
Toward a Software Architecture Design Method
A Framework for Architecture Design

Paola Yuritzy Reyes Delgado1, Laura C. Rodríguez-Martínez1, Hector A. Duran-Limon2,
José Manuel Mora Tavarez3, González Ricardo Mendoza1 and Mario Alberto Rodríguez Díaz1

1Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos No. 1801, Fracc. Bona Gens, Aguascalientes, Mexico
2Universidad de Guadalajara, CUCEA, Jalisco, Mexico

3Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico

1 STAGE OF THE RESEARCH

Software Architecture (SA) design is an essential
activity in the development of software systems.
According to Kim and Garlan (2010, p. 1216), a
strong progress has been reached in software
architecture design given that: “today we find
growing use of standards, architecture-based
development methods, and handbooks for
architectural design and documentation”.

However, due to the increasing complexity of
software systems (Aleti et al., 2013), as well as the,
"emerging trends in SA, i.e., Service oriented
architecture, Product line architecture, Aspect
oriented architecture, and Model driven architecture"
(Qureshi et al., 2013), software architecture designs
methods, are relevant to be elaborated, studied,
documented, used and evaluated.

According to Rodríguez et al. (2012, p. 1),
“Service-Oriented Software Engineering (SoSE) is a
new paradigm of software engineering, which is
focused on the design and implementation of
service-oriented software systems (SoSS)”.
Within this context, we conducted a literature
review, in which we found that there are not any
software architecture design methods specifically
focused on the development of Web-based service-
oriented software systems.

The main objective of this research is to define a
software architecture design method for Web-based
service-oriented software systems.

To accomplish this, the research model presented
in Figure 1 is proposed, which shows the elements to
be taken into account for the design of our method.
Such elements are the following:

P1. Search and Study Information related to
Our Research: This step investigates the
background and context of the research problem or

need. It identifies and studies the foundations and
related studies.

P2. Analysis of Area and sub Areas of
Knowledge, and related Studies: This step
involves studying those design factors (if any) that
are deemed to substantially affect the results when
applying the method. This step also includes
analyzing and classifying relevant information
related to our research.

P3. Development of Conceptual Framework
based on: Systematic Review, architectures and
styles following the guidelines used in the Design
Science research (Hevner, March, Park & Ram,
2004): In this step, we analize the data obtained
from the conceptual framework.

P4. Method Development: Here, we construct
the design method based on the analysis results of
the conceptual framework.

P5. Presentation Method to Consultants and
experts for!: (i) Firstly, the developed method is
presented to a panel of experts for their evaluation.
(ii) Secondly, we will carry out a logical argument
validation, which “consists in the development of
logical arguments, ! evaluate the proposed method
using a case example and compare its effectiveness
against others software architecture design methods.
A group of students of software engineering will use
our method and other methods to guide the
development of the case example. Then, we will
quantitatively evaluate the results obtained by using
the different methods.

In the case of steps P1, …, P6 of Figure 1, the
conceptual research method by Mora (2004) is used.
Our current research progress is up to step P3. We
are currently addressing step P4.

38

Reyes Delgado P., Rodríguez-Martínez L., A. Duran-Limon H., Mora Tavarez J., Ricardo Mendoza G. and Rodríguez Díaz M..
Toward a Software Architecture Design Method - A Framework for Architecture Design.
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Research Model for the generation and
validation of a software architecture design method for
Web-based service-oriented software systems.

2 OUTLINE OF OBJECTIVES

The main objective of this research is to “define a
software architecture design method for Web-based
service-oriented software systems.” The specific
objectives are:

O1. Find the main contributions and limitations
of current software architecture design methods.

O.2. Identify useful design principles for the
software architecture design of Web-based service-
oriented software systems.

O.3. Design the architectural development
method based on the identification of activities and
products of architectural design methods analysed in
the specific objective O.1. Also, take into account
the principles found in objective O.2.

O.4. Carry out a theoretical validation of our
proposed software architecture design method by
using logic argumentation as well as an assessment
of an expert panel.

O.5. Carry out an empirical evaluation of our
software architecture design method by means of a
case example.

O.6. Compare the effectiveness of our software
architecture design method with others software
architecture design methods. The effectiveness of
software design method will be tested by a group of
software engineering students. The evaluation
process will be twofold. Firstly, we will measure to
which extent an architecture design produced by a
software design method satisfies the functional and
not functional requirements. Secondly, we will
measure to which extent the risks associated with the
construction of a software system are reduced

(Pressman, 2002).

