
Vulnerability and Remediation for a High-assurance Web-based
Enterprise

William R. Simpson and Coimbatore Chandersekaran
Institute for Defense Analyses, 4850 Mark Center Dr., Alexandria, Virginia 22311, U.S.A.

Keywords: Threat Mitigation, Vulnerability, Penetration Testing, Flaw Remediation.

Abstract: A process for fielding vulnerability free software in the enterprise is discussed. This process involves testing
for known vulnerabilities, generic penetration testing and threat specific testing coupled with a strong flaw
remediation process. The testing may be done by the software developer or certified testing laboratories.
The goal is to mitigate all known vulnerabilities and exploits, and to be responsive in mitigating new
vulnerabilities and/or exploits as they are discovered. The analyses are reviewed when new or additional
threats are reviewed and prioritized with mitigation through the flaw remediation process, changes to the
operational environment or the addition of additional controls or products). This process is derived from
The Common Criteria for Information Technology Security Evaluation, Common Evaluation Methodology
which covers both discovery and remediation. The process has been modified for the USAF enterprise.

1 INTRODUCTION

The sheer volume of regulations and analyses to
reduce cyberspace threats is astounding US
Department of Defense, 2012a,b, NIST, 2009,
Common Criteria 2009, Wassermann , 2007,
Livshits , 2008, Kiezun, , 2009, Jovanovic,2006,
Huang, 2004, Kals, 2006, Mcallister, 2008, Maggi,
2009, are just a few. Threat mitigation is undertaken
to reduce the attack space and to minimize losses
due to cyber activities either malicious or accidental.
From Hacks to Nation-States, these threats continue
to attempt to penetrate networks every day. These
threats are growing, evolving, and sophisticated.
Loss of information capability and information
integrity as well as the loss of intellectual property is
a significant security risk.

The goal of this paper is to describe a process to
mitigate many known vulnerabilities and to be
responsive in mitigating new or newly discovered
vulnerabilities. Vulnerability identification is a
continuous process whereby threats are reviewed
and prioritized with mitigation through either the
flaw remediation process, modifications to the
operating environment, or the reliance of multiple
products in mutual support of one another. The
analyses are reviewed either periodically or on
demand as new threats evolve or are identified.

2 VULNERABILITY CAUSES

Causes of vulnerabilities are numerous. The
Common Weakness Enumeration (CWE), Mitre
2013b, was developed to track causes of
vulnerabilities as a guide to their elimination.
Vulnerabilities are of concern because they may be
turned into exploits that in turn can be used to
disrupt IT systems or ex-filtrate their assets. Figure 1
shows some of the more common causes amongst
non-website software as derived from Mitre 2013b.

Figure 1: Vulnerabilities in Non-Website Software.

119R. Simpson W. and Chandersekaran C..
Vulnerability and Remediation for a High-assurance Web-based Enterprise.
DOI: 10.5220/0004760501190128
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 119-128
ISBN: 978-989-758-028-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 2: Vulnerabilities in Middleware.

Figure 2 shows the more common causes of
vulnerability among middleware software elements
as derived from Mitre 2013b.

The identification of vulnerabilities as they relate
to software allows software development practices
and tools to look for structures and processes in
software that may be exploited. Many of these tools
will check for susceptibility to specific exploits also.
Proper software development practices will
eliminate many of these vulnerabilities. Formal
design practices offer additional capabilities to avoid
buffer overflows, improper data acceptance and
other software flaw based vulnerabilities, Jones
2010. Nonetheless tools must be used to verify that
they have been properly done, or remediation must
be applied. These tools are not perfect, and the
analysis may miss some vulnerabilities. There use
should be followed by penetration testing. Even
then, other security measures are needed within the
enterprise. Those additional measures will not be
discussed in this paper. These analyses, however,
will reduce the attack space and eliminate some
common attack methodologies for the enterprise.

