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Abstract: In this paper, we consider random sums with heavy-tailed increments. By the term random sum, we mean
a sum of random variables where the number of summands is also random. Our interest is to construct
an efficient method to calculate tail-based risk measures such as quantiles and conditional expectation (ex-
pected shortfalls). When assuming extreme quantiles and heavy-tailed increments, using standard Monte
Carlo method can be inefficient. In previous works, there exists an efficient method to sample rare-events
(tail-events) using a Markov chain Monte Carlo (MCMC) with a given threshold. We apply the sampling
method to estimate statistics based on tail-information, with a given rare-event probability. The performance
is compared with other methods by some numerical results in the case increments follow Pareto distributions .
We also show numerical results with Weibull, and Log-Normal distributions. Our proposed method is shown
to be efficient especially in cases of extreme tails.

1 INTRODUCTION

Simulation methods with intent to estimate extreme
tails of distributions are of practical importance in var-
ious areas such as telecommunication systems, risk
management for insurance and operational risk, etc.
For instance, to assess the risk of rare-events, it helps
an insurance company to avoid bankruptcy, also helps
a server to avoid being down.

Suppose the problem to estimate the probability
p = P(Sn > an) wherean is some large constant,Sn =
X1+X2+ · · ·+Xn andXi’s are non-negative, indepen-
dent and identically distributed (iid). Here we assume
that p → 0 asan → ∞ so that we consider events are
rare. Whenn = N is not constant but follows a Pois-
son distribution, then the setting becomes equivalent
to the waiting time of an M/G/1 queue system. In the
context of queuing theory, especially for the applica-
tion with high service timeXi, especially the caseXi
following a Pareto distribution, has been studied sub-
stantially, see (Sees Jr and Shortle, 2002; Gross et al.,
2002). On the other hand,SN is sometimes mentioned
as compound sum, this term is mainly used in the
context of insurance risk. In the Cramér-Lundberg
model,Xi’s are interpreted as amount of claim andN
is number of claims, see (McNeil et al., 2010). This

type of statistical model assuming heavy-tail is also
applied to the quantification of operational risk in fi-
nance, (Embrechts et al., 2003).

The simplest solution for this problem is to use the
standard Monte Carlo method that makesT iid copies
{St

n} of Sn and estimatesp by p̂ = ∑T
t=1 I{St

n>an}/T .
However, this method is inefficient to compute small
probabilities with high thresholdan. Let us see the
relative error of the estimate:

Std(p̂)
p̂

=

√
1− p̂
T p̂

→ ∞,

as an → ∞. This shows the difficulty of computation
when using the standard Monte Carlo.

There are alternatively proposed methods mainly
based on importance sampling. In importance sam-
pling, {S̃t

n} instead of{St
n} is sampled from a new

probability measurẽP, see (Rubino et al., 2009;
Blanchet and Liu, 2008).

However, we use the method based on MCMC
proposed by (Gudmundsson and Hult, 2012). The
reason is two-fold: one is the ease of use, importance
sampling methods require to compute an appropriate
change of measure. For the MCMC method, imple-
mentation itself does not require us to do complex
computation.The other reason is that (Gudmundsson
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and Hult, 2012) showed the MCMC based method is
compatible or rather better than existing importance
sampling methods. The MCMC estimator is con-
structed as non-biased, and having vanishing normal-
ized variance. They showed the efficiency of the pro-
posed method with the setting thatXi’s have Pareto
distribution and the number of sumn = N has Geo-
metric distribution.

MCMC, stands for Markov chain Monte Carlo,
is initially proposed by (Metropolis et al., 1953) to
simulate the energy levels of atoms, and generalized
by (Hastings, 1970) . Suppose that we are interested
in sampling from a distributionπ(x), but we can not
sample from the distribution directly. MCMC is one
of the solutions for the problem, by constructing a
Markov chain whose stationary (equilibrium) distri-
bution isπ(x). States of the Markov chain after suffi-
cient steps of transition are used for sampling.

To estimate quantile ofSn is an important prob-
lem. For instance, quantile is especially called ”Value
at Risk” in finance, and this risk measure is used in
the regulatory framework of Basel. In the context of
queuing theory there exist some papers on estimating
quantiles, for example (Fischer et al., 2001) assum-
ing Pareto service times in simulating Internet queues.
We propose a new method to estimate high quantiles
and it is shown that our proposed method is remark-
ably accurate.

The rest of this paper is organized as follows. In
Section 2, the MCMC-based method to estimate tail-
based statistics is provided. In Section 3, we assess
the convergence of the MCMC.In Section 4, numer-
ical results are shown. In Section 5, conclusions are
given.

2 ESTIMATION METHOD

In this section, the proposed method in (Gudmunds-
son and Hult, 2012) for sampling rare-events and es-
timating small probabilities using the MCMC is pre-
sented.

