
Towards a Flexible and Secure Runtime for Embedded Devices

Albert Royo Manjón, Eric Simon and Sébastien Jean
Laboratoire de Conception et d'Intégration des Systèmes (CTSYS Team), Université de Grenoble,

50 rue Barthélémy de Laffemas, 26000, Valence, France

Keywords: Service Oriented Architecture, Embedded Systems, Security.

Abstract: Advancing towards the Internet of Things, a need for bigger connectivity between every time smaller
embedded devices is foreseen. In the near future, heterogeneous resource-restricted devices will probably
have a set of services with a strong need for connection. Two needs are envisioned as mandatory: flexibility
and security. There is firstly a need for some degree of isolation between services but there is also a need for
services to be able to have their runtime altered without having to stop the whole platform. This generates a
clash of interests and needs, since achieving both flexibility and security balanced is apparently
incompatible. The purpose of this article is to explain the needs and requirements that such systems will
most surely have, as well as inspiring technologies and related works, in order to advance towards a
platform with flexible and secure services that will add bigger capabilities to the devices.

1 INTRODUCTION

The Internet of Things (Atzori et al. 2010), where
daily real-world objects will be added interacting
with users and between themselves, supposes a big
opportunity for embedded devices. The definition of
these devices doesn't specify their size and regarding
those that are resource-restricted, the Internet of
Things means several issues that will have to be
taken care.

Nowadays, small heterogeneous devices tend to
interconnect to work together and share data. Home
gateways and sensor networks with different
applications, using different technologies try
collaborating. Each one of them works in a different
way and under different architectures, but can profit
greatly from such collaboration. Evolution is likely
going to affect size, since sensor networks are too
small for these needs and home gateways are not
embedded enough. This way, either the first become
bigger or the latter reduce their size, both turning
into a single tiny device.

It is likely that these devices will offer and use
services that will give them new capabilities, like
data exchange or remote monitoring. Resource-
restricted devices are already evolving towards
connectivity, while keeping themselves small.
Regarding the services, we can easily foresee two of
the needs that will have to be fulfilled. Coming from

several different providers, services cannot trust
each other completely. The system has a need for a
given degree of security that is necessary in the form
of a certain extent of isolation between services,
allowing services to have their own private space
inaccessible by the others. There is also need for
flexibility in runtime, so that operations altering a
service’s execution don’t alter the rest nor restart the
platform.

An important point as for services is the
portability of their code. Services should be written
once and then used and reused many times in many
different devices. Because of this, the choice is to
search for technologies developed in Java, that
offers a higher portability (Hugunin, 1997). We have
identified two technologies that satisfy one of the
necessities: Java Card for security and OSGi for
flexibility. None of them fulfils both of the needs,
which shows an apparent incompatibility between
them.

On the rest of this paper we will try to discuss
which approach is better for trying to fulfil both of
the needs on a new platform. Chapter 2 will explain
the current context and identify the necessary
properties for the platform. Chapter 3 gives an
insight of the existing Java technologies and strong
points for each one of them. Finally, chapter 4 will
deal with the conclusions and the future work.

168
Royo Manjon A., Simon E. and Jean S..
Towards a Flexible and Secure Runtime for Embedded Devices.
DOI: 10.5220/0004756301680173
In Proceedings of the 4th International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS-2014), pages
168-173
ISBN: 978-989-758-000-0
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

2 CONTEXT

Nowadays, most (if not all) of the target devices live
exclusively in the physical world, receiving a
number of entrances through their sensors and using
a number of activators. This paradigm has been valid
for the past decades, but with the introduction of the
Internet into embedded devices, connection has
become a major topic to discuss. Despite lacking
power and resources compared to bigger systems,
resource-constrained embedded devices can profit
greatly from becoming connected.

However, their lack of resources has been a big
barrier avoiding advances in the subject. In the close
future, anyway, it is likely that these problems will
be overcome. Devices, having gone past the physical
world will become every time closer to a services
gateway. Services will offer their capabilities and be
used when necessary.

Figure 1: Platform actions and actors.

