
SCIT Based Moving Target Defense Reduces and Shifts
Attack Surface

Ajay Nagarajan1 and Arun Sood1, 2

1Department of Computer Science, George Mason University, Fairfax, VA, U.S.A.
2SCIT Labs, Clifton, VA, U.S.A.

Abstract. Current approach to security is based on perimeter defense and relies
on reactive systems like firewalls, intrusion detection and prevention systems.
These systems require a priori information about attacks and vulnerabilities.
McAfee reports identifying 100,000 new unique malware each day. Thus trying
to prevent intrusions is becoming impractical. Although it is difficult to model
and predict a hacker’s moves, a defender might be able to make hacker’s task
harder by adopting Moving Target Defense (MTD) proactive security
strategies. In this paper, we present SCIT, our MTD approach. We use Attack
Surface assessment to evaluate SCIT. A system’s attack surface is the subset of
its resources that an attacker can use to attack the system. Manadhata uses
attack surface reduction / shifting as means of assessing MTD. In this paper, we
compare the dynamically changing Attack Surface for three system
architectures (1) Static Systems; (2) Basic-SCIT and (3) Diverse-SCIT.

1 Introduction

Current Information Technology systems operate in a relatively static configuration
and primarily focus on intrusion avoidance. For example, names, addresses, software
stacks, networks, and various other configuration parameters remain static over
extended periods of time. At the same time the variety of malware is increasing -
McAfee reports [1] identifying 100,000 new unique malware each day. Thus
preventing all intrusions is very hard. We believe that intrusions are inevitable.
Current experience shows that in spite of prevention devices, the criminals are able to
ex-filtrate data and damage systems. Industry studies by Verizon [2] and Mandiant [3]
show that criminals are often in the compromised systems for months. According to
the 2013 Verizon Business Data Breach Investigation Report [2], the average time an
intruder resides in a system from initial compromise to the point of discovery is more
than 34 days. The current static server approach is a legacy design striving solely for
simplicity and performance despite the increasing concern of malicious exploitation
of system vulnerabilities.

Moving Target Defense (MTD) is the idea of managing change across various
system and network dimensions in order to increase the intruder work factor by
increasing the intruder work complexity and decreasing visibility of systems to the
intruders. Traditionally MTD strategies have presented two significant challenges to
adoption. First, for the sake of security, MTD cannot ignore performance and end user
productivity. Most customer facing systems don’t have the luxury of adding security

Nagarajan A. and Sood A..
SCIT Based Moving Target Defense Reduces and Shifts Attack Surface.
DOI: 10.5220/0004978300140025
In Proceedings of the 11th International Workshop on Security in Information Systems (WOSIS-2014), pages 14-25
ISBN: 978-989-758-031-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

that slows down performance. Customers tend to move on if the experience is slow
and tedious. Secondly, traditional MTD design generally consists of complex
processes involving memory address randomization, network address shuffling,
instruction set randomization and more [4]. All of these techniques are designed to
prevent attacks and have the potential to be resource hogs thereby slowing down
throughput in certain cases.

SCIT based Moving Target Defense acknowledges that trying to prevent each
intrusion is impractical. Therefore, we shift the emphasis to minimizing losses
occurring from intrusions rather than preventing intrusions. SCIT systems are
designed to be complementary to reactive systems [5]. Primary goal of SCIT-MTD is
to reduce the intruder’s window of opportunity to execute an attack and increase the
costs of their foot-printing, scanning and attacking efforts. Since by design, the SCIT-
MTD attack surface of the system is constantly changing, the system vulnerabilities
are difficult to exploit. The process of compromising a system involves identifying
system vulnerabilities and customizing attacks to exploit them. Ever-changing attack
surface presents a stiff challenge to the intruders. SCIT – MTD can be used with
diversification approaches to further increase the attacker difficulty.

