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Abstract: Over past decades, higher demands on performance for enterprise systems have led to an increased architec-
tural complexity. Demands as real-time analytics or graph computation add further complexity to the tech-
nology stack by adding redundancy and distributing business data over multiple components. We argue that
enterprises need to simplify data management and reduce complexity as well as data redundancy. We propose
a structured approach using the shearing layer concept with a unified data management to improve adaptability
as well as maintainability.

1 INTRODUCTION

Enterprise systems are complex compositions of mul-
tiple subsystems, which provide crucial business ca-
pabilities as financials, material management, busi-
ness intelligence, customer relationship management,
and much more. The architecture of enterprise sys-
tems has undergone many changes over the past
decades ranging from first systems that ran on a sin-
gle database to current setups with arrays of parallel
systems and data stores. Such architectures consist-
ing of multiple components, each storing its own (re-
dundant) data set and with a very particular scope of
duties, is what we call a Separated Enterprise Archi-
tecture (SEA). Many different demands led to such an
architecture, e.g., the demand for analytical capabili-
ties that introduced data warehouses into enterprise
systems or more recent demands as graph computa-
tion capabilities or closed-loop concepts.

Meeting demands by adding separate components
facilitates high adaptability in contrast to modifying
or even re-engineering existing systems. This way,
new requirements are met in time while avoiding
modifications on business related and mission critical
systems.

But in the long run, not only maintainability of
redundant systems becomes increasingly expensive.
Also adaptability is impaired as data exchange be-
tween components and data consistency gets increas-
ingly complex in separated architectures. The diver-
sity of data models and the inherent data redundancy
between transactional and analytical systems there-
fore results in economical penalties through higher

maintenance costs and reduced flexibility. In the end,
it decelerates the progression of the system, because
every additional component and layer increases data
latency and data redundancy.

This paper discusses the problems of separated en-
terprise architectures and proposes a re-engineering
of enterprise systems with focus on adaptability and
long-term maintainability. Using the shearing layer
concept, components are identified by their rate of
change and integrated into the architecture accord-
ingly. Such architectures lay the foundation for fast
iterating adaptations, while keeping mission critical
systems stable and achieving a consistent view on
business relevant data. We call data management
based on such an architecture Integrated Data Man-
agement, in which a single database system is em-
ployed for all components of the enterprise system.

The remainder of the paper is structured as fol-
lows. The progression of enterprise systems is dis-
cussed in Section 2, showing how different demands
and requirements affected their architectures. Related
work proposing different approaches to the increasing
demands is presented in Section 3. Section 4 presents
the idea of an integrated data management using the
shearing layer concept. Presenting recent achieve-
ments in the field of database research, Section 5 dis-
cusses the feasibility of an integrated data manage-
ment for enterprise systems. Section 6 discusses how
the shearing layer concept can be applied to enterprise
systems’ using the presented technologies. In Section
7, this paper closes with a conclusion.
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2 CURRENT ENTERPRISE
ARCHITECTURES

The design of enterprise systems changed steadily
over the last decades. First enterprise systems de-
ployed a single database to run all business applica-
tions, cover business processes, and persist data. With
the increasing demand for long running queries in an-
alytical tasks, enterprise systems have been separated.
To handle different workloads the applications were
separated into transactional and analytical systems.
Hereby the transactional system is run using write-
optimized databases (usually traditional RDBMS),
while data required for analytical queries has been
transferred to additional systems, e.g., Enterprise
Data Warehouses (EDW). The increasing demand for
fast analytical reports and the ability to process long-
running analytical queries have made EDWs an in-
dispensable component in business environments and
also have vastly effected their design. The first gen-
eration of enterprise data warehouses were imple-
mented using traditional row-oriented RDBMSs with
aggregated data to process analytical queries, simply
to offload work from the transactional system. Later
EDWs persist data using adapted data schemes and
storage engines optimized for analytical workloads
(e.g. star schemes and column-oriented databases).