Figure 1 shows the way we envision our flexible
and secure platform, showing both the actions and
the actors. We distinguish between two types of
services: technical and “business” services.
Technical services are those related to the core,
generic capabilities of the whole platform, such as
external communication. They are key elements for
the whole system, and so, they are generally
managed only by its administrator. “Business”
services, on the other hand, are related to the specific
use that the platform is given. They are generally
installed by service deployers and so, should be less
trustworthy than the first ones.

We distinguish between several different actors

 related to the service, since we consider that for a
service, its developer, its deployer and its user may
not be the same individual. Developers will place
their services into a service “store” from where they
will be taken when needed. The service deployer
will use the remote management capabilities to
install the service into the platform. The platform
administrator will be the only one able to remotely
deploy technical services as well as having access to
all of the remote capabilities. He is the actor who
will be able to use the platform’s full capabilities.
Service users will make use of any type of services.

It is because of this amount of actors, as well as
for the two different types of services, that there is a
need for security. At the same time, applications will
be changing frequently: new applications can be
installed at any moment as well as existing ones can
be removed, stopped or started. This turns stopping
the whole platform unviable. Thus, there is a strong
need for flexibility too.

2.1 Modularity and Dynamism

Services need to be reusable modules that once
programmed for one device, can be reused on any
other using the same platform. Services are not
always needed and different operations could alter
their execution. The four operations are installing,
uninstalling, starting and stopping a service. Having
standard, static modules is not enough, since our
modules are dynamic and can have their runtime
altered without altering the platform’s.

2.2 Security

Services are external to the device’s applications and
independent, coming from different providers. None
of the actors can trust the others if the platform does
not give them the means. A certain level of isolation
is needed to grant that services will not suffer from
intrusions. At the same time, the roles of each actor
have to be clearly defined, since each one will have
access to different capabilities and some, like
technical services’ management cannot be granted to
anyone because of its crucial nature for the whole
platform (generally just to the platform
administrator, though it could be sporadically
delegated).

There is a major drawback about this and
dynamism: they tend to suppose a clash of interests
difficult to fulfil at the same time. It is necessary to
find a solution offering both of them.

Towards�a�Flexible�and�Secure�Runtime�for�Embedded�Devices

169

2.3 Resource-friendliness

Target devices are generally small in terms of
resources for the flexible and secure platform we
envision. We aim mostly for PLC-like systems, so
we should be dealing with environments of around
32-bit CPUs, 128 kBytes of RAM and a few MBytes
of persistent storage.

2.4 Synthesis

To sum up, future devices will need to enforce four
properties: modularity of services, dynamism,
flexibility of the platform and security, while being
wary of a constraint: the embedded environment.
Connectivity has also been added as an important
point to analyse.

Already existing Java-based technologies have
been compared in order to see if any progress can be
done with already developed material, based on the
following properties and values:

Table 1: Properties.

Property Values
Modularity No|Static|Dynamic
Dynamism No|Yes

Security No|Optional|High
Resource-friendliness Extreme|Restricted|Standard

Connectivity Optional|Native

3 TECHNOLOGIES

We have checked which Java-based technologies
can fulfil one of our needs and analyse if it is
possible to attain the second one.

The first need is security. Among all the Java
distributions, Java Card (Sun Microsystems, 2008)
has two main design focuses: portability (it is
conceived for smart cards) and security. On the other
hand, that of flexibility, a dynamic platform where
services’ runtimes are changed without altering the
others’ is envisioned. That is exactly the way that
OSGi works (The OSGi Alliance, n.d.).

3.1 Java Card

Java Card is the tiniest Java platform. Developed
with a focus on portability and security, it consisted
originally of applications called applets running on a
small and secure environment. Due to the need for
connectivity, Java Card has been split into two
editions starting on Java Card 3. They are:

 Connected Edition: It adds connectivity
capacities to the main platform.

 Classic Edition: the heir to previous Java
Card edition.

The most suitable Java Card edition for our
interests is the Connected Edition. From now on, we
will analyse it to see if it satisfies our needs.