3 RELATED WORK

Vulnerability analyses are usually coupled with
software quality assurance and fall into three main
categories:

1. Static code analysis
2. Dynamic analysis or execution tracing
3. Penetration testing

3.1 Static Code Analysis

Static program analysis is the analysis of computer
software that is performed without actually
executing programs. In most cases the analysis is
performed on some version of the source code and in
the other cases some form of the object code. The
term is usually applied to the analysis performed by
an automated tool, with human analysis being called
program understanding, program comprehension or
code review. The sophistication of the analysis
performed by tools is rule-driven which provides the
intellectual property associated with the tool set. A
growing commercial use of static analysis is in the
verification of properties of software used in safety-
critical computer systems and locating potentially
vulnerable code.
 These types of analyses are discussed in (Jones,
2010), (Livshits, 2006), and (Wichmann, 1995).

3.2 Dynamic Code Analysis

Dynamic program analysis is the analysis of
computer software that is performed by executing
programs on a real or virtual processor. For dynamic
program analysis to be effective, the target program
must be executed with sufficient test inputs to
produce interesting behavior. Care must be taken to
minimize the effect that instrumentation has on the
execution (including temporal properties) of the
target program. The sophistication of the analysis
performed by tools is both rule-driven and
instrumentation (debug monitors) which provides
the intellectual property associated with the tool set.
Some dynamic code checker tools are given below:
 HP Security Suite is a suite of Tools at various

stages of development. QAInspect and
WebInspect are generally considered Dynamic
Analysis Tools, while DevInspect is considered
a static code analysis tool, (HP 2013).

 IBM Rational AppScan is a suite of application
security solutions targeted for different stages of
the development lifecycle. The suite includes
two main dynamic analysis products – (IBM
2013).

 Intel Thread Checker is a runtime threading
error analysis tool which can detect potential
data races and deadlocks in multithreaded
Windows or Linux applications, (Intel 2013).

3.3 Penetration Testing

A penetration test is a method of evaluating
computer and network security by simulating an
attack on a computer system or network from

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

120

external and internal threats. The process involves
an active analysis of the system for any potential
vulnerabilities that could result from poor or
improper system configuration. The analyses
include both known and unknown hardware or
software flaws, or operational weaknesses in process
or technical countermeasures. This analysis is
carried out from the position of a potential attacker
using a threat model, and can involve active
exploitation of security vulnerabilities.
 (Mosaic, 2013) has captured a number of tools
(including The Penetrator, SAINTexploit™,
Metasploit Pro, Core WebVerify™, CORE
INSIGHT™ Enterprise, CORE IMPACT® Pro,
Core CloudInspect and others) that will perform
such exploitation with pros and cons.
 In the analysis of requirements the penetration
testing and both static and dynamic analyses to setup
the penetration testing are required. Further, the
work is only begun with these analyses as the
discovery of vulnerabilities and exploits once the
software is fielded must also be submitted to the
flaw remediation system and resolved as quickly as
possible. To get ahead of this cycle many software
vendors now offer rewards for vulnerability and
exploit discovery (Finifter, 2013).

4 VULNERABILITY ANALYSIS

The vulnerability analysis requirement is levied on
all software procured for the high assurance
environments. This is true for Commercial Off-The-
Shelf Software (COTS) or Government Off-The-
Shelf Software (GOTS), as well as legacy systems to
be ported to the high assurance environment, and
assumes that the developer (either COTS or the
enterprise representative through a custom GOTS
developed contract) will perform these analyses and
provide the flaw remediation (an adaptation of
Common Criteria, 2009).
 While formal methods in the development
process and the obtaining of software development
credentilas such as Capability Maturity Model
(CMM), (CMMI, 2013), are valuable, they cannot be
used to replace the vulnerability analyses. In an
adversarial procurement environment, where the
developer either cannot or will not perform these
analyses, the developer must agree to allow the
procuring agency to perform these analyses or hire a
competent laboratory to do the analyses. These
costs, if not included in a competitive bid will be
added to the price for the evaluated product when
evaluating alternative products for procurement.