1.1 How SCIT (Self-Cleansing Intrusion Tolerance) Works

In [6] and [7], we presented SCIT, an intrusion tolerant technique that provides
enhanced server security. SCIT research has focused on critical servers that are most
prone to malicious attacks. The technique involves multiple virtual instances of server
that are rotated and self-cleansed periodically irrespective of the presence or absence
of intrusions. Self-cleansing refers to loading a clean image of the server’s OS and
application into the Virtual Machine. Rotation here refers to the process of bringing
an exposed virtual server off-line, killing it, restarting it and in the meanwhile,
bringing another virtual server online to assure availability. By doing so, in the event
of an intrusion, the intruder is denied prolonged residence on the server. Once the
virtual server’s ‘exposure time’ to the Internet is completed, the virtual server instance
is automatically rotated. This virtual instance of the server is interchangeably referred
to as virtual server throughout this paper.

Fig. 1. SCIT Server rotation.

The illustrative example in Figure 1 shows 3 different time periods. At any given
time, there are five red servers online and three green servers being wiped clean. In
each case a different set of servers is being cleansed. Eventually every server will be
taken offline, cleaned and restored to its pristine state. SCIT technology can be used
to build a variety of servers that meet enhanced security requirements. In this paper,
we use SCIT approach to SCITize a web server, and assess its security performance.

15

1.2 Common Security Evaluation Metrics and Attack Surface

Measurement of security has been a challenge and is of practical importance to
software industry. Today we commonly use two measurements to determine the
security of a system: (1) at the ‘code level’, we count the number of bugs found (or
fixed from one version to the next); (2) at the ‘system level’, we count the number of
times a system version is mentioned in CERT advisories, security bulletins and
vulnerability databases like MITRE CVE. Manadhata [8, 9] proposed Attack Surface
as a security metric that focuses at the ‘design level’ of a system: above the level of
code, but below the level of the entire system. Attack Surface is a metric to compare
the relative security of two versions of the same system rather than the absolute
security of a system. Given two versions, A and B, of a system, one could measure
the security of A relative to B with respect to the system’s attack surface. Intuitively,
higher the attack surface, more the chances of the system getting compromised e.g.,
eliminating certain system features potentially makes it more secure.

Attack Surface assesses (a) system ‘actions’ externally visible to the system’s
users; and (b) system ‘resources’ accessed or modified by each action. The more
actions available to a user or the more resources accessible through these actions, the
more exposed the attack surface. The more exposed the attack surface, the more likely
the system could be compromised.

The Formal Definition of Attack Surface is [8] “The set M of entry points and exit
points, the set C of channels and the set I of un-trusted data items are the system’s
resources that can be used by the attacker to compromise the system. Therefore, given
a system S and its environment, the system’s attack surface can be represented as the
triple <M, C, I>”.

Attacks carried out over the years, however, show that certain system resources
are more likely to be opportunities, i.e., targets or enablers, of attack than others. This
leads to the idea of ‘Weighted Attack Surface’. For example, services running as the
privileged user root in UNIX are more likely to be targets of attack than services
running as non-root users. Since every system resource contributes unequally to the
system’s attack surface, author of [8] proposes the use of ‘Damage Potential – Effort
ratio’. The amount of damage that can be done to the system by exploiting a
particular resource is the damage potential of that resource. Similarly, the amount of
work that the attacker would have to put in to use that resource as an attack tool
defines the effort.

2 Attack Surface Shifting / Reduction as a Technique for Moving
Target Defense

In [8] Manadhata formalized the notion of a software system’s attack surface and
proposed the use of system’s attack surface measurement as an indicator of the
system’s security. Intuitively, a system’s attack surface is the set of ways in which an
adversary can enter the system and potentially cause damage. Hence larger the attack
surface, the more insecure the system.

Awad A. Younis et al., [10] establish that there is a relationship between Attack
Surface Size and Vulnerability Density. The authors also performed a case study on

16

two different versions of Apache HTTP Server. They concluded that the version with
the bigger attack surface had more vulnerabilities as well as vulnerability density.
This further supports the use of Attack Surface size as a security metric.

Fig. 2. Attack surface shifting.

In [9], the author considers a scenario where system administrators are
continuously trying to protect their systems from attackers. As shown in Figure 2, if a
defender shifts a system’s attack surface, then old attacks that worked in the past, e.g.,
attack 1, may not work anymore. Hence the attacker has to spend additional effort to
make past attacks work or find new attacks, e.g., attack 4. Hence, the interaction
between the defender and the intruder here can be viewed as a two player game where
the action of one player has a consequence on the other. Thus, reducing or shifting a
system’s attack surface functions as MTD. This works in favor of the defender to
increase the intruder’s work factor randomly.