The data transfer between transactional and ana-
lytical systems is done via ETL-processes (Extract,
Transform and Load). The ETL-process usually pro-
cesses only a predefined subset of the transactional
data since many attributes of business entities are not
relevant for analytical workloads. This subset of data
is then batch-copied, filtered, and aggregated to opti-
mize the data for analytical queries. Consequently the
data timeliness in an EDW is dependent on the char-
acteristics of the ETL-process, especially the intervals
in which the process is run

Besides transactional and analytical systems, ad-
ditional intermediate systems have been integrated.
Increasing demands for new sources of information
(e.g., caused by new components as online shops) and
reporting on transactional data (e.g., best selling prod-
uct of the last three days) introduced Operational Data
Stores (ODS) (Inmon, 1999) as an intermediate sys-
tem between the transactional system and the EDW.
Operational Data Stores integrate different sources
using data cleansing, ETL, and integrity checking.
Furthermore, they provide the capability to run rather
simple analytics on transactional data in right- or even
real-time, usually on much smaller data volumes as in
EDWs. With the competence of data integration and
short-term analytics, operational data stores became a
central component in business environments.

We refer to such architectures as Separated En-
terprise Architectures due to the separation of data
and business logic among different components (i.e.
transactional systems, operational data stores, data
warehouses, et cetera).

2.1 Advantages of Separated Enterprise
Architectures

The need for the component based design of today’s
separated architectures arose due to insufficient per-
formance for analytical workloads and timely data
integration. De-normalized data structures, pre-
computed aggregations, and narrowed tables are the
foundation for analytical systems, which were able
to process complex analytical queries with sufficient
performance in contrast to transactional systems.

Another concern has been the integration of het-
erogeneous data sources. Besides the traditional
transformation of transactional sources into analytics-
optimized data, new data sources as point of sales
data, online stores, or external vendor data needed
to be integrated. With analytical components running
at full load, a timely integration of data from several
different sources has negative effects on query perfor-
mance.

The most important advantage of a separated ar-
chitecture is the comparatively easy addition of func-
tionality without the need to modify mission critical
systems.

2.2 Drawbacks of Separated Enterprise
Architectures

Over the years the difference between transactional
and analytical systems has steadily grown. With
their analytics-optimized data characteristics EDWs
are not capable of processing the majority of oper-
ational tasks. The reason is the irrelevance of cer-
tain transactional data for analytical tasks, which are
required for operational tasks but neglected during
ETL-processes. While this optimization improves an-
alytical performance significantly, it hinders the data
flow between components due to different data mod-
els in different granularities.

The demand for high-performance analytics on
transactional data – a matter ODSs were initially de-
signed for – is one of the main challenges of enterprise
systems and a reason for the increasing complexity.
One example is credit card fraud detection that relies
on large data sets to accurately recognize fraudulent
patterns. Such approaches require fast access to vast
amounts of data while, in parallel, requiring access to
the most recent transactional data to recognize fraud
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as early as possible. These requirements effect the
usage of ODS since narrow time constraints are pro-
hibiting any delay caused by intermediate systems.
Talking about Business Activity Monitory (BAM, see
Section 3) Golfarelli et al. wrote:

[... ]a tool capable of right-time [...] data
streams. In practice, in most cases this re-
quires to abandon the ODS approach typically
pursued in DW systems and to adopt on-the-
fly techniques, which raises serious problems
in terms of data quality and integration.

(Golfarelli et al., 2004)

Closed-loop Concepts. A development that makes
operational data stores dispensable is the prevalence
of closed-loop concepts. With the horizontal as
well as vertical connection of business components
in modern systems, central messaging and data inte-
gration components present a potential bottleneck for
data timeliness. Hence ODS are counterproductive
for loose coupled and flexible architectures which are
leveraging closed-loop approaches.

Furthermore, the evolution of separating business
components with separated data and responsibilities
contradicts the rather modern concept of close-loop
functions, which cyclically integrate data between
different data sources (Mangisengi and Huynh, 2008)
(e.g., to enrich transactional systems with analytical
insights from business intelligence systems).

Data Redundancy. Another challenge is data re-
dundancy and complexity added by evading the draw-
backs of transactional systems. One reason is that
traditional relational database management systems
(RDMBSs) have significant shortcomings concerning
the ability to process analytical tasks. Complex tasks
as dunning or available-to-promise (ATP) checks re-
quire fine-grained data (i.e., transactional data) and
perform long-running OLAP-style queries (Krueger
et al., 2010b). To provide sufficient performance for
such long-running queries in transactional systems
additional data structures as materialized views or in-
dices are used to compensate for the shortcomings of
write-optimized databases used in transactional sys-
tems. But those data structures introduce new chal-
lenges to the system. Materialized aggregates lead to
a higher synchronization effort as multiple write oper-
ations are performed for each modification of a busi-
ness entity, similar to the drawbacks of indices.