3.1.1 Connected Edition’s Architecture

This edition adds for the first time connectivity
capabilities to Java Card. There are three different
types of applications that can run on the Connected
Edition:
 Classic applets: Standard Java Card

applications, using the Classic Edition's API.
 Extended applets: New Connected Edition

applets. They use Connected Edition's
extended API to get new features.

 Servlets: Web applications. They use their
own API. This type of applications interacts
with off-card Web clients via HTTP or
HTTPS requests and responses.

Since extended applets and servlets are the only
ones having connectivity capabilities, it can be
deduced that they are the most similar to our
services.

Regarding the main characteristic, security, Java
Card inherits Java features (exclusive access to
encapsulated data, type mismatches detection during
compilation…) and others proper to Java Card itself.
The most important one of these is that by using a
mechanism called Firewall, each application is
allowed a secure application environment.

3.1.2 Connected Edition’s Conclusions

Java Card is the tiniest Java platform that exists.
Proper to all Java Card editions is the focus on
security, and it is difficult to think of any bigger
security needs than those it satisfies.

Table 2: Java Card’s properties.

Property Java Card
Modularity Static
Dynamism No

Security High
Resource-friendliness Extreme

Connectivity Native : improved Java

However, because of its severe restrictions,
modularity is completely static. Furthermore, there
is also a complete lack of flexibility, which clashes
with our interests. Based on this, Java Card is not a

PECCS�2014�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

170

 suitable solution.

3.2 OSGi

The second Java-based platform is OSGi, a module
system and service platform that implements a
complete and dynamic services model. With a
design focus on flexibility, it was initially conceived
for smaller systems. Despite that, the capabilities it
offered were really appreciated by big, server
applications and its design focus shifted into big
resourceful systems.

As shown in Figure 2, applications can be
installed, uninstalled, started and stopped without
affecting the whole system. Through their entire life,
applications go through a series of states depending
on their situation. However, it leaves security as a
non-compulsory layer.

Figure 2: OSGi bundle lifecycle.

3.2.1 Architecture

The OSGi specification (The OSGi Alliance, 2011)
defines a multilayer architecture. All of the layers
are compulsory except for security and the
architecture lies on top of a Java Virtual Machine.

The application layer defines OSGi’s
applications, called bundles. They are JAR files in
which additional metadata is found on a manifest
file. Extra resources can be added too. Bundles can
offer services by using the services registry.
Services, defined on their own layer, offer
functionalities that can be searched by using the
registry, where service providers register them. As
for bundles’ lifecycle, there is an API for its
management, which defines all the states that they
can attain in their lifetime. The lifecycle layer is
composed by a total of five different states.

The module layer is the one that defines
resources’ encapsulation and the declaration of
dependencies between bundles. Finally, the last
layer deals with security. It is an optional layer that

handles security aspects, by using the Java
permissions system.

The main problem of this architecture is that
most existing distributions are not resource-friendly.
With our focus being on small devices, only small
OSGi versions are suitable.

Table 3: Standard OSGi properties.

Property OSGi
Modularity Dynamic
Dynamism High

Security Optional
Resource-friendliness No

Connectivity Optional

3.2.2 Resource-friendly Distributions

The need for a resource-friendly OSGi distribution
has already been discussed, and some solutions have
been proposed. Since one of the first identified
problems is that Java itself is a quite heavyweight
technology, some have decided trying to move away
from it. Using Java means a deep optimisation of the
OSGi architecture.

Concierge (Rellermeyer & Alonso, 2007) is an
OSGi R3 open-source Java implementation designed
for resource-restricted environments. The focus is to
optimize OSGi's design so that it can perform better
on small devices, while trying to get consistent
behaviour across devices.

nOSGi (Kächele et al., 2011), is a C++ native
implementation of OSGi R4 running on POSIX
systems. Considering that there is a lack of a proper
JVM for most devices, authors decided to use C++
which is also object-oriented and widely used by
those working with embedded systems (Kriens,
2010). Results are compared to those of Concierge
and Equinox (Eclipse Equinox, n.d.). They were
significantly better than the others.

