the sum 
of the distances between a surface point and local 
neighborhood of a point on another surface (Pauly et 
al. 2005). Li et al. optimized the correspondence as 
well as the deformation parameters (Li et al. 2008). 
They also optimized a confidence weight of each 
node in order to determine the correspondences 
reliably and deal with the partial overlap problem of 

the surfaces. In these related works, the stiffness 
term has been effectively used to regularize the 
deformation by minimizing the difference between 
the deformation vectors of the adjacent points on the 
surface. However, it does not deal with the problem 
of the deformation folding which has the negative 
Jacobian determinant of the deformation and results 
in crossing of the adjacent deformation vectors.  

To register the two surfaces with less 
deformation folding while minimizing the distance 
and stiffness, we propose a new energy function that 
consists of the terms: fitting, stiffness, and Jacobian 
penalty. The fitting term finds the deformation 
vectors that minimize the error distances between 
two corresponding point sets and the stiffness term 
regularizes the deformation by minimizing the 
difference between the deformation vectors of the 
adjacent points on the surface. The Jacobian penalty 
term penalizes negative Jacobian determinant of the 
deformation (Rueckert et al. 2006). The Jacobian 
matrix of the transformation has been applied to 
guarantee the invertibility of the transformation 
mainly for image registration (Vercauteren et al. 
2009; Rohlfing et al. 2001). We adapt this penalty to 
prevent the deformation folding on the surface. 

The non-linear optimization of the two point sets 
in the non-rigid registration of the surfaces is 
computationally expensive since the number of 
points on a surface is usually several thousands. For 
efficient optimization, previous works proposed 
reduced deformable models which divided the 
surface into many small patches and transformed 
them rigidly. (Huang et al. 2008; Li et al. 2008; 
Chang and Zwicker 2009; Liu et al. 2009).  

To closely match the two surfaces and thus 
accelerate the optimization of the non-rigid ICP, we 
propose a cluster-based locally rigid registration that 
splits the two surfaces into clusters and transforms 
each cluster on S to the corresponding cluster on T 
by applying rigid ICP. All the points on T that 
belong to the same cluster with the given source 
point p considered in the corresponding cluster on T. 
We refer to this registration method as a cluster-
based ICP. The previous reduced deformable models 
have used regularly sampled points (Li et al. 2008; 
Sumner et al. 2007), voxel grid structure (Chang and 
Zwicker 2009), or clusters (Huang et al. 2008; Liu et 
al. 2009). In the aspects of using the hierarchical 
clustering for registration, our cluster-based ICP is 
similar to that of (Huang et al. 2008; Liu et al. 2009). 
However, our hierarchical clustering is based on 
cover tree and our cluster-based ICP is applied to 
initially match two input surfaces not for deformable 
registration. 
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2 METHOD 

The non-rigid registration of the surfaces aims to 
find the correct correspondences between S and T 
and align S to T accurately by using the 
correspondences. We propose a new non-rigid 
registration method of the surface to achieve these 
two goals. The proposed method consists of four 
steps which are initial alignment, construction of the 
cover tree, cluster-based ICP, and non-rigid ICP 
registration. The two input surfaces are initially 
matched by aligning the points with minimum z 
depth, which are the positions of the nose tip in our 
tested dataset, and scaling the surface S according to 
the maximum ranges of the points on S and T. After 
initial alignment, we construct a cover tree from the 
points of both surfaces and use it for hierarchical 
clustering and k-NN in the correspondence 
computation of the cluster-based ICP and non-rigid 
ICP, respectively. For the cluster-based ICP, we first 
find the correspondence of each point on S among 
the points in the same cluster which comes from T 
and has the best correspondence measure. Once the 
corresponding point sets on the two surfaces have 
been determined, each cluster on S is locally 
transformed to T by minimizing the error between 
the two point sets. In the non-rigid ICP registration, 
the candidate correspondences of a given point on S 
are computed by looking for its k-NN in the cover 
tree, which originate from T. A correct 
correspondence is chosen by finding the best 
correspondence measure among the k nearest points. 
With the two correspondent point sets, the proposed 
method deforms S to T by optimizing the energy 
function that includes a fitting term, a stiffness term, 
and a Jacobian penalty term. 