Looking at the evolution of separated architec-
tures a problem of adding functionality by adding
components becomes apparent. Additional compo-
nents provide advantages in respect to timeliness of

data and performance only as long as the added sys-
tems – including the additional network latency – per-
form better than the originating source system. In the
long run, the source systems will converge to the per-
formance of the added components due to technolog-
ical progress while automatically having advantages
in respect to data timeliness. At this point the costs
for any additional layer and its inherent latency being
introduced further slows down the system. This has
been the case for operational data stores as well as in-
creasingly for data warehouses, where ETL-process
run times are often no longer acceptable when analyt-
ical data is required in (near) real-time.

3 RELATED WORK

Several publications discussed the drawbacks of cur-
rent enterprise architectures, each proposing differ-
ent approaches to provide closed-loop functions and
timely analytics.

Golfarelli et al. presented an approach to busi-
ness intelligence (BI) called Business Performance
Management (BPM) (Golfarelli et al., 2004). BPM
is a framework including standardized components
as data warehouses as well as reactive components.
Such reactive components monitor time-critical busi-
ness processes so that operational decision support
can be steadily tuned and improved according to the
company strategy. Thus, it can be seen as a combina-
tion of Business Activity Monitoring (BAM) (Dres-
ner, 2003) with a full closed-loop approach. The ar-
chitecture proposed by Golfarelli et al. is depicted in
Figure 1. Especially the BAM component reveals the
high complexity of real-time data flows in interleaved
separated systems where vertical as well as horizontal
data sources are integrated. Components as the user
interface have to handle two additional data streams
to enrich the data warehouse data with additional in-
formation.

Seufert et al. suggest an architecture with a cen-
tral Sense & Response (S&R) system (Seufert and
Schiefer, 2005). This S&R system communicates
with the internal and external business components
and improves business intelligence by linking busi-
ness processes with BI/DSS (Decision Support Sys-
tems) and reducing latencies. The approach of Seufert
et al. shows several problems concerning the com-
plexity of SEAs. Besides the fact that the EAI (Enter-
prise Application Integration) component is not well
integrated and lacks standardization for the analyt-
ical sources that are streaming data back to opera-
tional systems, the approach uses an operational data
store for “local closed-loops”. By using two differ-
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Figure 1: Architecture for Business Performance Management. Adapted with permission from (Golfarelli et al., 2004).

ent closed-loop approaches, the proposal of Seufert et
al. introduces additional complexity and redundancy
to the architecture. Furthermore, they propose the use
of an operational data store that is considered inept in
modern real-time systems (see Section 2.2).

Such complex systems have inherently sophisti-
cated communication designs. Another issue is the
absence of common communication channels, while a
highly interleaved and sophisticated linkage between
components is common. This results in an archi-
tecture in which communication channels potentially
differ between each component.

To sum up, it can be said that both discussed
approaches use additional components to evade
the drawbacks of currently deployed technologies;
adding redundancy and complexity to the architec-
tures.

4 AN INTEGRATED
ENTERPRISE DATA
MANAGEMENT

The technological conditions for database designs
changed starkly, both software and hardware wise.
Looking at the technical improvements in the field of
databases – e.g. in-memory computing or highly scal-
able NoSQL databases – the question arises why busi-
ness environments are to a large extend untouched
by the latest achievements in hardware and software.
The separation of business concerns into transactional
and analytical tasks, using write- and read-optimized
databases respectively, is decades old and has never
changed significantly.

Using an integrated data management approach
only one database is deployed which we assume to

have the following capabilities:

� A single database is deployed to store the entire
data of the enterprise.

� The database is able to handle transactional as
well as analytical workloads.

� Queries are processed directly on transactional
data without any pre-aggregated views or cubes,
allowing to answer analytical questions with suf-
ficient performance.

Such a system does not persist any redundant data
and provides unified data models that cover the com-
plete enterprise system. Such unified data models for
all business entities covering all internal components
have the advantage of a notably simplified integration
of peripheral components. This advantage is of par-
ticular interest as an efficient data integration is one
of the major bottlenecks in current systems in which
ETL-processes hinder analytical operations on cur-
rent data.