Motivated by the same main idea as nOSGi,
Apache Celix (Broekhuis, 2010) creators chose C. It
is an incubating project on the Apache Incubator and
thus, there is no stable release yet.

3.2.3 Conclusions about OSGi for Small
Devices

OSGi for embedded devices leaves some interesting
advantages. First, the fact that it has been designed
for achieving high flexibility gives us a platform that
works the exact way we envisioned our services
module. Another important advantage is that OSGi,
as a platform definition, also has a really big
community, which can be a big help for developers.

Towards�a�Flexible�and�Secure�Runtime�for�Embedded�Devices

171

Table 4: OSGI distributions’ comparison.

Distribution OSGi version Language Speedup Memory usage Security API

nOSGi R4 C++ 1 1 No
Concierge R3 Java 2 2 Yes

Celix R4 C - - No
Felix R4 Java 3 3 Yes

Finally, classic Java OSGi distributions get another
big benefit; they can take profit from Java's good
connectivity. Furthermore, non-Java distributions
are OSGi-compliant, and so, even though not
inheriting these benefits from Java, they should
implement them on their own different way.

On the other hand, the main drawbacks are
related to some of our priorities. OSGi's design is
not inherently resource-friendly, but the contrary,
and security is left optional.

On Table 4, a comparison between the
mentioned resource-friendly distributions and Felix
(Apache Felix, n.d.), a standard size distribution, can
be found. The speedup and memory usage columns
show the distributions ordered in terms of best
performance. Since these data is taken from their
respective papers, no data is given about Celix.

In conclusion, OSGi would be an acceptable
solution in terms of fulfilling the properties, as long
as security would be made compulsory. However,
the hardware constraints put by our platform’s target
devices make it incompatible.

3.3 Other Java Platforms

After checking technologies based on our main
needs, a suitable embedded device allowing for Java
application development was sought. This search led
us to ST Microelectronics’ STM3220G-Java board.
An even smaller device, VirtualSense, can give an
idea about extremely resource-restricted
environments.

3.3.1 STM32Java

STM32Java (IS2T, n.d.) is a software development
kit (SDK), an integrated solution based on the
MicroEJ runtime and libraries that allows the
development of both Java applications and Java
Platforms (JPF), which are libraries that embed
some native and some Java libraries.

The structure of any application created using
STM32Java consists in a C part and a Java part, the
one strictly used by the developer. Following a
parallel C and Java separate compilation flow, the
modularity obtained during programing is lost, since
the process creates a single executable file for both

the application and the platform. This executable is
loaded into the board by flashing it. Thus, any
change requires for the platform and the application
to be compiled and flashed again.

STM32Java is a good experience on terms of
usability. However, no dynamic deploying or
uninstalling of services can be done, which turns it
into a non-viable solution for a flexible platform.

Table 5: STM32Java’s properties.

Property STM32Java
Modularity No
Dynamism No

Security No
Resource-friendliness Standard

Connectivity Optional

3.3.2 VirtualSense

VirtualSense (Lattanzi & Bogliolo, 2012) is a
wireless node designed for being used in wireless
sensor networks with severe power constraints. It
disposes of an on-board Darjeeling (Brouwers et al.
2009) modified 16-bit JVM, allowing for Java-
developed applications to be run on it over Contiki
OS (Dunkels et al. 2004).

This platform is extremely resource-restricted,
having a 25MHz microcontroller unit, 16KBytes
RAM and 128KB Flash. It also gives the means for
multitasking and wireless connectivity, through
radio. The platform also provides a remote interface
allowing loading, launching, stopping and unloading
applications once installed on a node.

Even if it seems to enable application
provisioning over the air, no service model is
provided and cooperation between applications is
very restricted.

4 CONCLUSIONS AND FUTURE
WORK

We should keep in mind then that our priorities are:
having enough isolation and security between
services, a platform where services are installed,
uninstalled, started and stopped dynamically;

PECCS�2014�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

172

Table 6: Technologies’ comparison.