2.1 Use of Cover Tree  

The cover tree is a leveled tree where levels are 
decreased as the tree is descended (Beygelzimer et 
al. 2006). Each node in the tree corresponds to a 
point in dataset P. Let Pi denote the points of P at 
level i. The cover tree has three properties of 
nesting, covering, and separation. The nesting 
property indicates that a point at a level i should 
appear at all the levels beneath it. The covering 
property satisfies the condition that the distance 
between a point q in Pi-1 and its parent in Pi is at 
most 2i. The separation property meets the condition 
that the distance between two distinct points at the 
same level is at least 2i (Fig. 2). 

The construction of the cover tree takes O(n) 
space and O(c6 n log n) time complexity. The time 

complexity does not only depend on the number of 
points of the dataset n, but also on the expansion 
constant c. Expansion constant is defined as the ratio 
of the points in a sphere with the maximum radius r 
over the points in a sphere with the radius of r/2 
(Beygelzimer et al. 2006).  

In this paper, we adopt the cover tree data 
structure for hierarchical clustering and k-NN 
search. By using the cover tree with its nesting, 
covering, and separation properties, the problem of 
finding the correct correspondence in the ICP 
registration is reduced from searching all the points 
on T to searching a subset of the points. This subset 
of the points is represented as a cluster of the points 
within -radius for cluster-based ICP and as k 
nearest points for non-rigid ICP.  

2.1.1 Cover Tree Construction 
using Distance and Surface Normal 

Originally, the cover tree is constructed by taking 
into account the distance between the points. Even 
though the distance based cover tree can be used for 
clustering points, it is difficult to obtain meaningful 
clusters from surfaces that are not flat and have 
complex geometric shapes. In order to subdivide the 
surface into meaningful clusters such that the points 
in each cluster have similar geometric features, we 
extend the tree construction method by considering 
the angular difference between the surface normal 
vectors of the points as well as the Euclidean 
distance between the points. We define our new 
distance metric as a function f of two terms; one for 
the Euclidian distance between two points x and y, d, 
and the other for the angle θ between the normal 
vectors, as described in f(x,y)=d(x,y)+λ(1-cosθ (x,y)). 
As the angle θ increases, the value of the second 
term increases which makes the value of f increase. 
As a result, the two points are located far away from 
each other in the cover tree. If the two points have 
the same surface normal, only d affects the value of f 
and the two points will be located in the cover tree 
according to the distance. The parameter λ is a 
weighting factor that controls the effect of the angle 
θ. The value λ is determined according to the 
features of the surface. As λ increases, the effect of 
the second term becomes larger and the surface will 
be clustered into points with similar geometric 
features. However, setting λ to max can partition the 
points that belong to one anatomical feature into 
many clusters with respect to the normal variations 
in that feature as shown in Fig. 3. We set λ to 0.05 
experimentally to divide the surface into meaningful 
clusters which correspond to anatomical features. By 
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using the function f in the tree construction, a parent 
q for a new point p should satisfy the following 
condition f(p,q) ≤ 2i. Here, i is the level of the cover 
tree where q is located. The span of the cover tree, 
including the number of levels, is affected by f. This 
proposed function f satisfies the properties of a 
distance function in a metric space. 

2.1.2 The Use of the Cover Tree 
for Hierarchical Clustering 

After the cover tree is built from the points of the 
two surfaces, the points are divided into k disjoint 
clusters by cutting the tree at the level i with k nodes 
such that each of the k nodes is a root of a sub-tree 
and each sub-tree is considered a cluster as shown in 
Fig. 2. As a result, each cluster denoted by Cj is 
rooted at its center, and the neighbor points within a 
radius 	 	 2i from the center correspond to the leaf 
nodes of the sub-tree.  

2.1.3 The Use of the Cover Tree for NN 
Search 

The correspondence computation can be formulated 
as a NN search problem in naïve ICP due to the fact 
that it is based on the distance between the points. In 
the NN search problem, the dataset P of n points is 
pre-processed such that one can find the nearest 
neighbor point p of a given query point q with the 
minimum distance d(q, p). The constructed cover 
tree is used to find the k-NN points. Given a point   
p ∊ P, the nearest points are determined by searching 
the children list Q of p and finding a point with the 
minimum error d(p,Q) = minq∈Q d(p,q). The error is 
calculated with respect to the distance and angular 
difference of the normal vectors. The exact k-NN 
points are determined by sorting the errors between 
p and q and finding the k points with the smallest 
error. The NN search takes O(c12 log n) time 
(Beygelzimer et al. 2006). 