Attack Surface of a system can be reduced or shifted by disabling, modifying and /
or enabling the system’s features [9]. Disabling the existing features reduces the
number of entry points, exit points, channels, and data items, and hence reduces the
number of resources that are part of the attack surface. Modifying the features
changes the damage potential-effort ratios of the resources that are part of the attack
surface, e.g., lowering a method’s privilege or increasing the method’s access rights
reduces the resources’ contributions to the attack surface measurement. The enabled
features increase the attack surface measurement by enabling new features and adding
more resources to the attack surface. When existing features are disabled and new
features enabled, the attack surface shifts. Table 1 presents four illustrative scenarios
to highlight the possible impacts of disabling, enabling or modifying features on a
system’s attack surface:

Table 1. Possible scenarios to reduce and shift the attack surface.

Scenarios Features Attack Surface Reduction Attack Surface Shift

A Disabled Existing Yes Yes

B Enabled New No No

C
Enabled New
Disabled Existing

Yes Yes

D
Enabled New
Disabled Existing

No Yes

2.1 Dynamic Attack Surface

The Attack Surface of a production system increases with time. For example, the

17

number of open sockets may increase because of programming oversight. In typical
operations, the application of a security patch reduces the Attack Surface, while a
patch that increases functionality increases the Attack Surface. Similarly, in cases of a
Web Server serving dynamic content; the contents of dynamic web pages change in
response to different client requests. Use of additional web service extensions and
client side plug-ins are generally required to facilitate the use of dynamic content
thereby leading to an increase in the Attack Surface. Thus, the Attack Surface is a
dynamic property. The SCIT approach constantly restores software to a pristine state,
and thus dynamically reduces the Attack Surface.

2.2 Impact of Dynamic Attack Surface on Intruder Work Factor

Information assurance mechanisms are designed to frustrate the adversary and make it
difficult to launch a successful attack. There is a need to quantify the impact of a
given mechanism on a particular adversary. In the age of unknown attacks, the goal of
sound security architecture should be: (a) to significantly increase the intruder work
factor for successful attacks. Intruder work factor is the amount of work an intruder
has to put in to accomplish an attack (eg: mean time to compromise a system) and (b)
To significantly increase the ratio of the attacker’s work factor to generate successful
attacks to the defender’s work factor for responding to successful attacks [11]

In order to measure the impact of Dynamic Attack Surface on Intruder Work
Factor (IWF), we developed a test bed experiment [12]. This effort was not meant to
be exhaustive but representative. As part of the experiment, we exploited vulnerable
versions of Apache Tomcat and Samba using pre-loaded exploits in the Metasploit
Framework. Since pre-loaded exploits were used, the experimental results did not
account for ‘Exploit Development Time’ which is often a large chunk of the time for
compromising a system. We implemented Address Space Layout Randomization
(ASLR) and SCIT techniques of Moving Target Defense to make the Attack Surface
more dynamic. We used two sample exploit conditions to assess the impact of
Dynamic Attack Surface on IWF: (a) Remote root buffer overflow exploit of Samba
and (b) WAR backdoor exploit of Apache Tomcat.

Sample Results [12]:
Figure 3 presents the attacker and defender actions for Case (b): the Apache Tomcat
Exploit. Red circular nodes here indicate intruder activity with associated IWF in
seconds, and blue dashed arrows show the transitions between intruder actions. Green
solid arrows indicate impact of SCIT rotation on each intruder activity. Defender
Work Factor (DWF) in this case is 44 seconds per rotation – the time taken to switch
an exposed virtual instance of server with a pristine copy. This process not only
moves the target but also self-cleanses the system. SCIT rotation and self-cleansing is
independent of attacker activity and so it can occur at any point of the attack life
cycle. Example scenario: if SCIT rotation happens while the intruder is performing
his ‘Dictionary Attack’ – then the attack is interrupted and the intruder would have to
redo the following: (a) Scan to identify the new target and (b) Re-launch the
dictionary attack on the newly identified target. In effect, a DWF of 44 seconds
induces an additional IWF of 166 seconds.

18

Fig. 3. Attacker and Defender Actions - Apache Tomcat Exploit.