3 RESEARCH PROBLEM

This research problem is located into the knowledge
area of Software Design (SWEBOK, 2004), within
Software Engineering.

According to Gu and Lago (2009, p. 289), “It is
often argued, in both academia and industry,
whether the existing software engineering and
architecting approaches (including techniques,
methods and tools) are applicable as is in the context
of SOA [Service Oriented Architecture]. However,
since their ‘real’ differences with TSE [Traditional
Software Engineering] remain fuzzy”. “As a result,
new approaches and design principles to build
service-oriented systems have been continuously
emerging”.

Within this context, we conducted a literature
review, in which we found that most of software
architecture design methods are focused on the
development of generic software systems, i.e., those
methods do not consider the application domain
area. A disadvantage of using generic methods is
that it is not possible to emphasize the characteristics
and specific goals of the application domain. For
example, "architectural design of information
systems emphasizes dates modeling, and
architecture design of telecommunication software
emphasizes continuous operation, live upgrade, and
interoperability" (Hofmeister et al., 2007, p. 106).
Only a few software architecture design methods are
focused on different domains for which they were
created (types of systems, type of company: e.g.,
large or small, etc.) (Hofmeister et al., 2007).
However, no efforts have been carried out for
developing a software architecture design method,
specifically, for Web-based service-oriented
software systems.

4 STATE OF THE ART

In this section we first introduce some common
terminology of the areas that are related to our
research work. Following, we present some relevant
related work.

The IEEE Computer Society defines Software
Engineering (SE) as “(1) The application of a
systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of
software; that is, the application of engineering to

Toward�a�Software�Architecture�Design�Method�-�A�Framework�for�Architecture�Design

39

software. (2) The study of approaches as in (1).”
(SWEBOK, 2004, p. 1-9). According to SEWBOK
(2004), Software Engineering (SE) can be divided
into ten areas of knowledge: Software Requirements,
Software Design, Software Construction, Software
Testing, Software Maintenance, Software
Configuration Management, Software Engineering
Management, Software Engineering Process,
Software Engineering Tools and Methods, and
Software Quality. Other definitions include the
provided one by Pressman (2002, p. xxix), which
defines software engineering as “…the practical
application of scientific knowledge in the design and
construction of computer programs and associated
documentation required to develop, operate and
maintain.”

In the SE research area, Software Development
Methodologies (SDMs) have evolved toward better
methodologies (Vavpotic and Vasilecas, 2011). In
the last four decades, a large variety of SDMs have
been proposed (Avison and Fitzgerald, 2003). The
evolution of such SDMs has been carried out in four
areas (Rodríguez et al., 2008): pre-methodologies,
rigor-oriented methodologies, agile-oriented
methodologies and emergent service-oriented
methodologies. Also, the SDMs can be classified
according to different criteria, e.g., means the user's
software needs in a functional or non-functional
requirements or means the complexity size of the
systems. Software system projects can be small,
medium or large according to the demanded number
of lines of code or required human effort (Rizwan
Jameel Qureshi, 2012). Such projects can be also
simple or complex: "from small and simple: e.g.,
software for simple web-shops; to highly specialized
and complex software systems: software for
information systems used in manufacture based on
complex mathematical models" (Vavpotic and
Vasilecas, 2011, p. 107).

All SDMs include an important task called
Software Design. Such a task is defined by the
IEEE 610.12-90 as: "the process of defining the
architecture, components, interfaces, and other
characteristics of a system or component” and “the
result of [that] process” (SWEBOK, 2004, pp. 1-4).
Also, the SWEBOK (2004) states that: "Viewed as a
process, software design (the result) must describe
the software architecture—that is, how software is
decomposed and organized into components—and
the interfaces between those components. It must
also describe the components at a level of detail that
enable their construction". At the same time,
according to the IEEE 12207.0-96. standard, the
Software Architecture Design and the Detailed

Design are two core activities among the initial
requirements analysis and final software
construction (Brown et al., 1998; SWEBOK, 2004;
Vogel, Arnold, Chughtai and Kehrer, 2011) as
follow: “Software architectural design (also known
as top level design, high-level design, macro-
architecture): describing software’s top-level
structure and organization and identifying the
various components.” and “Software detailed design
(also known as bottom level design, low-level
design, and micro-architecture): describing each
component sufficiently to allow for its construction.”