2.2 Cluster-based ICP Registration 

Rigid registration has been applied to compensate 
the translational and rotational mismatch between 
two surfaces. Recently, local rigid or affine 
registration was used for reduced deformable model 
(Chang and Zwicker 2009; Huang et al. 2008; Li et 
al. 2008). By reducing the degrees of freedom for 
optimization while considering the rigidity, S can be 
deformed to T quickly and accurately. The proposed 
cluster-based ICP method calculates the local rigid 
transformations from several clusters which are 

partial patches of the surfaces. It is used to provide a 
good initial match for non-rigid registration.  

2.2.1 Correspondence Computation 

To find the correspondence of a point p on S among 
the points on T, two surfaces are divided into 
multiple clusters by cover tree based hierarchical 
clustering described in Section 2.1.2. Only the points 
in the same cluster with the p are considered as 
candidates. For all candidate points q which come 
from T, the correspondence measure is calculated 
using ECorr as in Eq. 1 and the point with the 
minimum measure ECorr is determined as the 
correspondence of p: 

IsometricNormalDistCorr EEEqpE  ),(  (1)

The first term EDist is used to find the closest point 
by calculating the Euclidean distance between two 
points. The correspondence computation only using 
Euclidean distance is not sufficient even though 
rough correspondence is established by cover tree 
based hierarchical clustering. To find more reliable 
correspondence, we calculate two local geometric 
measures. ENormal which is the angle between the 
normal vectors is used to penalize the points in the 
opposite surface direction. EIsometric is defined to 
enforce the two corresponding points that have 
similar connectivity with the adjacent points. This 
measures the absolute difference between the length 
of the connecting edges of p and that of the 
connecting edges of q. The parameters, α and β, 
control the effect of ENormal and EIsometric against EDist. 
As these parameters for local geometric features are 
larger, the effect of EDist decreases and the 
determined corresponding point sets can slow down 
the optimization. We set α and β to 0.05 
experimentally in order to find the correspondence 
that has similar geometric features while obtaining 
the reasonable optimization performance.  

2.2.2 Optimization 

The transformation of each cluster is calculated by 
minimizing the rigid registration error using Eq. 2, 
where R and Tr are the rotation matrix and 
translation vector, and pi and qi are the points on S 
and T: 





n

i
iiR TrRqpE

1

2
)(  (2)

To reduce the discontinuity of the transformations 
between clusters, the transformation of each point is 
calculated by weighted averaging the rigid 
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transformations of the k nearest clusters. The weight 
for each cluster is calculated in proportion to the 
distance between the point and the center of each 
cluster.  

2.3 Non-rigid Registration 

The proposed non-rigid ICP registration consists of 
two steps. First, the correspondence of a given 
source point is computed by searching k-NN in the 
cover tree and finding a point with the minimum 
correspondence measure. Second, once the two 
corresponding point sets are determined, S is 
deformed to T by minimizing the proposed energy 
term so that the deformation is both accurate and 
smooth, and has less deformation folding.  

2.3.1 Correspondence Computation 

For non-rigid registration of S to T, it is very 
important to determine the correspondences reliably 
and efficiently. To address this challenge, we 
propose a method for correspondence computation 
of non-rigid ICP registration. To find the 
correspondence of a given point p on S, the search 
space is limited to k-nearest points on T by using the 
cover tree based k-NN search as described in 
Section 2.1.3. Only k points which are the nearest 
from p are considered as candidates. As k is larger, 
more points are included as candidates and the 
computation time of ECorr will increase. When k is 
too small, possible candidates that might have the 
best correspondence measure could be missed even 
though the computation will be faster. We set k to 10 
experimentally to find the best correspondence 
among the sufficient number of candidates while 
reducing the computation time. For all candidate 
points, the correspondence measure is calculated 
using Eq. (1) as described in Section 2.2.1, and the 
point with the minimum measure ECorr is determined 
as a correspondence. 

