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Abstract: We study the adaptive filtering for risk premium and system parameters in electricity futures modes. Introduc-
ing the jump augmented Vasicek model as the spot price mode, the factor model of the electricity futures is
constructed as the stochastic hyperbolic systems with jumps. Representing the main spike phenomena of the
electricity spot price from one observed futures data by proxy, the filtering of the stochastic risk premium and
its system parameters are developed in a Gaussian framework. By using the parallel filtering algorithm, the
online system parameter estimation procedure is proposed.

1 INTRODUCTION

It is well known that the electricity is quoted same
as any other commodity, e.g. crude oil, gold, copper
and others. As shown in Fig. 1, the electricity spot
prices present a higher volatility than equity prices
and its mathematical model is required for pricing of
electricity-related options, risk management and oth-
ers.

The peculiar characteristic of electricity is that one
can not store electricity, but there are many other char-
acteristics which distinguish electricity from other
commodities.

From Fig. 1, in which the spot price (aday-ahead
market) is shown, we observe the special behaviors
of electricity spot, i.e., many spikes frequently and
seasonal effect.
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Figure 1: Nord Pool electricity spot price (day ahead im-
plicit auction market).

In this paper, instead of modeling this process
from the basic principle of supply and demand, the
simple mathematical model for this spot price is pro-
posed and leads to calibrate the model parameters
and price the options by using the stochastic sys-
tem approach. Along this line Schwartz and Smith
(Schwartz and Smith, 2000) proposed a two-factor
diffusion model and the system parameters are esti-
mated from M.L.E. (Maximum likelihood estimate)
by using Kalman filter. To apply this method one need
to addad hocobservation noise in order to derive the
Kalman filter. This assumption has been made by nu-
merous authors, either in the commodity or interest
rate markets. The additional noise in the observa-
tion has been interpreted to bring into account bid-ask
spread, price limits or errors in the information. The
argument is clearly forced and unconvincing. By us-
ing the idea proposed by (Aihara and Bagchi, 2010),
we approach the modeling differently. In our setup,
on the one hand, the added measurement noise is
built in the model. On the other hand, the model-
ing of the correlation structure between the futures
(observation) is a natural component of our formu-
lation. Hence the model parameters can be calibrated
through the derived likelihood functional without any
ad hocobservation noise.

All the same, in these works, the important spikes
in the electricity prices could not be admitted, because
including jumps1 means giving up on the closed-form
estimator like Kalman filter in (van Schuppen, 1977).

1The closed-form formulae for forwards and options are
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Fortunately, for the term structure model in the elec-
tricity problem, we can represent the jump process for
the spike phenomena by using one observation com-
ponent and transform the Non-Gaussian estimation
problem into the Gaussian framework with correlated
noises.

In this paper, from the real data (Nord Pool elec-
tricity spot data ), the linear trend is firstly identified
by using a least squares method. After subtracting this
linear trend from the spot data and taking the FFT, the
prominent frequency of the seasonality effect is inves-
tigated in Sec.2. We choose the spot price dynamics
as the jump-diffusion model proposed in (Duffie et al.,
2000). According to the idea in (Aihara and Bagchi,
2010), we construct the arbitrary free model of the
term structure, including jump-diffusion processes in
Sec.3. In the electricity market, the averaged-type for-
ward and futures contracts are observed and are used
as the observation data for calibrating system param-
eters. After presenting this observation dynamics in
Sec.4, we derive the closed form filter for estimat-
ing the whole term structure. To derive this filter, we
choose one component of observation as the proxy for
the spike process of the spot price, sayyo(t). Recon-
structing the spikes fromyo(t) and plugging this into
observation and system equations, the filtering prob-
lem with jumps is converted to the Gaussian frame-
work in Sec.5. For figuring out the filtering problem,
we need to work under the real world measure. Hence
a suggested in (Carmona and Ludkovski, 2004), the
stochastic market price of risk is introduced as the lin-
ear Ito equation. This implies that our extended state,
including the stochastic market price of risk is still
Gaussian. Instead of the use of MLE, we suggest the
parallel filtering procedure in (Anderson and Moore,
1979) for obtaining the online state and parameter es-
timation. In the final section, some numerical exam-
ples are demonstrated.