 The level of effort will depend on the product
complexity. Execution of the vulnerability analyses
does not require the execution of a full Common
Criteria evaluation, although any such Common
Criteria evaluation should include these analyses.
The vulnerability analysis described here is based
upon the product in its operational environment as
opposed to the Target of Evaluation described in
(Common Criteria, 2009). The flaw remediation
process cannot be performed by anyone other than
the software developer. It is assumed that license or
purchase of a product will include a support contract
that includes the flaw remediation provisions if these
are not provided with the product.
 Within the US, a number of competent
laboratories exist to do these analyses. These
laboratories have tools and testing techniques for
penetration testing, and will provide a level of
assurance on the threat mitigation that will lead to
informed decisions. Many are able to conduct these
analyses at higher security classification levels and
have the capability to sign non-disclosure, non-
complete arrangements with the software
developers. Contracting for these analyses would
include a competitive procurement where the
developer is unable or unwilling to perform such
tasks. In addition, the purchase of such equipment
will be dependent upon successful completion of the
vulnerability analysis. Prior vulnerability analysis
reports may be used to the extent that the operational
environments are similar or modifications to the
prior analysis are completed and executed.
 In the US there are seven laboratories that are
licensed under the National Voluntary Laboratory
Accreditation Program (NVLAP) Program, (NIST
2006). NVLAP provides third-party accreditation to
testing and calibration laboratories. NVLAP's
accreditation programs are established in response to
Congressional mandates, administrative actions by
the Federal Government, and requests from private-
sector organizations and government agencies.
NVLAP operates an accreditation system that is
compliant with ISO/IEC 17011, Conformity
assessment — General requirements for
accreditation bodies accrediting conformity
assessment bodies, which requires that the
competence of applicant laboratories be assessed by
the accreditation body against all of the requirements
of ISO/IEC 17025, General requirements for the
competence of testing and calibration laboratories.
 Figure 3 shows the basic vulnerability analysis
flow.

Vulnerability�and�Remediation�for�a�High-assurance�Web-based�Enterprise

121

Figure 3: Vulnerability Analysis Process.

4.1 Vulnerability Analysis Objective

The objectives of a vulnerability analysis are:
1. To determine whether the product(s), in its

operational environment, has easily identifiable
exploitable vulnerabilities.

2. Identify those vulnerabilities.
3. Begin a remediation process that will close those

vulnerabilities.
4. Excessive vulnerabilities may disqualify the

product for enterprise use.

4.2 Vulnerability Analysis Required
Information

The required information for vulnerability analyses
is:

• The Product(s);
• The guidance documentation
• Identification of all interfaces.
• The Product(s) suitable for testing;
• Harnesses and software instrumentation

necessary for testing the product.
• Information publicly available to support the

identification of potential vulnerabilities.
Information that may be used in these analyses
are listed below:

• Common Vulnerabilities and Exposures
(CVE®) (Mitre, 2013a) is a dictionary of

common names (i.e., CVE Identifiers) for
publicly known information security
vulnerabilities. CVE’s common identifiers
make it easier to share data across separate
network security databases and tools, and
provide a baseline for evaluating the coverage
of an organization’s security tools. If a report
from one of the security tools incorporates
CVE Identifiers, the tool may quickly and
accurately access fix information in one or
more separate CVE-compatible databases to
remediate the problem.

• National Vulnerability Database (NVD) (NIST,
2013) is the U.S. government repository of
standards based vulnerability management data
represented using the Security Content
Automation Protocol (SCAP). This data
enables automation of vulnerability
management, security measurement, and
compliance. NVD includes databases of
security checklists, security related software
flaws, misconfigurations, product names, and
impact metrics.

• Common Weakness Enumeration (CWE™)
(Mitre, 2013b) International in scope and free
for public use, CWE provides a unified,
measurable set of software weaknesses that is
enabling more effective discussion, description,
selection, and use of software security tools
and services that can find these weaknesses in
source code and operational systems as well as
better understanding and management of
software weaknesses related to architecture and
design.

• Others including the Open Web Application
Security Project (OWASP, 2013).