2.3.2 Optimization 

After determining two correspondent point sets from 
S and T as P and P’, respectively, the points in P are 
deformed to the points in P’. The deformation D is 
calculated by minimizing the registration error EN 
described in Eq. 3:  





N

i
JacobianSmoothFitiN EEEE

0

  (3)

The first term EFit measures the accuracy of 
alignment by calculating the distance between P’ 

and D(P). The second error term ESmooth regularizes 
the deformation by minimizing the sum of 
differences of the deformation between adjacent 
points as shown in Eq. 4:  





)(

)()())((
ij pNp

ijiSmooth pDpDpDE  
(4)

The third term EJacobian regularizes the deformation 
by assigning penalty to the points with the negative 
Jacobian determinant. To impose penalty to the 
points with negative Jacobian and avoid the folding 
of the deformation, EJacobian is defined by Eq. 5: 

)))((1log())(( DJDetcpDE iJacobian   (5)

where Det(J) is the determinant of the Jacobian 
matrix J, and c is the constant that adjusts the effect 
of the negative Jacobian term. The constant c is 
proportional to the distance between pi and its 
farthest neighbor. This Jacobian penalty term is 
applied only for the points with the negative 
Jacobian. To minimize EN between two 
corresponding point sets, the Levenberg Marquardt 
optimization algorithm is applied (Marquardt 1963). 
γ and δ are the parameters that adjust the effect of 
stiffness term and Jacobian term, respectively. If the 
stiffness parameter γ is small, the optimization 
converges quickly to the closest point based on the 
fitting term. However, the surface mesh becomes 
very irregular and bumpy. As γ is larger, the 
deformation is smoother but the optimization 
becomes slower and the surface may shrink. We set 
γ to 1. The parameter δ for Jacobian term is set to 1 
if the point has a negative Jacobian. Otherwise the 
value is set to 0. The optimization ends when the 
termination condition is met. If the reduced error 
measure after each iteration i, EN

i - EN
i-1, is less than 

5% of the error measure EN
i, it is considered that the 

optimization converges to the optimum. By 
penalizing the deformation with stiffness term and 
Jacobian term, the proposed optimization regularizes 
the deformation so that the deformed surface has 
smooth deformation with less folding.  

3 EVALUATION METHODS 

To evaluate the proposed method, we tested three 
different datasets; CT-simulated CT dataset, CT-
Kinect dataset, CT-CT dataset. For simulated 
dataset, we extracted 3D surface from CT 
(Computed Tomography) scans using Marching 
Cube Algorithm (Lorensen and Cline 1987) and 
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used it as the source surface S. We simulated the 
target surface T by warping the jaw and nose of S 
using thin-plate spline warping (Bookstein 1989). 
For CT-Kinect dataset, S was generated from the 2D 
color image and depth map obtained from Microsoft 
Kinect camera. A 3D surface with color was 
generated from depth map by back-projecting the 2D 
pixel positions. The surface T was extracted from 
the CT scans. For CT-CT dataset, we extracted S 
and T from two CT datasets which were acquired 
from two different subjects. We also tested the 
registration accuracy of noisy CT datasets in order to 
demonstrate the robustness of the proposed method 
to noisy dataset. Table 1 shows the number of points 
in each tested dataset. 

To demonstrate the effect of the proposed cover 
tree-based clustering method, we compared our 
clustering method with two k-means clustering 
algorithms that initialize the cluster centers in 
different ways. The first uses manually selected 
initial centers (k-means manual) (Lloyd 1982) and 
the second detects the centers automatically using k-
means++ algorithm (k-means++) (Arthur and 
Vassilvitskii 2007).  

To evaluate the effect of the proposed 
correspondence computation using cover tree, we 
compared the proposed method with the naïve ICP 
algorithm, ICP algorithm with k-means manual, ICP 
algorithm with k-means++ in aspects of the 
registration accuracy. To compare the three 
clustering methods in the same condition, we used 
the same number of the clusters obtained from the 
proposed clustering method for k-means manual and 
k-means++ seeds number. The proposed method cut 
the cover tree at depth equals to 3. We implemented 
the naïve ICP algorithm that finds the 
correspondence of a point p on S by searching the 
point with the minimum distance from p among all 
the points on T. For cluster-based registration, the k-
means manual and k-means++ clusters are used in 
comparison with proposed method. For non-rigid 
ICP correspondence, a cover tree based NN search 
was applied to the results of the cluster-based ICP of 
three different clustering algorithms along with 
naïve ICP. 