2 IDENTIFICATION OF LINEAR
TREND AND SEASONALITY

2.1 Linear Trend

From Fig.1, we can observe a slight downward trend
in the spot data in 2013. A least squares fit gives the
trend line for the log price,

−6×10−4t +3.74.

Now we subtract off this linear trend from the data
shown in Fig.1 and obtain the data shown in Fig.2.

possible, even for the jump-diffusion and Levy processes in
(Benth et al., 2008).
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Figure 2: Log price (day ahead implicit auction market) mi-
nus the linear trend.

2.2 Seasonality

We take the FFT to the data shown in Fig.2 and obtain
the periodogram shown in Fig.3. From Fig.3, we can
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Figure 3: Periodogram of the log spot.

find big power points and zoom in on the plot and use
the reciprocal of frequency to label the x-axis in Fig.4.
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Figure 4: Detail of periodogram.

The 365 days/cycle is not important, but we find
still three outstanding points; 182.5, 60.8 and 45.6
days/cycle. We also need to find phases at these points
(Red marks) in Fig.5.
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Figure 5: Angles at each frequencies.

Hence we find that

Se(t) = Linear trend + Seasonality

= −6×10−4t +3.74

+a1cos(2π×16.4×10−3t −2.8)

+a2cos(2π×142.5×10−3t −0.05)

+a3cos(2π×284.9×10−3t +2.11)(1)

The coefficientsa1,a2 anda3 are identified to mini-
mize the| logS(t)−Seasonality - linear trend|2 , i.e.,

a1 = 0.114,a2 = 0.006,a3 = 0.042.

In Fig.6, we summarize the above results.
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Figure 6: Log price (day ahead implicit auction market)
with linear trend and seasonality.

3 SPOT RATE MODEL WITH
JUMPS

The spot priceS(t) is set as

S(t) = exp(r(t)+Se(t))

whereSe(t) is identified by (1) and the short rater(t)
is given by the jump augmented Vasicek model;

dr(t) = κ(r̄ − r(t))dt+σrdwr(t)+
∫

R
νp(dν,dt), (2)

where wr is a standard Brownian motion process
which is independent of the Poisson random measure
p and the compensated Poisson measureqc is is given
by

qc(dν,dt) = p(dν,dt)− (λ+ψP(dν)+λ−ψM(dν))dt

and whereλ+ (λ−) denotes the positive jump ( neg-
ative jump) time intensity andψP (ψM) is a distribu-
tion of the positive (negative) jump size. In this paper
we more specify this jump process as the compound
Poisson processes:∫

R
νp(dν,dt) = JP(t;ψP)dN(t;λ+)

+JM(t;ψM)dN(t;λ−),

whereJ·(t;ψ·) denotes the jump size with identically
distributed lawψ· andN(t,λ·) is a counting process
with parameterλ·. Here we shall present the simula-
tion results for these compounded Poisson processes:
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Figure 7: Compounded Poisson process.

4 ELECTRICITY MODEL

By a basic no-arbitrage argument it follows that the
price of a futures contractF(t,T−t)which has payoff
S(T) at future timeT equals to

F(t,T − t) = E{S(T)|Ft},

with respect to the risk neutral measure. Hence we
can write the futures price as

F(t,T − t) = exp{A(t,T − t)+B(t,T− t)r(t)}, (3)

whereA andB satisfy deterministic equations. (See in
(Duffie et al., 2000) for details.) Although this model
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is mathematically elegant, it is not consistent with the
forward curveas stated in (Carmona and Ludkovski,
2004). From the systems identification view points,
the observation futures data are summed to the artifi-
cial observation noises. In order to avoid this ambigu-
ity, we append the extra noise in (3) as used in (Aihara
and Bagchi, 2010). This noise represents the model
errors from the basic property ofr(t). This will mean
that the corresponding futures price should be given
by a slight perturbation of (3),i.e.,

F(t,T − t) = exp{A(t,T − t)+B(t,T− t)r(t)

+

∫ t

0
σdw(s,T − s)}, (4)

where we use the same symbols in (3) and
∫ t

0
σdw(s,T − s) =

∞

∑
k=1

∫ t

0
σ

1
λk

ek(T − s)dβk(s), (5)

and whereek(·) is a sequence of differentiable func-
tions forming an orthonormal basis inL2(0,T∗)2 and
{βk(t)} are mutually independent Brownian motion
processes with∑ 1

λ2
k
< ∞,i.e.,

σ2E{w(t,x1)w(t,x2)}= tq(x1,x2)

and ∫ T∗

0
q(x,x)dx=

∞

∑
k=1

σ2

λ2
k

< ∞.