Under these sample exploit conditions, the key findings of the experiment were:
(a) ASLR increased the IWF and at best case, had an iterative impact on IWF. ASLR
with periodic re-randomization induced a higher IWF than ASLR w/o re-
randomization. (b) SCIT, at best, had a cumulative impact on IWF. These further
support the notion that dynamic attack surface frustrates the adversary and increases
the work required for a successful attack.

3 Test Bed Experiment

In this paper, we use Attack Surface assessment to evaluate impact of our MTD
solutions. We compare the dynamically changing Attack Surface for three security
configurations (1) Static systems; (2) Basic-SCIT and (3) Diverse-SCIT. Static
systems adopt traditional reactive systems; they are sitting ducks that are indefinitely
online. System cleansing and recovery is generally manually triggered or by an

19

IDS/IPS. We compare Static systems with two flavors of SCIT - MTD: Basic-SCIT
which loads the same pristine image every-time a virtual server is self-cleansed; and
Diverse-SCIT loads clean images of diverse implementations of the same service
during the SCIT cycle. We use the Microsoft Attack Surface Analyzer [13] for ease of
use to perform all attack surface assessment.

Configuration of System used for Test Bed Experiment:
Gateway P-7805u
Intel Core 2 Duo CPU P8400 @ 2.26GHz
4 GB RAM
64-bit Windows Vista Home Premium Service Pack 2

This setup is not intended to emulate real world server system configuration. This is
merely a test-bed configuration used to evaluate the dynamic attack surface of varying
system architectures in sample scenarios.

Assumptions Made for Analysis:
Since it is not plausible to determine the ‘Damage Potential - Effort Ratio’ of every
existing system resource (there are hundreds of them); we assume they are all equal.
This is similar to the approach taken in [8]. And so, we arrive at

3.1 Attack Surface Components

For the purposes of our Test Bed Experiment, we use the Microsoft Attack Surface
Analyzer [13]. In our experiment we assume that the following components make up
the Attack Surface of a system. This is not intended to be comprehensive but
summarizes the key components of any system’s attack surface: (a) Running
Processes – Process is an executing program; (b) Executable Memory Pages – Data
Execution Prevention (DEP) is a system-level memory protection feature which
enables the system to make one or more memory pages non-executable. Non-
executable memory pages make it harder for the exploitation of buffer overruns.
Therefore, fewer executable memory pages is better; (c) Windows – In a graphical
Windows-based application, window is the area of the screen which interacts with the
user by receiving input and displaying output; (d) Kernel Objects – An object is a
collection of data that the OS manages. Kernel Objects are objects that are part of the
kernel-mode operating system, for example: symbolic links, registry keys; (e)
Services- Windows service is a program running in the background similar to a UNIX
Daemon; (f) Drivers – Software that enables the functionality of a physical or virtual
device; (g) Ports – Ports are process specific communication endpoints of a system.
Ports are associated with host IP addresses and the type of protocol used for
communication as in TCP or UDP; (h) Named Pipes – A named pipe is a one-way or
duplex pipe for communication between a pipe server and one or more pipe clients. A
named pipe can facilitate inter process communication; (i) RPC Endpoints – Remote
Procedure Call is an inter-process communication that allows a program to execute a
procedure on a remote computer over the network. RPC Endpoints facilitate such
communication; (j) Objects with weak Access Control List (ACL): These can be files,

Attack Surface Size = Total Number of Attack Surface Components

20

executables, registry entries etc. One example of a weak ACL is allowing non-
administrators to modify files. Sum of all of these components make up the Attack
Surface Size of a system.

Table 2. Attack Surface Size comparison.

Attack Surface
Component

Pristine
Apache
System

Apache
System after

32 days

Apache System
after 4 hour

Exposure

Pristine
Nginx
System

Nginx System
after 4 hour

Exposure
Running Processes 76 79 77 76 77
Executable Memory
Pages

25 46 27 21 26

Windows 183 265 199 180 189
Kernel Objects 513 520 513 513 516
Services 182 189 182 181 181
Drivers 274 284 274 274 274
TCP/UDP Ports 118 138 124 101 115
Named Pipes 133 146 136 133 134
RPC Endpoints 33 35 33 33 33
Attack Surface Size 1537 1699 1565 1512 1545

3.2 Static Systems

Static systems are systems that do not incorporate proactive security strategies. In
such systems, cleansing is generally triggered manually or by an alarm on discovering
malicious activity. According to Verizon’s Data Breach Investigation Report 2013
[2], the average time an intruder resides on the system from the point of initial
compromise to the point of intrusion discovery is more than 34 days. In the case of a
Static System, since there is no periodic self-cleansing or restoration, the attack
surface of the system keeps on increasing with time as a result of normal system use.