We visualized the color-coded error surfaces in 
which the color of each surface point indicates its 
own error measure. The point was colored red if the 
depth of a point on T is closer than the depth of the 
corresponding point on the deformed S. The point 
was colored green in the opposite case. 

 
 
 

4 RESULTS  

Fig. 1 shows the result of the proposed registration 
method for three different datasets. The first row 
shows that the overall shape of S near jaw and nose 
was deformed to the simulated surface T accurately. 
The details of the surface such as lips and eyes were 
not preserved due to the lower resolution of original 
surface and the effect of stiffness term during 
optimization. The second row shows the noisy 
surface S acquired from Microsoft Kinect camera 
was deformed to T closely. Even though the two 
surfaces obtained from different subjects by 
different devices have distinctively different nose 
and mouth shapes, the color-coded error map shows 
that entire face of S was deformed to T correctly. 
There was a subtle difference between T and 
deformed S near teeth and nose of the subject. The 
third row shows that the two face surfaces acquired 
from two different subjects were registered 
accurately after applying the proposed method. The 
surface S with open mouth and low nose tip was 
deformed to the surface with closed mouth and high 
nose tip that has little difference with T.  

The registration errors of three methods with 
clustering were lower than that of Naïve ICP. The 
proposed method with cover tree led to the lowest 
reduction rate against Naïve ICP. Especially in 
Kinect-CT dataset with irregular point distribution, 
the reduction rate of the proposed method was 28% 
while those of k-means manual and k-means++ were 
26% and 22%, respectively. There was no 
significant difference in simulated CT and CT-CT 
datasets which have relatively regular point 
distributions. Fig. 4 shows the registration accuracy 
of the noisy datasets compared to original dataset. 
The registration errors of the k-means manual and k-
means++ increased in two noisy datasets, as opposed 
to the cover tree method. The registration error 
decreased in simulated dataset with the cover tree 
method. Also, the increase of the error was the 
smallest with cover tree in CT-CT dataset.  

The proposed method which optimizes 
Jacobian penalty term led to the smallest percentage 
of the negative Jacobian in simulated dataset and 
CT-CT datasets as shown in Table 2.  

Table 3 shows the processing time for 
clustering the points and finding correspondences by 
using three different methods. The time for cover 
tree based clustering was shorter than those for two 
k-means clustering methods. Once the cover tree is 
constructed in a pre-processing step, the proposed 
clustering method only takes time for cutting the tree 
at a specific level and labelling the points. While, k-
means manual and k-means++ require iterative 
calculation of the distances until stabilization.  
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5 CONCLUSIONS 

In this study, we proposed a non-rigid surface 
registration method which computes the 
correspondence between two surfaces accurately and 
efficiently. The cover tree based hierarchical 
clustering and NN search were utilized to reduce the 
search space for correspondence points in ICP. This 
reduced the computational complexity of the 
correspondence computation. In addition, 
registration accuracy of the proposed method is 
better than the methods using conventional 
clustering, especially in the noisy dataset. The 
proposed negative Jacobian term of energy function 
led to registration with less deformation folding. 
Extending cover tree construction to consider 
orientation of the surface points introduced a hybrid 
similarity measure for ICP that allows capturing 
more reliable correspondence points. 

A cover tree-based hierarchical clustering 
reduced the search space of the correspondence 
candidates of each point on S from all points on T to 
only (1-c4d)/(1-c4) of the points, where d is the depth 
of the sub-tree that corresponds to a cluster. 
Therefore, the complexity was reduced from O(n2) 
to O(n(1-c4d)/(1-c4)). Proof of this reduction can be 
found in appendix 1. In addition, a cover tree-based 
NN search found the k correspondence candidates of 
every point on S from the points on T. The search 
space of the correspondence computation for a point 
was limited to k and the complexity was reduced to 
O(c12 n log n). The proposed cover tree based NN 
search was not compared with the other NN search 
algorithms such as k-d tree or v-p tree. In the future, 
we consider doing this comparison. 