The product developer or evaluator performs
additional tests as a result of potential vulnerabilities
encountered during the conduct of other parts of the
evaluation. The use of the term guidance in this
process refers to the operational guidance and the
preparative guidance. Potential vulnerabilities may
be in information that is publicly available, or not,
and may require skill to exploit, or not. These two
aspects are related, but are distinct. It should not be
assumed that, simply because a potential
vulnerability is identifiable from information that is
publicly available, it can be easily exploited.

4.3 Obtaining Vulnerabilities

The product developer or evaluator examines
sources of information publicly available to identify
potential vulnerabilities in the product. There are

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

122

many sources of publicly available information,
which should be considered, but a minimum set is
listed above as input to the analysis. The product
developer or evaluator should not constrain his
consideration of publicly available information to
the above, but should consider any other relevant
information available.

The product developer or evaluator records in
an evaluation report the identified potential
vulnerabilities that are applicable to the product in
its operational environment. The product developer
or evaluator may use manual methods or source
code scanning and execution tracing tools, or all in
this analysis, but minimal coverage of the above
listed sources of vulnerabilities and weaknesses are
100%. Each of the vulnerabilities identified as
appropriate to the product in its operational
environment, is assigned a category and rationale as
follows:

a. That no further consideration of the potential
vulnerability is required if for example the product
developer or evaluator identifies mitigations in the
operational environment, either IT or non-IT that
prevent exploitation of the potential vulnerability in
that operational environment. This may include
mitigations within the product itself.

b. That for any reasons the potential
vulnerabilities may be excluded from further
consideration if the potential vulnerability is not
applicable in the operational environment.

c. Otherwise the evaluator records the potential
vulnerability for further consideration. This list of
potential vulnerabilities applicable to the product in
its operational environment, which can be used as an
input into penetration testing activities, is reported in
the evaluation report.

4.4 Deriving Penetration Tests

The product developer or evaluator derives
penetration tests that are based on the search above
for potential vulnerabilities, threat modelling
activities, and other analysis methods. The product
developer or evaluator prepares for penetration
testing as necessary to determine the susceptibility
of the product, in its operational environment, to the
potential vulnerabilities identified during the search
of the sources of information publicly available.

The product developer or evaluator produces
penetration test documentation for the tests based on
the list of potential vulnerabilities in sufficient detail
to enable the tests to be repeatable. The test
documentation includes:

a) Identification of the potential vulnerability the
product is being tested for;

b) Instructions to connect and setup all required
test equipment as required for conducting the
penetration test;

c) Instructions to establish all penetration test
prerequisite initial conditions;

d) Instructions to stimulate the product;
e) Instructions for observing the behavior of the

product;
f) Descriptions of all expected results and the

necessary analysis to be performed on the observed
behavior for comparison against expected results;

g) Instructions to conclude the test and establish
the necessary post-test state for the product.

The product developer or evaluator conducts
penetration testing based on the list of potential
vulnerabilities identified above, and prepares an
evaluation report on these tests. Where, as a result
of evaluation, the product developer or evaluator
discovers a potential vulnerability, this is reported in
the evaluation report as a residual vulnerability. The
vulnerability is reported as a flaw in the flaw
remediation system with a priority commensurate
with its potential for exploit and the consequences of
a successful exploit.

4.5 Continuous Updating

The product developer or evaluator re-examines
sources of information publicly available to identify
potential vulnerabilities in the product either
periodically or on demand. The analysis may be on
demand when critical vulnerabilities or damaging
exploits in similar products have been identified,
changes in the operational environment are made, or
other changes requiring further analysis.

4.6 Review and Approve

The enterprise representative examines the results of
the evaluation report of actions above and of all
penetration testing to determine that the product, in
its operational environment, is resistant to an
attacker appropriate to the high assurance
environment. If the results reveal that the product, in
its operational environment, has vulnerabilities
exploitable by an attacker appropriate to the high
assurance environment, then remedial action must be
taken by the product developer. The enterprise
representative ensures that periodic re-evaluation as
provided is above is undertaken.

