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Abstract: Scenario development starts with capturing scenarios from the users and leads to the design and the 
development of the simulation environment to execute these scenarios. This paper proposes a scenario 
development process adopting a Model-Driven Engineering (MDE) perspective. It takes scenario 
development and the use of scenarios in simulation environment development put forth in IEEE 
Recommended Practice for Distributed Simulation Engineering and Execution Process (DSEEP) as a 
starting point. It then constructs a basic vocabulary including the definitions of operational, conceptual, and 
executable scenarios. Following MDE principles, scenario development is viewed as a series of model 
transformations. Operational scenarios, mostly defined in a natural language, are first transformed into 
conceptual scenarios, which conform to a formal metamodel. Then conceptual scenarios can be transformed 
into executable scenarios specified using a specific scenario definition language. Furthermore, it is also 
possible to generate the constructs of simulation environment design and development using model 
transformations. In this regard, a conceptual scenario metamodel is proposed adopting the Base Object 
Model metamodel as an example. Then this metamodel is used to present the proposed process with a 
sample operational scenario and conceptual scenario excerpts. Samples are shown how model 
transformation can be employed for developing a Federation Object Model and an executable scenario file.  

1 INTRODUCTION 

Although the importance of scenarios in modelling 
and simulation has long been well known, there still 
exists a lack of common understanding and 
standardized practices in simulation scenario 
development. Scenario development starts with 
eliciting scenarios from the users and leads to 
physical scenario data representation for runtime 
execution and constraints to simulation environment 
design. 

Scenario development is an extensive process 
beginning with the stakeholders’ descriptions of the 
scenario and finishing with the generation of the 
corresponding executable specifications. The 
scenario development is a part of the simulation 
environment development process. The scenario 
development aims at developing a specification of a 
simulation run, but it is also an input for the design 
and development of the simulation environment 
itself.  

Siegfried and his colleagues propose to 
distinguish three types of scenarios that are produced 
in successive stages of the scenario development 
process: operational scenarios, conceptual scenarios 
and executable scenarios (Siegfried et al., 2012) 
(Siegfried et al., 2013) (MSG-086, 2014).  

In this paper Siegfried’s definitions are used as a 
baseline for devising a model-driven scenario 
development process. This process involves 
establishing a scenario development pipeline. It 
adopts Model-Driven Engineering (MDE). MDE 
proposes that one shall construct a model of the 
system to be built and then proceed with a series of 
transformations to obtain an executable system 
(Mellor et al., 2003). Following the principles of 
MDE, scenario development is viewed as the 
transformation of operational scenarios (defined in a 
natural language) to conceptual scenarios 
(conforming to a formal metamodel) then to 
executable scenarios (specified using a specific 
scenario definition language) and simulation 
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environment design (defined in a particular 
formalism).  

After introducing the required background 
information, the proposed model-driven scenario 
development process is presented. Then the process 
is illustrated with a simple example.  

2 BACKGROUND 

The definition of scenario has long been a subject of 
discussion. Siegfried et al. (Siegfried et al., 2012) 
define a scenario as a specification of conditions and 
situations to be represented by a simulation 
environment for its purpose.  

In IEEE 1278 (IEEE, 1993), the standard for 
Distributed Interactive Simulation, a scenario is 
defined as the description of initial conditions and 
timeline of significant events. The definition given 
in the High Level Architecture Glossary (US 
Department of Defense, 1996) stresses that a 
scenario shall identify the major entities with their 
capabilities, behavior and interactions over time with 
all related environmental conditions. The NATO 
Science and Technology Organization Modeling and 
Simulation Group 053 (MSG-053, 2010) defines a 
scenario as a description of the hypothetical or real 
area, environment, means, objectives and events 
during a specified time frame related to events of 
interest. 

The operational scenarios are provided in the 
early stages of a simulation environment 
development process by the user or the sponsor. The 
operational scenarios can be documented in any 
textual or graphical form. The key elements in a 
scenario are the initial state, the desired end state, 
the course of actions to reach the prescribed end 
state, and the entities with their capabilities and 
relations. 

The operational scenarios provide a coarse 
description of the intended situation and its 
dynamics, but they need to be refined and 
augmented with additional information pertaining to 
simulation. This refinement is usually done by M&S 
experts and results in conceptual scenarios. 
Conceptual scenarios provide a detailed 
specification of the piece of the world to be 
represented in the simulation environment and 
should provide crucial information for everyone who 
is involved in the later stages of the simulation 
environment engineering process. 