2.1 Estimator Construction

Throughout this paper, all stochastic variables are de-
fined on a complete probability space(Ω,F ,P). Con-
sider a sequence of iid non-negative random vari-
ables{Xi, i ∈ N} with common cumulative distribu-
tion function (CDF)F and the densityf with respect
to the Lesbegues measureF . SetX = (X1,X2, ...,Xn).
Notice that we first consider the casen being fixed.

Our problem is to estimate

p = P(X ∈ A) =
∫

A
dF. (1)

Let FA be the conditional distribution ofX givenX ∈
A, and the density is given by

dFA

dx
=

f (x)I(x ∈ A)
p

. (2)

Suppose that samples are from the target distribu-
tion FA, and consider a Markov chain{Xt}T

t=1. For
any non-negative functionv,

∫
A v(x)dx = 1 it follows.

EFA

[
v(X)I{X ∈ A}

f (X)

]
=

∫
Ω

v(x)I{x ∈ A}
f (x)

dFA(x)

=
∫

A

v(x) f (x)
f (x)p

dx

=
1
p

∫
A

v(x)dx =
1
p
.

(3)

Therefore an unbiased estimator̂qT for q = 1/p is
calculated as

1
T

T

∑
t=1

v(Xt)I{Xt ∈ A}
f (Xt )

. (4)

Note that the estimation above is assuming stationar-
ity of the Markov chain, having its invariant distribu-
tion FA. It means also the burn-in period with suffi-
cient length should be discarded.

The functionv(x) determines a variance of the es-
timator. For the sake of efficient estimation, the vari-
ance is required to be small. (Gudmundsson and Hult,
2012) showed that whenXi’s are heavy-tailed in the
sense that there exists a sequence{an},

lim
n→∞

P(max(X1,X2, ...,Xn)> an)

P(X1+X2+ · · ·+Xn > an)
= lim

n→∞

P(Mn > an)

P(Sn > an)
= 1, (5)

and choosingv(·) = P(X ∈ ·|Mn > an), then the fol-
lowing estimator has vanishing normalized variance,

q̂T
(n) =

1
T

T

∑
t=1

I{Mn > an}
1−FX(an)n , (6)

meaning that:

lim
n→∞

(p)2Var
F
(n)
An

(q(n)T ) = 0. (7)

Note that the condition (5) holds for large class of
distributions, including subexponential class. For the
case whenn = N is non-negative integer valued ran-
dom variable, the estimator becomes

q̂T
(N) =

1
T

T

∑
t=1

I{MN > an}
1− gN(FX(an))

, (8)

wheregN is the probability generating function ofN,
defined bygN(z) = E[zN ].
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2.2 Description of the MCMC
Algorithm

To sample from the conditional distribution

P(X ∈ A) = P(SN = X1+ · · ·+XN > an), (9)

by the MCMC. We use Gibbs sampler for the MCMC
kernel. Description of the algorithm is as follows.

1. SampleN0 from P(N ∈ ·), and set the initial state

X0 = (X0,1, ...,XN0,1).

so that satisfies

S0,N0 =
N0

∑
i=1

X0,i > an.

2. Suppose that

Xt = (kt ,xt,1, ...,xt,kt ),

holding the condition

xt,1+ ...+ xt,kt > an,

and let

k∗t = min{ j|xt,1+ ...+ xt, j > an}.
3. Iterate (a)-(c) until the sufficient length of Markov

Chain is constructed.

(a) Sample the number of sumNt+1 from the con-
ditional distribution

p(kt+1|kt+1 > k∗t ) =
P(N = kt+1)I{kt+1 > k∗t }

P(kt+1 > k∗t )
.

If Nt+1 > Nt , then sample

Xt+1,Nt+1, ...,Xt+1,Nt+1

from FX independently and set

Xt
′ = (Xt,1, ...,Xt,Nt ,Xt+1,Nt+1, ...,Xt+1,Nt+1)

(b) Make an order of updating step
{ j1, j2, ..., jNt+1}, it is equivalent as a group of
{1, ...,Nt+1}

(c) Update Xt
′ for eachk = 1, ...,Nt+1 as follows

i. Let j = jk and

X′
t,−j = (X ′

t,1, ...,X
′
t, j−1,X

′
t, j+1, ...,X

′
t,Nt+1

).

SampleZ j from the conditional distribution

P(Z j ∈ ·|X ′
t,− j) = P(X ∈ ·|X + ∑

k 6= j

X ′
t,k > an).

ii. SetXt, j = Z j and

Xt
′ = (Xt,1, ...,Xt, j−1,Xt, j,Xt+1,kt+1, ...,Xt+1,Nt+1),

then return to i step.
(d) Draw an uniform random permutationπ of the

numbers{1, ...,Nt+1} and put

Xt+1 = (Nt+1,Xt+1,π(1), ...,Xt+1,π(Nt+1)).