For critical and trusted software such as the
Secure Token Server (STS) or services within the
Enterprise Attribute Store (EAS), the enterprise
representative may, at his option, conduct or procure

Vulnerability�and�Remediation�for�a�High-assurance�Web-based�Enterprise

123

independent penetration testing as described in
section II D above, including repeating some of the
testing described and independently derived tests.
The results of these tests may lead to the
identification of vulnerabilities which are subject to
the flaw remediation processes described below.

5 FLAW REMEDIATION

The flaw remediation process is the responsibility of
the product developer (an adaptation of Common
Criteria, 2009, Evaluation Methodology).

5.1 Flaw Remediation Objectives

The objective of this flaw remediation is to
demonstrate that the product developer has
established procedures that describe the tracking of
security flaws, the identification of corrective
actions, and the distribution of corrective action
information to product users. Additionally, this
process demonstrates that the product developer's
procedures provide for the corrections of security
flaws, for the receipt of flaw reports from product
users, for assurance that the corrections introduce no
new security flaws, for the establishment of a point
of contact for each product user, and for the timely
issue of corrective actions to product users. The
administrative tracking and reporting of flaws may
be outsourced, but the developer must be involved in
the corrective actions and must be included in the
developer’s quality control system.

In order for the developer to be able to act
appropriately upon security flaw reports from
product users, product users need to understand how
to submit security flaw reports to the product
developer, and product developers need to know
how to receive these reports. Flaw remediation
guidance addressed to the product user ensures that
product users are aware of how to communicate with
the developer; flaw remediation procedures describe
the product developer's role is such communication.
The Flaw Remediation process as applied to security
issues is shown in Figure 4.

5.2 Flaw Remediation Required
Information

The required information for evaluation of flaw
remediation processes is:

a) The flaw remediation procedures
documentation;

b) Flaw remediation guidance documentation.

The product developer may use automated flaw
remediation tracking systems such as trouble
ticketing software or may manually track such flaws.
However, it is expected that any flaw not remedied
with 10 working days are referred to the quality
assurance tracking system for formalized assignment
of actions and priorities, and timely reviews to
assure progress in resolution of open items. Security
flaws normally have the highest assigned priority for
remediation in high assurance systems. Remediation
may be code changes and patch update,
configuration changes and recommended changes to
STIGs, or other remedies outside of the product in
the operational environment. The enterprise
representative may reject the last approach
depending on its impact.

Figure 4: Flaw Remediation Process.

5.3 A Flaw Remediation Process

The product developer provides a flaw remediation
process:

a. That describes the procedures used to track
all reported security flaws in each release of the
product. The procedures describe the actions that are
taken by the product developer from the time each

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

124

suspected security flaw is reported to the time that it
is resolved. This includes the flaw's entire time
frame, from initial detection through ascertaining
that the flaw is a security flaw, to resolution of the
security flaw. If a flaw is discovered not to be
security-relevant, there is no need (for the purposes
of the Flaw remediation requirements) for the flaw
remediation procedures to track it further; only that
there be an explanation of why the flaw is not
security-relevant.

b. That describe of the nature and effect of each
security flaw be provided, as well as the status of
finding a correction to that flaw. The procedures
identify the actions that are taken by the product
developer to describe the nature and effects of each
security flaw in sufficient detail to be able to
reproduce it. The description of the nature of a
security flaw addresses whether it is an error in the
documentation, a flaw in the design of the product, a
flaw in the implementation of the product, etc. The
description of the security flaw's effects identifies
the portions of the product that are affected and how
those portions are affected.

c. That when applied these procedures would
identify the status of finding a correction to each
security flaw. The flaw remediation procedures
identify the different stages of security flaws. This
differentiation includes at least: suspected security
flaws that have been reported, suspected security
flaws that have been confirmed to be security flaws,
and security flaws whose solutions have been
implemented. It is permissible that additional stages
(e.g. flaws that have been reported but not yet
investigated, flaws that are under investigation,
security flaws for which a solution has been found
but not yet implemented) be included.