The concept of Software Architecture is used in
various contexts (Mark et al., 2004), and there are
numerous definitions of the term “software
architecture” in Information Technology (IT), hence,
it is a challenge to find one universal definition
(Vogel et al., 2011). In this paper, we use the
software architecture definition of ISO/ IEC/IEEE
42010:2011 (2011, p. 2) standard: "Fundamental
concepts or properties of a system in its environment
embodied in its elements, relationships, and in the
principles of its design and evolution". Then we use
the term Software Architecture Design Methods to
refer to the methods that “describe” how to design a
software architecture. According to Vogel et al.
(2011, p. 319) an architecture method is a “…
prerequisite for a successful architecture".

In recent years, several design methodologies
and frameworks have been proposed (Lee & Shirani,
2004; Hofmeister et al., 2007). We have reviewed
four well-known software development
methodologies as well as an emergent methodology.
The main goal of this review was to identify and
compare the software architecture design methods of
such software development methodologies. Our
analysis was based on the evaluation of software
architectural design method carried out by
Hofmeister et al. (2007).

We considered the Software Architecture Design
Methods that are (explicitly or implicitly)
included in five well-known Software
Development Methodologies (SDMs).

1. Model-Based (System) Architecting and
Software Engineering (MBASE), (MBASE,
2000, 2003)

2. IBM Rational Unified Process for Systems Z
(Cantor, 2003; Péraire et al., 2007).

3. Unified Process for Education (UPEDU)
(Robillard et al., 2004, 2012).

4. Team Software Process (TSP) (Humphrey,
1998; Donald, 2000; Humphrey et al., 2010).

5. Service-oriented Software Development
Methodology (SoSDM) (Rodríguez et al.,

ICEIS�2014�-�Doctoral�Consortium

40

2009).
Our findings have been reported elsewhere (Reyes et
al., 2013, under review) and suggest that: (i)
software architecture design methods are not
standardized; (ii) SA design methods share common
goals but carry out different activities; and (iii)
further empirical research is required to consolidate
valuable knowledge gained from conceptual
research in software architecture design methods.

Regarding the application domain area we will
focus on for constructing our method, we have that:
“Web services are self-contained, Web-enabled
applications capable not only of performing business
activities on their own, but also possessing the
ability to engage other Web services in order to
complete higher-order business transactions”(Yang,
2003, p. 35). In addition, according to Rodríguez et
al., (2012, p. 5). “A service-oriented software system
(SoSS) refers to a distributed and loosely-coupled
software system which is constructed based on the
definition and implementation of a suite of services
that forms it“.

A typical SoSS involves the features shown in the
Table 1:

Table 1: Comparative Table of Object-Oriented Software
Engineering (OOSE), Component-Based Software
Engineering (CBSE) y Service-Oriented Software
Engineering (SOSE) paradigms (Rodríguez et al., 2004).

Attribute

Object-
oriented
Software
System

Component-
based

Software
System

Service-
oriented
Software
Systems

Key analysis
entity

Class
Business

component
Business
service

Key design
entity

Object
(conceptual

)

Component
(conceptual)

Business
computing

service

Key building
entity

Object
(local

runtime)

Component
(local or

distributed
runtime)

ICT
computing

service

Coupling
level with
remainder
software

Tightly Medium Loosely

Cohesion
level

Normal High Very high

Platform
Interoperabil

ity

Minimal or
null

High Very high

Typical
technology

C++ JavaBeans

Web services
from several

languages
(Java, C#,

PHP)

5 METHODOLOGY

The research focuses on the study and creation of
innovative model or artefacts, using two research
approaches:
 Theoretical research (conceptual-analysis).
 Engineering research (through design- science).

The main purpose of this research is proposing a
Software Architecture Design Method, whose design
will be based first under the theoretical concepts
included in General Design Methods, in order to
obtain an applicable Method for develop Web-based
service-oriented software systems, therefore the
research classified as conceptual.

The conceptual research can be considered: “as
the main source of generation of new theories,
models or conceptual schemes - to complement the
scientific cycle - then should be tested empirically or
deductively using other research methods” (Mora,
2004).

"However, according a review of international
literature in the field, has not been reported
consensed phases to follow in the Conceptual
Method” (Mora, 2004, p. 2). Therefore Mora (2004),
proposes four phases to the conceptual method,
which are based on general suggestions reported by
researchers reffering to validating conceptual
models, principles for evaluating theoretical
research, and methods and techniques used in the
qualitative assessment. Figure 2 shows the phases
and tasks of the conceptual reseach method.