Once a simulation environment is designed and 
set up, the executable scenarios have to be available 
for all simulation systems and other member 

applications of the simulation environment. For this 
purpose, the conceptual scenarios need to be 
transformed into executable scenarios. An 
executable scenario is the specification of a specific 
situation providing all information necessary for the 
preparation, initialization, and execution of a 
simulation environment and for supporting scenario 
management activities such as scenario distribution 
and role casting (Topçu & Oğuztüzün, 2010). The 
transformation from conceptual scenarios to 
executable scenarios is undertaken primarily by the 
operator of the member applications of the 
simulation environment (possibly assisted by M&S 
experts or subject matter experts). Ideally, the 
resulting executable scenarios are specified in a way 
that they are directly processable by the member 
applications (e.g. as a file containing parameters or 
via a web service). 

3 DEVELOPMENT PROCESS 

A standard perspective for the utilisation of 
scenarios in simulation development and execution 
is introduced in IEEE Recommended Practice for 
Distributed Simulation Engineering and Execution 
Process (DSEEP) (IEEE, 2010a). DSEEP describes 
a process framework for development and execution 
of distributed simulation environments. The DSEEP 
recommends scenario development activity as a part 
of the problem conceptual analysis. The outcome of 
this activity is defined as the major entities that must 
be represented in the simulation environment, 
description of their capabilities, behaviors and 
relationships, event timelines, the environment, and 
the initial and terminal conditions. The DSEEP then 
prescribes the utilization of scenarios: a) for the 
design of a simulation environment and for the 
design of the member applications, and b) for 
designing and establishing the simulation 
environment agreements in simulation environment 
development. These agreements enable the 
simulation applications to interoperate. From an 
HLA perspective, this corresponds to defining 
federates, a Federation Object Model (IEEE, 2010b), 
and Federation Agreements (Johns Hopkins 
University Applied Physics Laboratory, 2010). 

MDE has also been employed in systems 
development in the simulation domain to generate 
elements of a simulation system or simulation 
environment from models via model transformations 
(Topçu et al., 2008) (Adak et al., 2009) (Gaševic et 
al., 2009) (Durak et al., 2009) (Tolk, 2002) 
(Cetinkaya et al., 2011). The MDE methodology is 
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regarded as a natural continuation of the advances in 
raising abstraction level for systems development to 
boost productivity as well as quality (Atkinson & 
Kuhne, 2003). The models are refined and 
transformed during the development process until an 
executable artifact is obtained.  

Adopting this MDE definition for scenario 
development, the authors propose a development 
process in which conceptual scenarios are specified 
based on a metamodel and then executable scenarios 
for various target simulation systems are generated 
via model transformations employing transformation 
rules specified for those particular targets. 

Conforming to the process model recommended 
by DSEEP, we promote the construction of the 
conceptual scenarios as models and the utilization of 
model transformations for designing member 
applications, environment agreements and 
executable scenarios.  

4 METAMODELING 

MDE worldview is founded on models and 
transformations among them. In order to describe a 
model, one needs a language. One way to provide a 
language is metamodeling. The Object Management 
Group (OMG) introduced a four-level metamodeling 
architecture, which specifies four levels: Information 
(M0), Model (M1), Metamodel (M2) and Meta-
metamodel (M3), and their relations (OMG, 2011b).  

M0 consists of the data to be described. M1 
comprises the model that describes the data. M2 
describes the structure and the semantics of the 
model and named as metamodel and M3 is the top 
level that specifies the structure and the semantics of 
the metamodel and named as meta-meta model. 

The proposed model-driven scenario 
development process is structured upon this four-
layer metamodeling architecture of OMG. The 
process advocates constructing a Conceptual 
Scenario Metamodel prior to developing conceptual 
scenarios. The aim is to start with a metamodel to 
enable building a conceptual model and then to 
support the model transformations from the source, 
conceptual scenario to target simulation application 
design, simulation environment agreements, and 
executable scenario. 

Figure 1 exemplifies the proposed process. It 
recommends to develop a completely new 
metamodel or to use an existing one for the shown 
targets depending on the simulation environment 
development process. The representations of target 
models depend on the  specification  languages  used 
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Figure 1 Model-Driven Scenario Development Process. 

as depicted in the exemplified transformations in 
Figure 1. For instance, the design of a simulation 
application can be specified by using a general 
modeling language such as UML, or by using a 
more specific representation which targets a specific 
platform such as Federation Architecture Metamodel 
(FAMM) for HLA federations (Topçu et al., 2008). 
If the UML metamodel is the target the 
transformation rules will be specified from the 
Conceptual Scenario Metamodel to the UML 
metamodel. If HLA Object Models for environment 
agreement are used, then FOM metamodel is the 
target. Lastly, one can use specific scenario 
definition languages such as the Military Scenario 
Definition Language (MSDL) (SISO, 2008) as the 
target metamodel for executable scenarios.  