d. That requires corrective actions be identified
for each of the security flaws. Corrective action
may consist of a repair to the hardware, firmware, or
software portions of the product, a modification of
product guidance, or both. Corrective action that
constitutes modifications to product guidance (e.g.
details of procedural measures to be taken to obviate
the security flaw) includes both those measures
serving as only an interim solution (until the repair is
issued) as well as those serving as a permanent
solution (where it is determined that the procedural
measure is the best solution). If the source of the
security flaw is a documentation error, the corrective
action consists of an update of the affected product
guidance. If the corrective action is a procedural
measure, this measure includes an update made to
the affected product guidance to reflect these
corrective procedures.

e. That describes the methods used to provide
flaw information, corrections and guidance on
corrective actions to product users. The necessary
information about each security flaw consists of its
description, the prescribed corrective action, and any
associated guidance on implementing the correction.
Product users may be provided with such
information, correction, and documentation updates
in any of several ways, such as their posting to a
website, their being sent to product users, or
arrangements made for the product developer to
install the correction. In cases where the means of
providing this information requires action to be
initiated by the product user, product guidance must
be adequate to ensure that it contains instructions for
retrieving the information. The only metric for
assessing the adequacy of the method used for
providing the information, corrections and guidance
is that there is a reasonable expectation that product
users can obtain or receive it. For product users who
register with the, the passive availability of this
information is not sufficient. Product developers
must actively send the information (or a notification
of its availability) to registered product users.

f. That describes a means by which the product
developer receives from product user’s reports and
enquiries of suspected security flaws in the product.
The procedures ensure that product users have a
means by which they can communicate with the
product developer. By having a means of contact
with the developer, the user can report security
flaws, enquire about the status of security flaws, or
request corrections to flaws. This means of contact
may be part of a more general contact facility for
reporting non-security related problems.

g. That includes a procedure requiring timely
response and the automatic distribution of security
flaw reports and the associated corrections to
registered users who might be affected by the
security flaw. The issue of timeliness applies to the
issuance of both security flaw reports and the
associated corrections. However, these need not be
issued at the same time. It is recognized that flaw
reports should be generated and issued as soon as an
interim solution is found, even if that solution is as
drastic as turn off the product. Likewise, when a
more permanent (and less drastic) solution is found,
it should be issued without undue delay. It is
unnecessary to restrict the recipients of the reports
and associated corrections to only those product
users who might be affected by the security flaw; it
is permissible that all product users be given such
reports and corrections for all security flaws,

Vulnerability�and�Remediation�for�a�High-assurance�Web-based�Enterprise

125

 provided such is done in a timely manner.
h. That results in automatic distribution of the

reports and associated corrections to the registered
product users who might be affected. Automatic
distribution does not mean that human interaction
with the distribution method is not permitted. In fact,
the distribution method could consist entirely of
manual procedures, perhaps through a closely
monitored procedure with prescribed escalation
upon the lack of issue of reports or corrections. It is
unnecessary to restrict the recipients of the reports
and associated corrections to only those product
users who might be affected by the security flaw; it
is permissible that all product users be given such
reports and corrections for all security flaws,
provided such is done automatically.

5.4 Flaw Remediation Quality System

The product developer provides reporting processes:
a. That ensures reported security flaws are

remediated and the remediation procedures issued to
product users. The flaw remediation procedures
cover not only those security flaws discovered and
reported by developer personnel, but also those
reported by product users. The procedures are
sufficiently detailed so that they describe how it is
ensured that each reported security flaw is
remediated. The procedures contain reasonable steps
that show progress leading to the eventual,
inevitable resolution. The procedures describe the
process that is taken from the point at which the
suspected security flaw is determined to be a
security flaw to the point at which it is resolved.

b. That ensures that the product users are issued
remediation procedures for each security flaw. The
procedures describe the process that is taken from
the point at which a security flaw is resolved to the
point at which the remediation procedures are
provided. The procedures for delivering remediation
procedures should be consistent with the security
objectives.

c. That provides safeguards that any corrections
to these security flaws do not introduce any new
flaws. Through analysis, testing, or a combination of
the two, the developer may reduce the likelihood
that adverse effects are introduced when a security
flaw is corrected.