Setting

f (t,x) = A(t,x)+B(x)r(t)+
∫ t

0
σdw(s,x+ t − s), (6)

the futures contractsF(t,T − t) becomes

F(t,T − t) = exp( f (t,T − t)) (7)

with F(T,0) = exp( f (T,0)) = S(T). Now we derive
the explicit forms ofA andB so thatF(t,T − t) is a
Ft martingale in the risk neutral measure. Applying
the results by (Aihara and Bagchi, 2010), we get The
explicit form of (6) is a solution of

d f(t,x) =
∂ f (t,x)

∂x
dt− q̃J(x)dt+e−κx{σrdwr(t)

+

∫
R

νqc(dν,dt)}+σdw(t,x) (8)

f (0,x) = r̄(1−e−κx)+
σ2

r

2κ
(1−e−2κx)

+
1
2

∫ x

0
q(z,z)dz+Se(x)+e−κxr(0)

+

∫ x

0
(λ+CP(z)+λ−CM(z))dz, (9)

2T∗ denotes the longest future time in mind

where

q̃J(x) = σ2
r e−2κx+

1
2

q(x,x)+ (λ+CP(x)+λ−CM(x))

and

C•(x) =
∫

R
exp(e−κxν)ψ•(dν)−1. (10)

5 REAL WORLD DYNAMICS

On the identification problem, we work in the real
world measure. For example, we add a simple risk
premium term to (8) . In this paper, we simplify the
position that the market price of riskΛw(t) comes
mainly fromwr(t) but this moves stochastically. We
set this term as

dΛw(t) = κλ(Λ̄−Λω(t))dt+σΛdw2(t), (11)

where the BMPw2 is independent ofwr . Now under
the real world measure the BMP ˜wr(t) is represented
by

wr(t) = w̃r(t)−
∫ t

0
Λw(s)ds.

Hence our system state[ f (t,x) Λw(t)] under the phys-
ical measure becomes














d f(t,x) = ∂ f (t,x)
∂x dt− q̃J(x)dt

+e−κx{σr(−Λw(t)dt
+dw̃r(t))+

∫
Rνqc(dν,dt)}+σdw(t,x)

dΛw(t) = κλ(Λ̄−Λw(t))dt+σΛdw2(t).

(12)

6 OBSERVATION

Noting that electricity is essentially not storable, the
futures contracts are based on the arithmetic averages
of the spot prices over a delivery period[T0,T], given
by

1
T −T0

∫ T

T0

S(τ)dτ.

Now, for t < T0 we can calculate the futures prices by

F(t,T0,T) = E{
1

T −T0

∫ T

T0

S(τ)dτ|S(t)}

=
1

T −T0

∫ T

T0

F(τ, t)dτ

=
1

T −T0

∫ T−t

T0−t
exp[ f (t,x)]dx. (13)

In practice we adopt the geometric average as an ap-
proximation;

F(t,T0,T)∼ exp[
1

T −T0

∫ T−t

T0−t
f (t,x)dx]. (14)
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By using this geometric approximation, the observa-
tion data for the futures price is set as

yi(t) =
1

T −T0

∫ τi+(T−T0)

τi

f (t,x)dx, (15)

whereτ1 < τ2 < · · ·< τm .
Denoting

~Y(t) = [yi(t)]m×1,

we have

d~Y(t) = Hδ f (t, ·)dt−H(q̃J+B(x)σrΛw(t))dt

+H[dwM(t, ·)]+H[B
∫

R
νqc(dν,dt)], (16)

whereB(x) = e−κx,

wM(t,x) = B(x)σrwr(t)+σw(t,x), (17)

H(·) =
1

T −T0
[

∫ τ1+(T−T0)

0
(·)dx, · · · ,

∫ τm+(T−T0)

0
(·)dx]′

and

Hδ(·) = [
1

T −T0

∫
G
(δ(η− (T −T0+ τi))

− δ(η− τi))(·)dη]m×1.