Figure 2: Phases Description Conceptual Research
Method.

This Conceptual Research Method suggests four
forms of validation of the designed artifacts that are
product of a research: (i) validation by experts’

Toward�a�Software�Architecture�Design�Method�-�A�Framework�for�Architecture�Design

41

panel, (ii) validation by logical arguments, (iii)
validation by proof of concept for artifact
construction, and (iv) validation by pilot study.

“The studies of conceptual validation can be
referred to the establishment of the degree to which
the conceptual model satisfactorily meets the
following criteria: (a) the conceptual model is
supported by robust theories and principles, (b) the
conceptual model is logically coherent and
consistent with the studied reality and appropriate to
the purpose for which the model was designed, and
(c) the conceptual model brings something that is
new and it is not duplication of another existing
model” (Mora, 2004, pp. 9-10).

The directives or guidelines of design science
proposed in Hevner, et al. (2004) will be followed to
design the artifact that is product of the research:
two paradigms characterize research in the discipline
of Information Systems, the Behavioral-Science
and Design-Science. “The Behavioral-Science
paradigm seeks to develop and verify theories that
explain or predict human or organizational behavior.
The Design-Science paradigm seeks to extend the
boundaries of human and organizational capabilities
by creating new and innovative artifacts” (Hevner et
al., 2004, p. 75). For this study, we consider just the
Design-Science paradigm because we only seeks the
creation, validation and evaluation of the
architectural design method and does not predict or
verify the behavior of individuals or organization
with respect to the proposed architectural design
method.

6 EXPECTED OUTCOME

The main contribution of this research aims to define
a software architecture design method for designing
the architecture of Web-based service-oriented
software systems. Our method will be able to be
applied in different national or international
organizations.

As a future work we will be looking at using this
method as a base framework to define an
architectural style that we will be instantiated in
several specific software systems architectures.

REFERENCES

Aleti, A., Buhnova, B., Grunske, L., & Koziolek A. 2013.
Software Architecture Optimization Methods: A
Systematic Literature Review. IEEE Transactions On
Software Engineering, 39(5), 658-683.

Avison, D. & Fitzgerald, G. 2003. Methodologies for
Developing Information Systems: A Historical
Perspective. The Past and Future of Information
Systems: 1976–2006 and Beyond, IFIP 19th World
Computer Congress, TC-8, Information System
Stream, August 21–23, 2006, Santiago, Chile.

Brown, W., Malveau, R., McCormick III, H., Mowbray,
T. 1998. Anti Patterns – Refactoring Software
Architectures, and Projects in Crisis, John Wiley &
Sons, New York.

Cantor, M. .2003. Rational Unified Process for Systems
Engineering. Rational Brand Services ,IBM Software
Group.

Donald, M. 2000. The Team Software Process (TSP): An
Overview and Preliminary Results of Using
Disciplined Practices. (Tech. Rep. CMU/SEI-2000-
TR-015), Carnegie Mellon, Software Engineering
Institute.

Hevner, A., March, S., Park, J. & Ram, S., 2004. Design
Science in Information Systems Research, Mis
Quarterly, Vol. 28 No. 1, (pp 75-105).

Hofmeister, C., Kruchten, F., Nord, R., Obbink, H., Ran,
A., & America, P. 2007. A general model of software
architecture design derived from five industrial
approaches. The Journal of System and Software, 80,
106-126, Elsevier Inc.

Humphrey, W. 1998. Three Dimensions of Process
Improvement Part III: The Team Process, Software
Engineering Institute.

Humphrey, W., Chick, T., Nichols,W., & Pomeroy-Huff,
Marsha. 2010. Team Software Process (TSP) Body of
Knowledge (BOK). (Tech. Rep. CMU/SEI-2010-TR-
020). Software Engineering Institute, Carnegie
Mellon University.

ISO/IEC/IEEE 42010:2011., 2011. Inernational Standar,
Systems and software engineering - Architecture
description ISO/IEC/IEEE 42010:2011, first edition,
pp. 1-2. Retrieves Julio 26, 2013, from:
http://www.iso-architecture.org/42010/index.html.

Kim, J., S., & Garlan, D. 2010. Analyzing architectural
styles. The Journal of Systems and Software, 83,
1216–1235.