Eliminating redundancy provides additional ad-
vantages. Implementing functionality on an inte-
grated data management system means accessing a
single database using a single global set of data mod-
els. The data used across components is inherently
modeled consistently and can be directly joined. This
finally enables the goal of having a “single source of
truth” (Watson and Wixom, 2007). Furthermore, less
data redundancy means less application complexity
to keep different data sources consistent. Amongst
others, this results in lower costs for maintaining,
upgrading, updating and a faster return of invest-
ment when implementing new processes and func-
tions (Plattner, 2009).
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4.1 Adaptable Enterprise Architectures

However, combining all systems into an integrated
data management architecture is not sufficient. Up-
coming demands are still easier to meet by adding
components – with copied data – instead of modi-
fying the underlying system. Here, a structured ap-
proach is required that incorporates the need of fre-
quent progression and adaption. With fast growing
companies of the new economy and quickly chang-
ing markets enterprises are required to be adaptable
and able to react to emerging trends or critical situa-
tions quickly. The past decade has shown that emerg-
ing startups can disrupt the businesses of multi-billion
dollar companies, forcing those companies to quickly
adjust to thwart customer loss. To handle these fast
changing surroundings and markets an enterprise has
be to adaptable in respect to its business processes and
its technical environment.

For many companies the development focus is on
sustaining mission critical systems (“never touch a
running system”) and implementing new functional-
ity by adding new components. Truex et. al in con-
trast argue that the main focus should not be on orga-
nizational stability and low maintenance, but rather on
“continuous analysis, negotiated requirements, and a
large portfolio of continuous maintenance activities”
(Truex et al., 1999). Here the system is expected to be
constantly evolving and improving and never reaches
a final state of functional completeness. This is a
contradiction to the complexity and redundancy seen
in separated architectures as enterprises show very
different rates of changes. While the transactional
system with its business related importance changes
rather slowly, data warehouses evolved from batch-
updated systems to increasingly integrated systems
that are updated in real-time, sometimes even being
part of the transactional system itself. Here an ap-
proach is required that takes these different levels of
adaption into account to create an architecture that is
prepared for upcoming changes.

A concept which describes the structure of evolv-
ing objects in respect to the different functions each
component has is the shearing layer concept (Brand,
1994). The shearing layer concept originally de-
scribed six different layers of a building, which evolve
in different timescales. The fundamental layer, which
is the site of the building, may not change for several
generations. The next level – the building structure –
may change at rates between 30 and 300 years. The
last and most frequently changing layer is called stuff
that are parts such as furniture, which move or are ex-
changed daily to monthly.

The concept has been adopted in many areas, e.g.,
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Figure 2: Exemplary architecture adapting pace-layered ap-
plication strategy.

computer science (Simmonds and Ing, 2000) or hu-
man computer interaction (Papantoniou et al., 2003).
Simmonds and Ing discuss the shearing layer con-
cept in respect to information systems. They propose
agent and conversation constructs as means to dis-
cuss the functional design of systems that employ the
shearing layer concept.

A concept similar to the shearing layer concept
was proposed by Gartner, called the Pace-Layered
Application Strategy. This strategy differentiates
three different layers (Gartner, 2012): 1.) Systems of
Record - slowly changing layer that is highly stan-
dardized due to regulatory requirements and is usu-
ally mission critical, e.g. storing transactional data;
2.) Systems of Differentiation - for example business
functionality that is customized to the enterprise but
does not change steadily; and 3.) Systems of Innova-
tion - new applications and recent technologies that
are e.g. used to access new markets or requirements.

We use the idea of the shearing layer concept to
formulate a structured approach to identify different
rates of change of the system’s components and how
these can be orchestrated to allow a high adaptabil-
ity while providing a consistent and reliable (slowly
changing) foundation.

An exemplary architecture using Gartner’s pace-
layered notion is depicted in Figure 2. Here data and
functionality are placed in the corresponding layers
based on their rate of change and their relevance for
the business. The base layer is the database storing
transactional data that is highly relevant for all busi-
ness related functions and can be seen as the slowly
adapting foundation for the whole system. The base
layer forms the core of the integrated data manage-
ment.