In the proposed scenario development process, 
the conceptual scenario is subject to either model-to-
model or model-to-text transformations. To 
accomplish these transformations, one needs to 
specify the mappings between the constructs of the 
source metamodel and those of the target 
metamodel. Then a source model is transformed into 
a target model by executing the specified 
transformation (Gronback, 2009). 

5 SAMPLE IMPLEMENTATION 

In this section, the process introduced in the 
previous section will be elaborated using a sample 
implementation. In this implementation, we will first 
introduce metamodeling over a conceptual scenario 
metamodel that has been constructed adopting Base 
Object Model (BOM) (SISO, 2006) metamodel. 

Eclipse Modeling Framework (EMF) is 
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employed to realize the four-level metamodeling 
architecture. EMF is defined as a framework for 
describing models and then generating other 
constructs, such as other models, code or text from 
them (Steinberg et al., 2008). 

Next, a sample conceptual scenario vignette will 
be introduced using the conceptual scenario 
metamodel. Finally, transformation definitions will 
be discussed over the sample mappings for 
generating FOM and the executable scenarios from 
the conceptual scenario. 

5.1 Conceptual Scenario Metamodel 

Base Object Model (BOM) introduces the interplay, 
the sequence of events between simulation elements, 
as well as the reusable pattern, and provides a 
standard to capture the interactions (SISO, 2006). 
Siegfried and his colleagues presented BOMs as a 
method for capturing conceptual scenarios (Siegfried 
et al., 2013). Following this approach, we adopt the 
BOM metamodel specified in the standard to 
construct a conceptual scenario metamodel.  

Ecore is provided as the meta-metamodel used to 
describe metamodels in EMF (Steinberg et al., 
2008). To define a metamodel, one makes use of 
four Ecore classes, namely, EClass, EAttribute, 
EReference and EDataType. EClass is defined as the 
modelled class with attributes and references. 
EAttribute is the modelled attribute with a name and 
a type. EReference is specified as an association 
between classes. EDataType is the type of an 
attribute (Steinberg et al., 2008). 

At the top level (Figure 2) ConceptualScenario, 
defined as an EClass, has associations that are 
defined by EReference constructs: entities, 
stateMachines, interplays, events and identification. 
These relate ConceptualScenario to other EClasses 
Conceptual Entity, StateMachine, PatternOf 
Interplay, Event and ScenarioIdentification, 
respectively.  

ScenarioIdentification has attributes that are 
defined by POCEmail, POCTelephone and so on as 
EAttributes. As an example the Purpose attribute is 
defined as a string (EString) data type (EDataType). 

A conceptual scenario is defined with one or 
more state machines. A state machine is defined by a 
number of states. Each state has an exit condition 
and a next state. Exit conditions are associated with 
exit actions that are pattern actions. For example, in 
a flight simulation, the aircraft conceptual entity 
may have six states: taxi, takeoff, climb, cruise, 
descend and landing. The exit condition for taxi can 
be  defined  as  the  takeoff  clearance  given  by  the 

 

Figure 2: Conceptual Scenario Metamodel Top Level 
Diagram. 

control tower. Then takeoff can be specified as the 
next state. 

 

Figure 3: Pattern of Interplay in Conceptual Scenarios. 

Patterns of interplay are defined as building blocks 
in the BOM specification (SISO, 2006). They 
capture the pattern actions as well as their 
exceptions and variations. As shown in Figure 3, 
actions are initiated by sender conceptual entities 
and receivers are the intended recipients. Exceptions 
are defined as the actions that cause the remaining 
sequence to fail. Variations, however, are defined as 
alternative ways of an action that do not affect the 
completion or success. Considering again the case of 
an aircraft, the pattern of interplay for the departure 
is likely to include the aircraft beginning to roll from 
its parking position in the direction of the assigned 
runway. Depending of the parking position (in front 
of the Terminal or further away on the Apron) an 
initial push-back might be required or not, which can 
be introduced as a variation of this action. The 
sender for the taxiing can be specified as the pilot 
and the receiver as the aircraft. The second action 
can then be defined as getting the clearance from the 
control tower. The sender in this case is the control 
tower and receiver is the pilot and the event is the 
takeoff clearance. And the pattern of interplay can 
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continue with an action of applying power to the 
aircraft’s engine. 