Kitchenham, B., 1996. Evaluating Software Engineering
Methods and Tool, Software Engineering Notes 21(1),
(pp. 11-15).

Lee, S., & Shirani, A. 2004. A component based
methodology for Web application development, The
Journal of Systems and Software, 71, 177-187.

Mark, W., Emery D., & Hilliard R. 2004. ANSI/ IEEE
Standard 1471 and System Engineering, System
Engineering, Vol. 7, No. 3.

MBASE. (2000). Guidelines for Model-Based (System)
Architecting and Software Engineering (MBASE)
1997-2000, v2.2, 1-159, Center for Software
Engineering, University of Southern California.

MBASE. (2003). Guidelines for Model-Based (System)
Architecting and Software Engineering (MBASE)
1997-2002, v2.4., Center for Software Engineering,
University of Southern California.Mora, J. 2004.
Descripción del Método de Investigación Conceptual,

ICEIS�2014�-�Doctoral�Consortium

42

Technical Report No. 2, Department of Information
Systems, Universidad Autónoma de Aguascalientes.

Péraire C., Edwards, M., Fernandes, A., Mancin, E., &
Carroll, K. .2007. The IBM Rational Unified Process
for System Z. IBM Rational Software.

Pressman, R. 2002. Ingeniería de Software – Un Enfoque
Práctico, Quinta Edición, McGraw-Hill Práctica,
2002.

Gu, Q. & Lago, P., 2009. On Service-Oriented
Architectural Concerns and Viewpoints, WICSA/
ECSA. (pp. 289-299).

Qureshi, N., Muhammad, U., & Ikram, N., 2013. Evidence
in Software Architecture, a Systematic Literature.
Proceedings of the 17th International Conference on
Evaluation and Assessment in Software Engineering,
(pp 97-106), ISBN: 978-1-4503-1848-8.

Reyes, P., Mora, J., Rodríguez, L., Duran-Limon, H.,
Mendoza R. & Rodríguez, M. (2013 under review).
State of the Art of Software Architecture Design
Methods used in Main Software Development
Methodologies, Encyclopedia of Information Science
and Technology, IGI Global.

Robillard, P. N., Kructen F., & d'Astous, P. 2004.
Software Engineering Process with UPEDU, Adison
Wesley.

Robillard, P. N., Kructen F., & d'Astous, P. 2011. Unified
Process for Education , (UPEDU). École
Polytechnique de Montréal, Retrieves October 27,
2013, from: http://www.upedu.org/.

Rodríguez, L. C., Mora, M., Vargas, M., O'Connor , R., &
Alvarez, F. 2008. Process Models of SDLCs:
Comparison and Evolution. M. Rahman Syed and S.
Nessa Syed Editors, Handbook of Research on
Modern Systems Analysis and Design Technologies
and Applications, (p. 76-89).

Rodríguez, L., Mora, J., Álvarez, F., Garza, A., Durán,
H., Muñoz, J. 2009. Diseño de un Modelo de Proceso
de Ciclo de Vida de Sistemas de Software, en el
Paradigma de Ingeniería de Software Orientada a
Servicios. Doctoral dissertation, Universidad
Autónoma de Aguascalientes.

Rodríguez-Martínez, L., Mora, M., Álvarez, F., Garza, L.,
Durán, H., & Muñoz, J. 2012. Review of Relevant
System Development Life Cycles (SDLCs) in Service-
Oriented Software Engineering (SoSE). Journal of
Applied Research and Technology, 10(2), 94-113.

Rizwan Jameel Qureshi, M. 2012. Agile software
development methodology for medium and large
projects. Journal IET Software, Vol. 6, ISS.4, pp. 358–
363.

SWEBOK. 2004. Guide to the Software Engineering Body
of Knowledge, IEEE Computer Society.

Vavpotic, D. & Vasilecas, O. 2011. An Approach for
Assessment of Software Development Methodologies
Suitability, System Engineering, Computer
Technology, ISSN 1392-1215.

Vogel, O., Arnold, I., Chughtai A., Kehrer T. (2011).
Software Architecture, A Comprehensive Framework
and Guide for Practitioners, Springer, ISBN 978-3-
642-19735-2.

Yang, J., 2003. Web Service Componentization,
Communications of the ACM, 46(10) (pp.35-40)

Toward�a�Software�Architecture�Design�Method�-�A�Framework�for�Architecture�Design

43