On top of that, core business functionality that cre-
ates and processes transactional data is placed. This
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layer is adapting faster than the actual data store.
Furthermore, fast changing or new components are
placed in this layer such as engines for graph com-
putation or data mining. Also additional data stores
that do not store business relevant data (e.g. caching
servers for websites or volatile data stores for session
management).

Functionality that is still in the testing phase, de-
mos, or prototypes are placed in the system of inno-
vation layer.

4.2 Feasible Applications

Besides reduced complexity and data redundancy, an
integrated data management also enables new appli-
cations. The following paragraphs discuss approaches
that are not possible – or only with high efforts – in
separated systems.

Forecasting. The growing forecasting capabilities
of enterprise systems are an important improvement
of current and upcoming enterprise systems. Fore-
casting is dominated by long running analytic-style
workloads. It is mostly processed on data warehouses
or analytical systems, therefore calculations are lim-
ited to the data available at execution time. Outliers
and abnormalities in the data can be an important fac-
tor for forecasts to be as precise as possible. This re-
quirement is not fulfilled by traditional analytical sys-
tems, whose data is limited to crucial subsets needed
for analytical reports and which is aggregated by pre-
defined data integration methods. Thus forecasting
is often limited to long time views, because critical
short time forecasts are not possible due to the lack of
transactional (near) real-time data.

Techniques as data mining to find new (or not yet
known nor precisely modeled) facts can be used in
combination with forecasts. The main benefit here is
that all these services are not any longer bound to their
own data sets, but can easily interact with each other
since they are all running on the same data sets.

An example for such an application is the avail-
able to promise (ATP) check as presented in (Tin-
nefeld et al., 2011). Here, the ATP check is not only
run when an order arrives or resources have to be
reassigned, but also to check whether reassignments
might cause problems at a later point in time (e.g., the
production of too many items depends on the reliabil-
ity of a single contractor).

Event-driven Process Optimization. Besides
proactive tasks as forecasting, event-driven systems
can also be enhanced by improved reactive compo-
nents especially with the possibility of analytical

queries on transactional data. As Seufert et al. wrote
“Collecting and reconciling all operational data
related to business processes, enables the measure-
ment of process performance and helps to identify
opportunities for process improvement” (Seufert and
Schiefer, 2005). This advantage becomes subse-
quently possible because analytical insights, which
are usually obtained from warehouses via complex
OLAP-queries, are available directly in the source
system. It can be propagated immediately to any
component in the system.

5 MODERN DATABASE SYSTEMS

The field of database management systems has been
widely disrupted in recent years. While traditional
RDBMS vendors have dominated the database market
for decades, in-memory databases for analytical ap-
plications as well as highly scalable NoSQL databases
show the potential of recent database technologies.

Besides database software, several hardware
achievements have greatly effected the design of cur-
rent database technologies. On the one hand, in-
creasing main memory capacities allow in-memory
database to keep the whole database in memory. In
many cases, in-memory databases show significantly
improved performance over their disk-based coun-
terparts. On the other hand, current server systems
achieve high parallelism using multi-core CPUs or
many-node setups, providing both means to scale up
as well as to scale out.

These hardware improvements did not only in-
fluence the development of new database designs,
but also allowed improvements of existing read-
optimized databases. While databases for trans-
actional workloads stagnate providing acceptable
performance for analytical workloads, analytical
databases are increasingly able to handle transactional
workloads (MacNicol and French, 2004; Krueger
et al., 2010a).

5.1 A “One size fits all” Database

The question whether a single database can be ca-
pable of handling both transactional and analytical
workloads has been discussed in several publica-
tions, from a theoretical as well as from a practi-
cal point of view. Today, it is common understand-
ing amongst most researchers that no single database
can cover all scenarios and requirements for all appli-
cations (Stonebraker and Çetintemel, 2005; French,
1995). Conn states that no system could ever be
able to handle both workloads with the same data
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model (Conn, 2005). Also (Howard, 2002) and (Bar-
businski, 2002) conclude, that a common database
model can not cover the constraints and characteris-
tics of both - transactional and analytical - systems.
Whereby Howard and Conn do not negate the pos-
sibility that a single database engine might be capa-
ble of such a mixed workload using different storage
models.