5.5 Flaw Remediation Reporting

The product developer provides remediation
guidance:

a. That describes a means by which product

users report to the developer any suspected security
flaws in the product. The guidance ensures that
product users have a means by which they can
communicate with the product developer. By having
a means of contact with the developer, the user can
report security flaws, enquire about the status of
security flaws, or request corrections to flaws.

b. That describes a means by which product
users may register with the developer, to be eligible
to receive security flaw reports and corrections.
Enabling the product users to register with the
developer simply means having a way for each
product user to provide the developer with a point of
contact; this point of contact is to be used to provide
the product user with information related to security
flaws that might affect that product user, along with
any corrections to the security flaw. Registering the
product user may be accomplished as part of the
standard procedures that product users undergo to
identify themselves to the developer, for the
purposes of registering a software license, or for
obtaining update and other useful information.
There need not be one registered product user per
installation of the product; it would be sufficient if
there were one registered product user for an
organization. It should be noted that product users
need not register; they must only be provided with a
means of doing so. However, users who choose to
register must be directly sent the information (or a
notification of its availability).

5.6 Review and Approve

The enterprise representative examines the results of
the above actions to determine that the product, in its
operational environment, has sufficient flaw
remediation. If the results reveal that the product, in
its operational environment, has insufficient flaw
remediation, then remedial action must be taken by
the product developer or the product may be
replaced.

6 SUMMARY

This paper has provided a set of processes by which
the enterprise can field relatively vulnerability-free
software, at least to the extent of known
vulnerabilities and exploits. New exploits are
subject to temporary solution and become part of the
flaw remediation system where they are reported and
monitored until a satisfactory solution is achieved.
It is not anticipated that the enterprise will be 100%
exploit free from this process alone. Additional

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

126

measures, including firewalls, ports and protocols
restrictions, and some communication scanning may
be required. This process should, however, reduce
the attack space significantly. The implementation
(scheduled for summer 2014) will have to be
monitored and evaluated as it proceeds. This
includes the tracking of exploits, the response of the
software remediation system, and the degree to
which the vulnerability was knowable before the
exploit as well as newly discovered vulnerabilities.
It is expected that these analyses listed in this paper
will need refinement based upon that feedback.
Portions of this architecture are described in
(Simpson, 2011, 2012a, b).

REFERENCES

Common Criteria for Information Technology Security
Evaluation, 2009 (all version 3.1, revision 3):
a) Part 1: Introduction and general model.
b) Part 2: Functional security components.
c) Part 3: Assurance security components.
d) Common Methodology for Information
Technology Security Evaluation.

CMMI Institute, 2013, Standard CMMI Appraisal Method
for Process Improvement (SCAMPI) Version 1.3a:
Method Definition Document for SCAMPI A, B, and
C, http://cmmiinstitute.com/resource/standard-cmmi-
appraisal-method-process-improvement-scampi-b-c-
version-1-3a-method-definition-document/

Department of Defense, 2012a, Committee on National
Security Systems Instruction (CNSSI) No. 1253,
“Security Categorization and Control Selection for
National Security Systems’ categories for Moderate or
High Risk Impact as delineated in NIST 800-53.

Department of Defense, 2012b, DoD Directive (DoDD)
O-8530.1, Computer Network Defense (CND).

Finifter, Matthew, et. al., “An Empirical Study of
Vulnerability Rewards Programs”, USENIX Security
2013, August 15, 2013.

HP Security Tools, 2013, http://h20331.www2.hp.com/
hpsub/cache/281822-0-0-225-121.html?jumpid=ex_
2845_vanitysecur/productssecurity/ka011106

Huang, Y.-W., et. al., 2004, “Securing web application
code by static analysis and runtime protection,” in
WWW ’04: Proceedings of the 13th international
conference on World Wide Web. New York, NY,
USA: ACM, , pp. 40–52.