In BOM metamodel, conceptual entities take part 
in patterns of interplay as senders and receivers and 
each entity is associated with a state machine. 
Entities possess characteristics and the BOM 
metamodel is enhanced by adding values to these 
characteristics to define scenario parameters. For 
example, various characteristics can be specified for 
an aircraft entity in a flight simulation scenario, 
some of which are initial position, fuel weight or 
gross weight. The values of these characteristics 
then determine the scenario parameters. 

 

Figure 4: Conceptual Entities and Events in Conceptual 
Scenarios. 

Events (Figure 4) are used to capture the messages 
and triggers. Triggers present undirected events 
when a change in the characteristic of an entity 
creates a response from other entities. The condition 
of change is captured in a trigger condition. 
Messages are directed events from one entity to 
another that are uniquely identified by the source 
and target characteristic. The content of a message is 
given in content characteristics. As an example, 
takeoff clearance is a message from tower (which is 
identified by its airport id) to an aircraft (which is 
identified by its call sign). The content of the 
message is the takeoff clearance characteristic of the 
aircraft. When the takeoff characteristic of an 
aircraft is true, then it is a trigger event. Then the 
pilot entity can start an action for gears up. 

5.2 Model-Driven Conceptual Scenario 
Development 

This section is based on an operational scenario for 
the departure activity of an aircraft. Below is an 
extract from the operational scenario. 

“Aircraft D-ATRA stands in front of its hangar at 
DLR in Braunschweig. Pilots ask the tower for taxi 
clearance. The tower provides taxi instructions 
towards RWY 08. Pilots then start taxiing according 
to instructions. Then tower provides information 

about the departure like weather, VRB05KT, 
R08/2800FT, overcast sky. Then pilots ask for a 
departure clearance and tower grants the 
departure.” (DFS Deutsche Flugsicherung GmbH, 
2013) (Ahmad & Sexana, 2008). 

This is an example operational scenario one can 
obtain from the users or sponsors of a flight 
simulator. It is obvious that not all data that is 
required to run this scenario is available in this text. 
An M&S expert needs to augment the missing 
information and to develop a conceptual scenario.  

 

Figure 5: Conceptual Scenario Editor Tree Viewer. 

EMF.Edit (Steinberg et al., 2008) is employed to 
build conceptual scenario editor via automatic code 
generation to display and edit the instances of the 
developed metamodels. This editor provides a tree 
viewer and properties sheet for each conceptual 
scenario element. Figure 5 presents the tree viewer 
for the sample conceptual scenario. The tree presents 
some of the conceptual entities from the operational 
scenario such as aircraft, pilot, and weather. The 
main pattern of interplay is defined as takeoff 
procedure. Aircraft state is captured as a statechart. 
When developing the conceptual scenario, missing 
weather characteristics in operational scenario such 
as temperature and dew point are also added to the 
model. 

 

Figure 6: Conceptual Scenario Editor Properties Viewer. 
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The Properties viewer (Figure 6) enables a user 
to specify the attributes of the model elements. As 
an example, the attributes of initial position entity 
characteristics are its name (initial position), type 
(string), and value (52°19′09″N 010°33′19″E). Thus 
an M&S expert can specify the implicit reference to 
the initial location of the aircraft in the operational 
scenario explicitly.  

 

Figure 7: A Sample Pattern of Interplay. 

The takeoff procedure is presented in Figure 7 as a 
sample pattern of interplay. There are six 
consecutive actions, starting from “aircraft requests 
to taxi from Air Traffic Control” till its takeoff. The 
sender and receiver entities are all captured. Even 
though exceptions and variations can be specified, 
this sample does not exhibit any.  

 

Figure 8: A Sample State Machine. 

Figure 8 introduces a sample aircraft state machine. 
Aircraft states include taxi, takeoff, climb, cruise, 
descend and landing. The next state after taxi is 
takeoff and the exit action of the taxi state is the 
issue of takeoff clearance. The next state after 
takeoff is climb and takeoff ends with the action 
flying to departure point. 
 

5.3 Model Transformations 

Model transformations are the enabling tools of 
MDE for development. Throughout the engineering 
process, models are the main artifacts, and 
transformations enable the reflection of the 
information captured in one model to another one as 
well as enriching the source model with specialized 
information. In the model-driven scenario 
development process model transformations are 
proposed for transforming the information that is 
captured in a conceptual model to simulation 
environment design, simulation environment 
agreements and executable scenarios. To define 
transformations from a source metamodel to a target 
metamodel, a model transformation language is 
required. Atlas Transformation Language (ATL) 
(Jouault et al., 2006), Graph Rewriting and 
Transformation (GReAT) (Agrawal, 2003)  and 
Query / View / Transformation (QVT) (OMG, 
2011a) are some of the commonly used languages. 
Rather than addressing any specific model 
transformation language, users are recommended to 
pick any model transformation language that fits 
their specific requirements such as the development 
environment requirements or target model 
requirements. 