6.1 Reconstruction of Jump Process

Choosing one yield data forτ0 < τ1,

y0(t) =
1

T −T0

∫ τ0+(T−T0)

τ0

f (t,x)dx, (18)

we have

dy0(t) = H0
δ f (t, ·)dt−H0(q̃J +B(x)σrΛw(t))dt

+H0[dwM(t, ·)]+H0[B
∫

R
νqc(dν,dt)],

whereH0(·) = 1
T−T0

∫ τ0+(T−T0)
0 (·)dx, and

H0
δ (·) =

1
T −T0

∫
G
(δ(η− (T −T0+ τ0))

−δ(η− τ0))(·)dη.

Hence it is possible to reconstruct the jump pro-
cess fromy0(t) such that

∫ t

0

∫
R
νqc(dν,ds)

=
1
B0 (y0(t)−

∫ t

0
H0

δ f ds−H0wM(t,x))

+

∫ t

0

1
B0H0(q̃J+B(x)σrΛw(s))ds, (19)

whereB0 = H0B. Plugging (19) into (12), we have

d f(t,x) =
∂ f (t,x)

∂x
dt− (q̃J(x)+B(x)σrΛw(t))dt

+dwM(t,x)+
B(x)
B0 {dy0(t)−H0

δ f dt

+H0(q̃J+B(x)σrΛw(t))dt−H0dwM(t,x)} .(20)

We transform the above equation as the robust form
for jump term. Define3

f̃ (t,x) = f (t,x)−
B(x)
B0 y0(t). (21)

Hence we get

d f̃ (t,x) = (
∂
∂x

−Cδ)( f̃ (t,x)+
B(x)
B0 y0(t))dt

−(1−C0)(q̃J(x)+B(x)σrΛw(t))dt

+(1−C0)σdw(t,x), (22)

where

Cδ =
B(x)
B0 H0

δ , C0 =
B(x)
B0 H0. (23)

6.2 Reconstruction of Observed Yields

The original yieldy j(t) becomes4

y j(t) = H j f (t, ·)

= H j f̃ (t, ·)+
H jB
B0 y0(t). (24)

Now we construct the new observation such that

ỹ j(t) = y j(t)−
H jB
B0 y0(t),

= H j f̃ (t, ·). (25)

Denoting

~̃Y(t) = [ỹ j(t)]m×1,

and from(H−HC0)Bσr Λw = HBσrΛw−HBσrΛw =
0, we get

d~̃Y(t) = (Hδ −HCδ) f̃ (t, ·)dt+(Hδ −HCδ)
B
B0

y0(t)dt− (H−HC0)q̃Jdt+(H−HC0)σdw(t,x).
(26)

3We uedwM − B
B0 H0wM = (1− B

B0 H0)σw.
4We usedH j(·) = 1

(T−T0)

∫ τi+(T−T0)
τi

(·)dx.

ICINCO�2014�-�11th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

624



7 THE KALMAN FILTER

In (8), Poisson jump processes are included and this
is not a usual Kalman filter problem. There are many
articles for Non-Gaussian filtering problem by using a
martingale approach, e.g. (van Schuppen, 1977) and
however it is still difficult to derive the closed form
filtering algorithm. In our position, the transformed
system (22) with the observation (26) do not include
jump processes explicitly. Hence our estimation prob-
lem is in the Gaussian framework;

d

(

f̃ (t,x)
Λw(t)

)

=

(

( ∂
∂x −Cδ)− (1−C0)

0−κλ

)(

f̃ (t,x)
Λw(t)

)

dt

+

(

( ∂
∂x −Cδ)

B
B0 y0− (1−C0)q̃J

κλΛ̄

)

dt

+d

(

(1−C0)w(t,x)
wΛ(t)

)

. (27)

with

d~̃Y(t) = (Hδ −HCδ ,0)

(

f̃ (t,x)
Λw(t)

)

dt

+((Hδ −HCδ)
B
B0 y0(t)− (H−HC0)q̃J)dt

+(H −HC0)dw(t,x). (28)