IBM Rational, 2013, http://www.03.ibm.com
/software/products /us/en/appscan

Intel Compilers, 2013, http://software.intel.com/en-
us/intel-compilers/

Kiezun, A., et. al., 2009, “Automatic creation of SQL
injection and cross-site scripting attacks,” in ICSE’09,
Proceedings of the 30th International Conference on
Software Engineering, Vancouver, BC, Canada, May
20–22.

Jones, Paul, 2010, "A Formal Methods-based verification
approach to medical device software analysis".
Embedded Systems Design., http://www.embedded.
com/design/prototyping-and-development/4008888/
A-Formal-Methods-based-verification-appro ach-to-
medical-device-software-analysis

Jovanovic, N., et. al., 2006, “Pixy: A static analysis tool
for detecting web application vulnerabilities (short
paper),” in 2006 IEEE Symposium on Security and
Privacy, pp. 258–263, [Online]. Available: http://
www.iseclab.org/papers/pixy.pdf

Kals, S., et. al., 2006, “Secubat: a web vulnerability
scanner,” in WWW ’06: Proc. 15th Int’l Conf. World
Wide Web, pp. 247–256.

Livshits, Benjamin, 2006, Improving Software Security
with Precise Static and Runtime Analysis, , section 7.3
"Static Techniques for Security," Stanford doc. thesis.

Livshits B., et. al., 2008, “Securing web applications with
static and dynamic information flow tracking,” in
PEPM ’08: Proceedings of the 2008 ACM SIGPLAN
symposium on Partial evaluation and semantics based
program manipulation. New York, NY, USA: ACM,
pp. 3–12.

Maggi, F., 2009, “Protecting a moving target: Addressing
web application concept drift,” in RAID, pp. 21–40.

Mitre, 2013a, Common Vulnerability and Exposures,
http://cve.mitre.org/

Mitre, 2013b, Common Weakness Enumeration,
http://cwe.mitre.org/

Mcallister, S., et. al., 2008, “Leveraging user interactions
for in-depth testing of web applications,” in RAID ’08:
Proc. 11th Int’l Symp. Recent Advances in Intrusion
Detection, pp. 191–210.

Mosaic, 2013, http://mosaicsecurity.com/categories/27-
network-penetration-testing

NIST, 2006, National Voluntary Laboratory Accreditation
Program, http://www.nist.gov/nvlap/upload/nist-
handbook-150.pdf

NIST, 2009, National Institute of Standards, Gaithersburg,
Md: FIPS PUB 800-53, Recommended Security
Controls for Federal Information Systems and
Organizations, Revision 3, August 2009.

NIST, 2013, National Vulnerability Database,
http://nvd.nist.gov/

Simpson, William R, et.al.., 2011, Lecture Notes in
Engineering and Computer Science, Proceedings
World Congress on Engineering and Computer
Science, Volume I, “High Assurance Challenges for
Cloud Computing”, pp. 61-66, Berkeley, CA.

Simpson, William R, and Chandersekaran, C.., 2012a,
Lecture Notes in Engineering and Computer Science,
Proceedings World Congress on Engineering, The
2012 International Conference of Information Security
and Internet Engineering, Volume I, “Claims-Based
Enterprise-Wide Access Control”, pp. 524-529,
London,.

Simpson, William R, and Chandersekaran, C.., 2012b,
International Journal of Scientific Computing, Vol. 6,
No. 2, “A Uniform Claims-Based Access Control for
the Enterprise”, ISSN: 0973-578X, pp. 1-23.

Vulnerability�and�Remediation�for�a�High-assurance�Web-based�Enterprise

127

The Open Web Application Security Project (OWASP),
2013, https://www.owasp.org/index.php/Main_Page

Wassermann G. and Z. Su, 2007, “Sound and precise
analysis of Web Applications for Injection
Vulnerabilities,” SIGPLAN Not., vol.42, no.6, pp.32–41.

Wichmann, B. A., et. al. 1995, Industrial Perspective on
Static Analysis. Software Engineering Journal, 69-75.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

128