To illustrate this, we compared the attack surface size of an Apache System (a)
before use (pristine) and (b) after random usage for 32 days. Figure 4 illustrates the
setup of the Apache System. Table 2 presents results from the attack surface analysis
report. Columns 2 and 3 of Table 2 show the growth in Attack Surface Size of the
static Apache system during usage.

Table 3 section (a) summarizes the security issues that were introduced during the
32 day usage. In other words, these security issues were not present in the Pristine
Apache System but appeared in the Apache System after 32 days.

3.3 Basic-SCIT Setup

In the Basic-SCIT setup, there are multiple virtual instances of the server of which
one or more are online at any given time. Once every period of time known as
‘Exposure Time’, the system proactively self-cleanses and rotates. Every time this
happens, the Pristine Apache Image is loaded into the virtual instance that is about to
go online. Figure 4 presents one such instance. This setup is providing a Pet Store e-
commerce application service through iBatis JPetStore 4.0.5. In our experiment, the
‘Exposure Time’ is 4 hours. The attack surface size of the system can only increase
till the point of self-cleansing. Thus there is an upper bound on the growth of the

21

Attack Surface Size. After 4 hours, on self-cleansing, the size of the attack surface is
reduced back to that of the Pristine Apache Image. This is cyclical and so the size of
the attack surface is periodically reduced and kept manageable.

Fig. 4. Apache system.

Table 2 (columns 2 and 4) compares the Attack Surface Size of a Pristine Apache
System with that of the Apache System after 4 hour use. After the system has been
exposed for 4 hours, it is self-cleansed and rotated thereby reducing the Attack
Surface Size back to that of the Pristine Apache System. From columns 2, 3 and 4, we
emphasize that the growth in Attack Surface Size is much less in 4 hours as opposed
to 32 days. Similarly, from Table 3 section (a) and section (b) it is apparent that the
count of security issues that arose over 32 days far outnumbered issues that arose in 4
hours.

Table 3. Security Issues that arose in (a) the Apache System during 32 day usage; (b) the
Apache System during 4 hour usage and (c) the Nginx System during 4 hour usage.

Security Issues on System Usage Count
(a) Pristine Apache System VS Apache System after 32 days

Executables with weak ACLs 17
Directories containing objects with weak ACLs 10
Registry Keys with weak ACLs 10
Processes with NX disabled 1
Services vulnerable to tampering 3
Services with Fast Restarts 1
Vulnerable Named Pipes 26

(b) Pristine Apache System VS Apache System after 4 hours
Directories containing objects with weak ACLs 3
Processes with NX disabled 2
Services vulnerable to tampering 1

(c) Pristine Nginx System VS Nginx System after 4 hours
Directories containing objects with weak ACLs 4
Services vulnerable to tampering 1

Graph 1 (black series) presents the temporal attack surface of the Basic SCIT

22

setup for the first 40 hours. The size of the system’s attack surface increases for 4
hours when it is exposed and is reduced to that of the pristine Apache image on self-
cleansing periodically.

3.4 Diverse-SCIT Setup

In Diverse-SCIT, we use a system with two diverse implementations of the iBatis
JPetStore service. Virtual Server 1 uses the Apache Load Balancer with Apache
Tomcat 7.0.41 and Terracotta Big Memory Go Caching; whereas Virtual Server 2
uses the Nginx HTTP Server with load balancer along with MemCached v1.4.15 to
provide service.

Table 4. Security Issues unique to each configuration.