We proposed an optimization function for non-
rigid ICP algorithm, including fitting term, stiffness 
term, and Jacobian term. The proposed optimization 
function with Jacobian penalty term regularized the 
deformation so that the resulted surface has smooth 
deformation with less folding. The results showed 
that the proposed method led to the smallest ratio of 
the negative Jacobian compared to the other non-
rigid ICP methods. The results also showed that the 
ratio of the negative Jacobian was reduced by 
incorporating proposed negative Jacobian term.  

One interesting result was that the proposed 
method showed the best results in CT-Kinect 
datasets in aspects of registration accuracy and 
percentage of the negative Jacobian. The Microsoft 
Kinect camera has relatively poor perception 
accuracy for the depth and thus the reconstructed 
surface from the depth map was very noisy and 
bumpy. This result demonstrated that the cover tree 

based hierarchical clustering was suitable for the 
noisy datasets. We improved the registration 
accuracy by taking into account the distribution and 
orientation of the point for tree construction.  
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APPENDIX 

Claim 1: The correspondence computation using cover 
tree-based hierarchical clustering reduces the time 
complexity of Cluster-based ICP from O(n2) to O(n(1-
c4d)/(1-c4)) where c is the expansion constant of the cover 
tree and d is the depth of the sub-tree that corresponds to a 
cluster. 

Proof: 
We know that each node in the cover tree has at most 

c4 children (Beygelzimer et al. 2006). Assume l is the 
number of points in the largest cluster. Let’s assume the 
worst case, when the constructed cover tree is balanced 
and each node has exactly c4 children. Cutting the cover 
tree at level i with k nodes, each cluster contains one root 
node of the sub-tree and all its decedent nodes in all the 
lower levels from the level i down to the leaves level j. Let 
d denote the depth of the sub-tree, i.e. d = j-i. The number 
of the nodes in each cluster is calculated as follows: At 
level i, d is 0 and each cluster has one root node. The total 
number of nodes at level i is (c4)0 =1. At the next level i-1, 
d is 1 and each cluster has at most c4 nodes which are the 
children of the root node. The total number of nodes at 
level i-1 is (c4)1 = c4. As the level decreases by 1, d 
increases by 1 and each cluster at each level has at most 
(c4)d nodes. Therefore, the total number of the nodes in a 
cluster is calculated using Eq. (1). 

 

Thus, the number of the nodes l in the largest cluster is 
upper bounded by (1-c4d)/(1-c4) and the time complexity 
of ICP is upper bounded by O(n(1-c4d)/(1-c4)) ■. 
 
 
 
 
 

 

 

Figure 1: The registration results of the proposed method for simulated dataset (first row), Kinect-CT dataset (second row), 
and CT-CT dataset. The initial source surfaces S (leftmost) were registered to the target surfaces T (3rd column) by cluster-
based ICP and non-rigid ICP. The differences between the deformed surface (2nd column) and the target were represented to 
color-coded error map (4th column). 
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Figure 2: Example of clustering ten points using cover tree. 
When we cut the tree at depth equals to 3, the ten points 
are clustered into six clusters as indicated by shaded 
squares. The points of each cluster correspond to the leaf 
nodes of each sub-tree. The number and the character 
written in each node indicate the order of insertion and the 
original surface that this point belongs to, either T or S. 

 

Figure 3: The effect of the λ weight of the angular term in 
the cover tree construction can be shown by clustering at 
depth equals to 3 in a face dataset. Left image: Traditional 
cover tree constructed with distance only. Three images in 
the right: Proposed cover tree construction with distance 
and angular term with different λ weights.  

 

Figure 4: The comparison of the registration accuracy 
between original and noisy datasets: simulated dataset 
(top) and CT-CT dataset (bottom).  

 

Table 1: The number of surface points of the three tested 
datasets. 

 
Number of 
points in S 

Number of 
points in T 

Simulated CT Dataset 3067 2906 

CT-Kinect Dataset 4591 3145 

CT-CT Dataset 3145 4076 

Table 2: The percentage of the points with negative 
Jacobian when applying 4 different non-rigid ICP methods 
to three datasets. The proposed method was tested with 
and without applying Jacobian term by adjusting the 
weighting factor δ.  
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13.8 10.23 9.83 9.22 8.21 

CT-Kinect 
Dataset 

19.98 15.09 16.67 10.97 11.16 

CT-CT 
Dataset 

6.68 6.75 6.05 5.07 4.61 

Table 3: Processing Time of Clustering and 
Correspondence Computation. 
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