Technology Security Modularity Dynamism Connectivity Resource-friendliness

Java Card High Static No Native Extreme

OSGi Optional Dynamic High Optional Standard

STM32 No No No Optional Standard

VirtualSense No Dynamic Yes Radio Extreme

modularity, connectivity and resource-friendliness.
Table 6 shows a comparison of all the technologies
in terms of these needs.

Since none of the technologies fully satisfies the
needs, something new is necessary. The arrival of
OSGi ME (Bottaro and Rivard, 2009), an OSGi
release for embedded devices with a focus on
security, could suppose the appearance of a platform
fulfilling most of our needs. However, it is not
available for evaluation yet and it is not an open
platform. Our objective is to get the best properties
while keeping the new system resource-friendly.
Several solutions are being studied:
 An ad-hoc structure of “OSGi-like services”

+ JVM. That would probably be the best
solution, as long as this custom structure is
sufficiently modified to get the properties that
standard OSGi does not enforce enough. The
usage of security will have to be mandatory
for achieving the necessary isolation and
certification and an eye should be kept on its
resource-friendliness.

 A structure consisting of a Virtual Machine
with a set of ad-hoc services and isolation
added. This would be a suitable solution in
getting the necessary features if resource-
restriction would make the first option
impossible.

 A structure using native services with added
security and isolation. Right now there are
plenty of services implemented in Java. Since
this is not expected to change and our
platform can benefit greatly from using them,
transforming them to native services would be
compulsory. There is a need for a new set of
code transformation tools to be developed to
turn Java into native.

Future work will be done towards obtaining a
platform similar to OSGi in terms of dynamism and
modularity, but with an approach to resource-
friendliness similar to that of VirtualSense and
added security for its services.

REFERENCES

Apache Felix, Apache Felix. Available at: http://
felix.apache.org/.

Atzori, L., Iera, A. & Morabito, G., 2010. The Internet of
Things: A survey. Computer Networks, 54(15),
pp.2787–2805.

Bottaro, A. & Rivard, F., 2009. OSGi ME - An OSGi
Profile for Embedded Devices. , pp.1–16.

Broekhuis, A., 2010. Apache Celix Proposal. Available at:
http://wiki.apache.org/incubator/CelixProposal/.

Brouwers, N., Langendoen, K. & Corke, P., 2009.
Darjeeling , A Feature-Rich VM for the Resource
Poor. Proc. ACM Sensys.

Dunkels, A., Grönvall, B. & Voigt, T., 2004. Contiki - a
Lightweight and Flexible Operating System for Tiny
Networked Sensors. Proceedings of the First IEEE
Workshop on Embedded Networked Sensors (Emnets-
I).

Hugunin, J., 1997. Python and Java : The Best of Both
Worlds. Proceedings of the 6th International Python
Conference.

IS2T, STM32Java. Available at: http://
www.stm32java.com.

Kächele, S. et al., 2011. nOSGi A POSIX-Compliant
Native OSGi Framework. COMSWARE ’11. ACM.

Kriens, P., 2010. Minimal OSGi Systems. Available at:
http://blog.osgi.org/2010/10/minimal-osgi-
systems.html.

Lattanzi, E. & Bogliolo, A., 2012. VirtualSense: A Java-
Based Open Platform for Ultra-Low-Power Wireless
Sensor Nodes. International Journal of Distributed
Sensor Networks, 2012, pp.1–16.

Rellermeyer, J. S. & Alonso, G., 2007. Concierge : A
Service Platform for Resource-Constrained Devices.
ACM SIGOPS Operating Systems Review, 41(3).

Sun Microsystems, 2008. THE JAVA CARD TM 3
PLATFORM. White Paper, (August).

The Eclipse Foundation, Eclipse Equinox. Available at:
http://eclipse.org/equinox.

The OSGi Alliance, OSGi. Available at: http://
www.osgi.org/.

The OSGi Alliance, 2011. OSGi Service Platform Core
Specification. , Release 4,(April).

Towards�a�Flexible�and�Secure�Runtime�for�Embedded�Devices

173