Denoting ˆ·= E{·|Yt}, for Yt = σ{~̃Y(s),y0(s);0≤
s≤ t}, we have

d ˆ̃f (t,x) = (
∂
∂x

−Cδ)(
ˆ̃f (t,x)+

B(x)
B0

y0(t))dt

−(1−C0)(B(x)Λ̂w(t)+ q̃J(x))dt

+
{

P̃ f f (t)(Hδ −HCδ)
∗

+(1−C0)Q(H −HC0)
∗}~Φ−1

×

{

d~̃Y(t)− (Hδ −HCδ ,0)

(

ˆ̃f (t,x)
Λ̂w(t)

)

dt

−((Hδ −HCδ)
B
B0 y0(t)− (H−HC0)q̃Jdt

}

,(29)

and

dΛ̂w(t) = κλ(Λ̄− Λ̂w(t)dt

+P̃Λ f (t)(Hδ −HCδ)
∗~Φ−1

×

{

d~̃Y(t)− (Hδ −HCδ ,0)

(

ˆ̃f (t,x)
Λ̂w(t)

)

dt

−((Hδ −HCδ)
B
B0 y0(t)+ (H−HC0)q̃Jdt

}

,(30)

whereQ=
∫

q(x,z)(·)dz ,

~Φ = (H −HC0)((H −HC0)Q)∗, (31)

and

∂P̃ f f (t)

∂t
= (

∂
∂x

−Cδ)P̃ f f (t)+ P̃ f f (t)(
∂
∂x

−Cδ)
∗

−P̃ f Λ(1−C0)
∗− (1−C0)P̃Λ f +(1−C0)Q(1−C0)

∗

−

{

P̃ f f (t)(Hδ −
HB

B0 H0
δ )

∗+(1−C0)Q(H −HC0)
∗

}

~Φ−1

{

P̃ f f (t)(Hδ −
HB

B0 H0
δ )

∗+(1−C0)Q(H −HC0)
∗

}∗

,

(32)

∂P̃ f Λ(t)

∂t
= (

∂
∂x

−Cδ)P̃ f Λ(t)− P̃ f Λ(t)κλ

−

{

P̃ f f (t)(Hδ −
HB

B0 H0
δ )

∗+(1−C0)Q(H −HC0)
∗

}

~Φ−1

{

P̃Λ f (t)(Hδ −
HB

B0 H0
δ )

∗

}∗

.

(33)

8 ADAPTIVE FILTERING
PROBLEM

8.1 Parallel Filtering

To construct the parameter estimation algorithm, we
confine the general jump process as the compound
Poisson process as stated in Remark, i.e.,JP(t;φP) =
Gaussian with meanmP

J and varianceσP
J and i.i.d for

each jump time and same as the negative jump. Hence
we have

CP(x) = exp[
∫ x

0
B(y)dy(mP+

1
2
(σP

J )
2)].

As used in (Aihara and Bagchi, 2010), we set the
function formq(x,x). Hence the unknown system pa-
rameters5

θ = [κ r̄ σ σr mP mM σP
J σM

J

λ+ λ− κλ Λ̄ σλ] ∈ Θ ⊂ R13,

whereΘ is a known bounded set. Following from
(Anderson and Moore, 1979), the following parallel
filtering algorithm is made:

• Set candidates of unknown parameterθ such that

θ( j) ∈ uniform random vectors inΘ, j = 1, ·, ·,mp.

• For eachθ( j), we solve the Kalman filter (29, 30)
for ti ≤ t ≤ ti+1.

5r is estimated from the initial forward cure. See (Aihara
and Bagchi, 2010)
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• Calculate the posteriori probability,

p(θ( j)|~̃Y(ti)

=
p(θ( j)|~̃Y(ti))p(~̃Y(ti+1)|θ( j),~̃Y(ti))

∑m
k=1 p(~̃Y(ti+1)|θ(k),~̃Y(ti))p(θ(k)|~̃Y(ti))

,

where

p(~̃Y(ti+1)|θ( j),~̃Y(ti)) ∝ exp

(∫ ti+1

ti

~̃Y(s)′~Φ−1

×

{

d~̃Y(t)− (Hδ −HCδ ,0)

(

ˆ̃f (t,x)
Λ̂w(t)

)

dt

−((Hδ −HCδ)
B
B0 y0(t)− (H−HC0)q̃Jdt

}

• The estimates off andθ are given by

f̂ (ti+1,x) =
mp

∑
i=1

f̂ (ti+1,x;θ( j))p(θ( j)|~̃Y(ti+1))

θ̂ =
mp

∑
i=1

θ( j)p(θ( j)|~̃Y(ti+1)).