Security Issues Count
Issues present in Apache System but not in Nginx System

Directories containing objects with weak ACLs 4
Processes with NX disabled 1
Services vulnerable to tampering 1

Issues present in Nginx System but not in Apache System
Directories containing objects with weak ACLs 1
Processes with NX disabled 1

Figure 5 presents two such virtual instances of the server, one with each
configuration. In this setup, virtual servers are rotated in such a manner to alternate
between the two configurations. As shown in Graph 1 (red series), on each self-
cleansing, the size of the system’s attack surface alternates between that of Pristine
Apache image and Pristine Nginx image. Table 2 (columns 5 and 6) compares the
Attack Surface Size of the Pristine Nginx System with the Nginx System after 4 hour
use. Table 3 section (c) lists the security issues that arose during exposure. In addition
to reducing the Attack Surface Size periodically, this setup also shifts it. Table 4
emphasizes this shift by presenting security issues that are unique to each setup. This
adds another layer of complexity to the intruder since identifying system
vulnerabilities with ever changing attack surface is a challenge. An attack that used to
work with the previous configuration no longer works on rotation.

Graph 1. Temporal Attack Surface - Basic SCIT and Diverse SCIT.

23

Fig. 5. Two virtual instances of the Diverse SCIT Setup.

4 Conclusion

In this paper, we use Attack Surface assessment to evaluate the impact of our SCIT
MTD solutions. We compared the dynamically changing Attack Surface Size for (1)
Static Systems; (2) Basic-SCIT and (3) Diverse-SCIT using a test bed experiment. We
present results of the experiments that show changes in attack surface size along a
timeline for the three different security configurations. The results support our
hypothesis that SCIT is an effective means to provide MTD by reducing / shifting
attack surface periodically, thus making the hacker’s task harder. With Basic-SCIT,
by moving the target virtual server, we force the intruder to restart the attack all over
again. Furthermore with Diverse-SCIT, due to Attack Surface shifting, some of the
attacks that worked before no longer work after self-cleansing and restoration.
Traditional reactive systems are generally static and are indefinitely online. If not for
periodic management, the system attack surface size tends to keep growing with time.
Gains of SCIT are further highlighted when compared to traditional static systems. As
future work, we intend to develop an Adaptive SCIT framework based on dynamic
Attack Surface Measurements.

Acknowledgement

This research was partly supported by Office of Naval Research grant N00014-13-1-
0017.

24

References

1. McAfee “Infographic: The State of Malware 2013”
2. Verizon Business “Data Breach Investigation Report 2013”
3. Mandiant “APT1: Exposing one of China’s Cyber Espionage Units” report
4. David Evans, Anh Nguyen-Tuong, John Knight “Effectiveness of Moving Target

Defenses” Chapter 2, Moving Target Defense: Creating Asymmetric Uncertainty for Cyber
Threats 2011

5. Ajay Nagarajan and Arun Sood, “SCIT and IDS Architectures for Reduced Data Ex-
filtration” 4th Workshop on Recent Advances in Intrusion-Tolerant Systems, Chicago,
USA, June 2010.

6. Yih Huang, David Arsenault, and Arun Sood. “Incorruptible System Self-Cleansing for
Intrusion Tolerance” Performance, Computing and Communications Conference, IPCCC
2006.

7. Quyen L. Nguyen and Arun Sood, "Comparative Analysis of Intrusion-Tolerant System
Architectures", IEEE Security and Privacy. Preprint. Accepted for publication August 2010

8. Manadhata, P.K. “An attack surface metric” Ph.D. thesis, Carnegie Mellon University
(2008)

9. Manadhata, P.K. “Game Theoretic Approaches to Attack Surface Shifting”, MTD II
10. Awad A. Younis and Yashwant K. Malaiya “Relationship between Attack Surface and

Vulnerability Density: A Case Study on Apache HTTP Server”, The 2012 International
Conference on Internet Computing, Las Vegas, USA, July 2012

11. James E. Just et al “Learning Unknown Attacks – A start” Foundations of Intrusion
Tolerant Systems, pp 374-386, 2003

12. Ajay Nagarajan and Arun K. Sood “Measuring Work Factor in a Moving Target Host
Architecture”, Presentation at Workshop on Multi-spectrum Metrics for Cyber Defense,
CSAIL, MIT, Boston, USA, Oct 2013.

13. Microsoft Attack Surface Analyzer. http://www.microsoft.com/en-us/download/
details.aspx?id=24487

25