Recent publications discuss the question, what
type of database engine could close the gap between
transactional and analytical workloads. This includes
topics as adopting columnar characteristics in row
stores (Bruno, 2009) as well as improving the write-
capabilities of column stores (Krueger et al., 2010a).
Also several hybrid approaches - combining row- and
column-oriented storage schemata - have been pro-
posed (Kemper and Neumann, 2011; Grund et al.,
2010). Database technologies as NoSQL databases
appear to be a good fit for enterprise systems as they
are highly flexible and scalable, but constraints on
transactionality hamper their adaption in productive
transactional systems. Whether non-ACID databases
can be efficiently used in business systems is not ob-
ject of this paper, but recent technologies such as
the RDBMS F1 show that even NoSQL pioneers as
Google reintegrate SQL and ACID compliance in
their mission critical systems (Shute et al., 2013).

Not proposing a “one size fits all” solution, but
a solution particularly optimized towards enterprise
systems, has been proposed by Plattner (Plattner,
2009). This so-called common database approach has
been adopted in the commercial database SAP HANA,
a columnar in-memory database optimized for mixed
workloads (Sikka et al., 2012). Another in-memory
database is the H-Store-based VoltDB (Kallman et al.,
2008; Stonebraker and Weisberg, 2013). VoltDB is
row-based and optimized for OLTP workloads using
sharding and lock-free transactions. All major enter-
prise database vendors as IBM, Microsoft, and Oracle
are currently developing in-memory solutions on top
of their disk-based databases (Lindstroem et al., 2013;
Larson et al., 2013; Lahiri et al., 2013).

5.2 Databases for Integrated Data
Management Systems

Seeing the broad field of databases raises the ques-
tion which database system might be able to han-
dle an integrated data management and provide the
foundation for a architecture as proposed in Section
4.1. As shown in Figure 2, such an architecture re-
lies on a database that stores all business relevant
data. This does not exclude a combination of multiple
data storages (i.e., polyglot persistence (Sadalage and

Fowler, 2012, pp. 133–140)) as there are situations
in which the addition of specialized storage engines
can be advantageous, e.g., for session management
or website caching purposes. But it is important to
understand that any business related data should be
stored only once and as detailed as possible. If pre-
aggregated views or additional technologies (e.g., Or-
acle’s in-memory layer (Lahiri et al., 2013) for ana-
lytical workloads or Microsofts’s Heckathon (Larson
et al., 2013) for transactional workloads) are used to
provide a sufficient analytical performance, the views
should to be consistent with the primary transactional
data source (i.e., no interval-based updates) and han-
dled by the database only, not the application layer.
The data storage layer might consist of an array of
technologies and use redundancy to provide sufficient
performance as long as the such performance addi-
tions are completely transparent to applications to re-
duce maintenance efforts and complexity. According
to Plattner it is already possible to deploy a single
database system for that matter (Plattner, 2009).

From a conceptual point of view technologies
as in-memory databases might be able to close the
gap between transactional and analytical systems.
Developments that put additional layers on top of
transactional data provide graph-computation capa-
bilities without added data redundancy (Rudolf et al.,
2013). The same has been shown for data mining
and machine learning (Grosse et al., 2013). Conse-
quently, we expect that relational databases using lat-
est achievements in the area of in-memory computing
will be able to handle transactional as well as analyti-
cal workloads with sufficient performance.

6 APPLICABILITY FOR
EXISTING ENTERPRISE
ENVIRONMENTS

Discussing integrated data management based on the
shearing layer concept raises the question of how to
map the different layers to the current software and
hardware. Nowadays, most ERP systems use three-
tier architectures consisting of database(s), applica-
tion servers to provide scalability, and the front-end.
Amongst others, this setup has several shortcomings
in respect to performance and maintenance aspects to
keep the application servers consistent.

In contrast, architectures based on the shearing
layer concept can deploy a single DBMS to provide
scalability without complex application servers. We
propose to put both lower layers (i.e., the system of
record and the system of differentiation) on the lowest
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hardware system, the database server. This way the
performance wisdom of bringing the code to the data
can be adhered. In contrast, most current architectures
using the three-tier architecture bring data to the code
to take computations off the database system. But as
presented in the previous Section, nowaday’s highly
parallel DMBSs are capable of handling much larger
workloads compared to the workloads and database
performance of the time when the three-tier architec-
ture was initially developed.