8.2 Resample Procedure for Parameters

The parallel filter algorithm is not sensitive for iden-
tifying many unknown parameters. In this paper, we
propose a new resampling procedure to increase the
diversity of parameter estimates.

• Set the resampling time periodtresamp.

• At the timetr = (n−1)tresampfor n= 1,2, · · · , cal-
culate

σ̂2
θ(i) =

mp

∑
j=1

{(θ( j))2p(θ( j)|~̃Y(tr))− θ̂2(i)}

for i = 1,2, · · · ,12.

• Construct the posteriori distribution by using the
Gaussian approximation:

P(θ(i)|~̃Y(tr))∼ N (θ(i); θ̂(i),εi σ̂θ(i)),

whereε denotes a user defined parameter.

• Generate new samplesθ( j)(i) in Θ from

P(θ(i)|~̃Y(tr)). To get new samples inΘ, we use
the systematic resampling procedure.

• Resetp(θ( j)|~̃Y(tr)) = 1
mp

.

9 SIMULATION STUDIES

In this simulation study, we set the system parameters
in Table-1

Table 1: Systems parameters.

κ r̄ σr σ mP
J λ+, σP

J

5.00 3.00 0.80 0.1 0.30 8.00 0.20

mM
J λ− σM

J κλ Λ̄ σλ
-0.30 8.00 0.20 6.00 0.40 2.00

Setting the seasonality and linear trend functions
are set in Sec.2, we simulate (12) by using the fi-
nite difference method withdx= 0.01,dt = 0.005 in
Fig.8.

We also generate the observation data~Y(t) =
[10yi(t)]i for i = 1,2, · · · ,7 with τ1 = 0,τ2 =
0.1, · · · ,τ7 = 0.6 shown in Fig.9.
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Figure 8: f (t,x)- process.
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Figure 9: Observed data~Y.

If all systems parameters are known, the Kalman
filter works good and such simulation results are
found in (Aihara et al., 2014). Here we shall look
into the feasibility of the proposed on-line algorithm.
Hence we set the upper and lower bounds for the un-
known parameters shown in Table-2 with the tuning
parametersεi .
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Table 2: Upper and lower bounds for systems parameters.

κ r̄ σr σ mP
J

Upper 6.5 3.9 1.04 0.13 0.39
Lower 3.5 2.1 0.56 0.07 0.21

εi 1.05 1.05 1.05 1.05 1.05

λ+ σP
J mM

J λ− σM
J

Upper 10.4 0.26 -0.21 10.4.00 0.26
Lower 5.6 0.14 -0.39 5.6 0.14

εi 1.05 1.05 1.05 1.05 1.05

κλ Λ̄ σλ
Upper 7.8 0.52 2.6
Lower 4.2 0.28 1.4

εi 1.05 1.05 1.05

The estimatêf (t,x) is shown in Fig. 10.
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Figure 10: Estimated̂f (t,x).

The estimate of the market price of risk is demon-
strated in Fig.11.
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Figure 11: True and estimatedΛw(t).

Now we call demonstrate the estimates of un-
known parameters where we selected forκ, and ¯r in
Figs.12 and 13. The estimates of other parameters
have almost same beavers in these images.
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Figure 12: True and estimatedκ.
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Figure 13: True and estimated ¯r.

10 CONCLUSIONS

Bringing in the compound Poisson jump process, the
stochastic model for the electricity futures has been
suggested. By using the idea proposed by (Aihara
et al., 2014) the original filtering problem is changed
to the Gaussian framework and its Kalman filter is de-
rived. In the adaptive filtering algorithm, the parallel
filtering method in (Anderson and Moore, 1979) is
used to obtain the on-line parameter estimates with
the new resampling procedure. From the proposed al-
gorithm, it is not possible to estimate the noise corre-
lation parameter, if it exits. The possible way to iden-
tify this parameter is to use the Rao-Blackwellized fil-
ter.
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