Here, the sample transformation specification, or 
mapping, was developed using QVT utilizing 
Eclipse Model-to-Model Transformation (MMT) 
project (The Eclipse Foundation, 2014). It supports a 
QVT Operational, a partial implementation of the 
QVT specification (Barendrecht, 2010).  
 

-- model type definition to conceptual -- 
scenario metamodel 
modeltype CS uses 'ConScen.ecore'; 
-- model type definition to UML 
modeltype UML uses 'SimpleUML.ecore'; 
-- transformation definition from  
-- Conceptual Scenario to UML 
transformation scenario2UML(in CS :         
                 ConSce, out UML); 
-- main triggers the transformation 
main(in scenario: CS::ConSce,  
                 out umlModel: UML::Model)  
{ 

umlModel := scenario.map scen2UML (); 
} 

As presented above, QVT defines 
transformations using a certain structure, which 
consists of model type definitions, transformation 
declarations, and a main function. Metamodels are 
referred by using model type definitions. 
Transformation declarations specify the input and 
the output metamodels. The main function starts the 
transformation process by calling the first 
transformation.   
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Mappings specify which object from an instance 
of a source metamodel will be transformed to which 
specific object in the instance of the target 
metamodel. The declarations identify the source 
class name and the target class name. One can also 
specify constraints to mappings using Object 
Constraint Language (OCL) (OMG, 2006). In the 
body of a mapping, the variables and the parameters 
are initialized in the init section, mappings are 
specified in the population section and post-
processing can be done in the end section. 

 
mapping CS::CS:: scen2UML() : UML::Model  
{ 
   init { log("Mapping Started!"); } 
   packages   := self.entities2packages(); 
   interfaces := self.entChar2intClasses(); 
   states     := self.states2staClasses(); 
    ... 
   end { log("Mapping Ended!"); }   
} 

Above is a representative excerpt from the top 
level mapping that is called in the main function. 
Conceptual entities in the conceptual scenario 
metamodel are mapped to packages in the UML 
model calling a new mapping function 
self.entities2packages(). Similarly, the entity 
characteristics and the states in the conceptual 
scenario metamodel are mapped to the interface 
classes and to the state classes, respectively, in the 
UML model.  

 
mapping CS::CS:: scen2FOM() : FOM::Model  
{ 
   ... 
   objects      := self.entities2objects(); 
   objectAttr   := self.entChar2objAttr(); 
   interactions := self.events2intact(); 
   intParam     := self.contChar2intParam(); 
   ... 
} 

Likewise, a sample portion is provided for the 
conceptual scenario to Federation Object Model 
transformation. In this case entities can be mapped 
to HLA objects and entity characteristics to object 
attributes. Events in the conceptual scenario 
metamodel can be mapped to HLA interactions in a 
FOM and content characteristics to interaction 
parameters. 

 
mapping CS::CS:: scen2EXE() : EXE:File  
{ 
   ... 
   entitites    := self.entities2entities(); 
   initialCond  := self.entChar2iniCond(); 
   injectEvents := self.events2inject(); 
   logData      := self.states2logging();  
   ... 
} 

For a transformation to create an executable 
scenario from a conceptual scenario, mappings need 

to be specified as exemplified above. Entities in the 
conceptual scenario must be mapped to the entities 
of the executable scenario.  

6 CONCLUSIONS 

This paper introduced a model-driven scenario 
development process which is based on the explicit 
specification of conceptual scenarios using a 
metamodel. The proposed development process 
recommends the use of model transformations to 
generate the executable scenarios. Practitioners of 
this process shall develop their metamodels for the 
source (i.e. conceptual scenario) and target (i.e. 
executable scenario, design of simulation 
applications, or simulation environment 
agreements). 

The proposed process is illustrated with a 
simplified case study. In this respect, BOM presents 
a prospect in specifying the conceptual scenarios as 
the source metamodel. Target metamodels on the 
other hand are more or less application-specific. The 
examples introduced in this paper made use of 
Eclipse-based technologies for modeling and 
transformation,although there exist alternatives to 
Eclipse for each of these steps.  

In order to elaborate on the proposed model-
driven scenario development process, an effort to 
develop the corresponding workflows will be 
worthwhile.  
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