The proposed architecture shown in Section 4 can
be achieved using different means. Most current
database vendors favor stored procedures, which are
written in SQL-like languages and are directly exe-
cuted at the database level. The disadvantage of us-
ing SQL-like languages is that they are neither opti-
mized for the expression of complex business logic
nor aware of business objects used on the application
side. Besides SQL, there is an array of languages to
program databases. Haas et al. proposed a system
called Starburst to enable object aware programming
near the database: “We chose to stay with the rela-
tional model because of its great power and simplic-
ity, [...] give users the support they need for their ob-
jects through extensions, while preserving the advan-
tages of a relational DBMS” (Haas et al., 1989). A
similar approach has recently been proposed by Fr-
ber et al. (Faerber et al., 2011). Here, the database
is aware of application specific business objects –
called semantic models – to run business logic directly
on the database. Their architecture incorporates sev-
eral aspects of the system of differentiation layer into
the DBMS, e.g., a text analysis engine, a graph en-
gine, and a calculation engine for computation inten-
sive processes such as data mining. Furthermore, a
specialized library provides common business func-
tionality, which can be accessed by external applica-
tions and is optimized to execute directly inside the
database core. Such functionalities include, e.g., cur-
rency conversion or disaggregation as used in many
planning operations (Jaecksch et al., 2010).

An example of the possible performance improve-
ments of re-engineered business processes has been
shown by Tinnefeld et al. (Tinnefeld et al., 2011)
with the available-to-promise (ATP) check. The ATP
check has been implemented on a in-memory col-
umn store pushing down the business logic to the
database. Even though this process is usually is con-
sidered transactional, it is comparably complex and
includes long running queries (Krueger et al., 2010b).
This prototype shows that transactional processes can
be sped up significantly by pushing down logic to the
database level.

However, adapting existing enterprise architec-

tures is challenging. While it is partially possible
to avoid rewriting code by using dynamic database
views (Plattner, 2013), the costs to adapt complete
systems are still rather high. Another challenge to
solve is the question how logic push-downs to the
database layer can be done using non-proprietary
standards to avoid potentially expensive vendor lock-
ins when adapting existing systems to vendor specific
languages and protocols.

7 CONCLUSION

The trend towards more complex systems has been
steady for years now, mainly caused by increasing re-
quirements for data timeliness. With a growing num-
ber of systems whose data ought to be integrated in
real-time, this trend appears likely to continue. The
complexity of current enterprise architectures and the
recurring pattern of introducing data-redundant com-
ponents to improve performance reveal the structural
problems of most enterprise architectures. In this pa-
per we proposed a two-fold approach using the shear-
ing layers concept to adapt the system architecture
and an integrated data management to simplify fur-
ther simplify the system. The shearing layers concept
allows the identification of components with differ-
ent scales of change to build an architecture that is
adaptable and maintainable in the long run. Together
with the implications of an integrated data manage-
ment, our approach does not only enable new possi-
bilities but also lays the foundation for upcoming gen-
erations of enterprise systems. Seeing this approach
from a technical point of view in context with lat-
est research leads us to the conclusion that an inte-
grated data management for enterprise architectures
running on a single database system is feasible. Be-
cause technologies such as in-memory technologies
have already shown to have a vast impact on perfor-
mance without the shortcomings of separated enter-
prise systems.
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(2013). The Graph Story of the SAP HANA Database.
In BTW, pages 403–420.

Sadalage, P. and Fowler, M. (2012). NoSQL Distilled: A
Brief Guide to the Emerging World of Polyglot Persis-
tence. Addison Wesley Professional.

Seufert, A. and Schiefer, J. (2005). Enhanced business intel-
ligence - supporting business processes with real-time
business analytics. In DEXA Workshops, pages 919–
925. IEEE Computer Society.

Shute, J., Vingralek, R., Samwel, B., Handy, B., Whipkey,
C., Rollins, E., Oancea, M., Littlefield, K., Menest-
rina, D., Ellner, S., Cieslewicz, J., Rae, I., Stancescu,
T., and Apte, H. (2013). F1: A distributed sql database
that scales. PVLDB, 6(11):1068–1079.

Sikka, V., Färber, F., Lehner, W., Cha, S. K., Peh, T., and
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