2.3 Procedure of the Estimation

In previous sections, the method to estimate proba-
bilities has been shown. That method is assuming a
given arbitrary thresholdan and then compute the cor-
responding probability. Now our problem is opposite,
to compute a quantile given a probability. For this
solution, a trivial property is used :

Mn = max(X1, ...,Xn)< Sn = X1+ ...+Xn

⇒ P(Mn < x)> P(Sn < x)

⇒ G−1(y)< H−1(y),

(10)

where

G(x) = P(Mn < x),H(x) = P(Sn < x).

Let {S j
N}T

j=1 be samples from the conditional dis-
tributions, P(SN |SN > b) and define the following
givenan > b:

p := P(SN > an) = P(SN > aN |SN > b)P(SN > b). (11)

We also define the empirical survival distribution,

F̄T (x) =
1
T

T

∑
i=1

I{S j > x}. (12)

Then our motivation of quantile estimation method is
derived from the following:

F−1
SN

(1− p) = inf{x : FSN (x)≥ 1− p}
= inf{x : F̄SN (x)≤ p}
≈ inf{x : F̄T (x) p̂b ≤ p}
= inf{x : F̄T (x)≤

p
p̂b

}

= F̄−1
T (1− p

p̂b
) = S

⌊T p
p̂b
⌋+1,T

N

(13)

where ˆpb is the estimated value ofP(SN > b), ⌊·⌋ de-
notes the floor function andSk,T

N denotes thekth order
statistics of{S j

N}.
However, how to select the pre-determined thresh-

old b smaller thanan is a problem, because we do not
know an. In addition, there are two hopeful require-
ments for selectingb:

• b should be generated endogenously using the in-
put p. Otherwise the method becomes unstable
and depends on user’s experience.

• b must be less thanan but also needed to be close
to an, for the sake of efficiency of the estimation.

To solve these requirements, we use the property (10).
The procedure of estimation is as follows.
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1. Set the interest small probabilityp, and calculate

b = G−1(1− p) = F−1
X (g−1

N (1− p)).

2. Sample{S j| j = 1, ...,T} from P(·|Sn > b) and
calculate ˆpb, the estimate ofP(Sn > b) by using
MCMC described in the previous section.

3. Let{S̃ j} be the order statistics of{S j} and take

ân = S̃ j∗ where, j∗ = ⌊T
p
p̂b

⌋+1.

It is obvious that the way of selectingb satisfies
that b is smaller thanan and thatb is generated en-
dogenously. The property thatb is close toan, is
shown by the subexponential property :

lim
x→∞

P(max(X1,X2, ...,XN)> x)
P(X1+X2+ · · ·+XN > x)

= lim
x→∞

P(MN > x)
P(SN > x)

= 1.

This means that:

H−1(y)→ G−1(y), as y → 1. (14)

Therefore this way of selectingb is efficient for esti-
mating high-level quantiles.

Extensively, we construct an estimator for condi-
tional expectations, mentioned as expected shortfall:

ESα = E[SN |SN > F−1
SN

(1− p)] =
1
p

∫ 1

1−p
F−1

SN
(u)du. (15)

The estimator for this statistics is

ÊSα =
1

#{S̃ j > S̃ j∗} ∑
S̃ j>S̃ j∗

S̃ j, (16)

where #{S̃ j > S̃ j∗} represents the number of compo-
nents{S̃ j} that satisfies̃S j > S̃ j∗ .

3 ASSESSING CONVERGENCE

To determine the length of the burn-in period is a
difficult but also important matter when using the
MCMC. We try to determine burn-in period by using
the method, proposed by (Gelman and Rubin, 1992)
in this section.

The method in (Gelman and Rubin, 1992) is con-
structed as follows.

1. First simulatem Markov chains, each chain has
the length of 2n and each starting point
{X i

0|i = 1, ...,m} should be over-dispersed.

2. For any scalar function of interestθ, calculate

√
R =

√(
n−1

n
+

m+1
mn

B
W

)
d f +1
d f +3

, (17)

where,

W =
1

m(n−1)

m

∑
i=1

2n

∑
t=n+1

(θt
i − θ̄·i)

2,

B =
1

m−1

m

∑
i=1

(θ̄·i − θ̄··)
2,

θ̄·i =
2n

∑
t=n+1

θt
i/n, θ̄·· =

m

∑
i=1

θ̄·i/m,

andθt
i is t th observation from chaini. Also

d f =
2V̂2

̂Var(V̂ )
,V̂ =

(
n−1

n
W +

m+1
mn

B

)
.

They insist that when
√

R is close to 1, then we can
conclude that each chain approaches the target distri-
bution. For the purpose of determining the burn-in
period which we shall use in following numerical ex-
periments, we describe the plot of

√
R with respect to

iteration number in figure 1. In our case, the statis-
tics θ is chosen to beSN .

√
R converges to 1. 1000 is

0 500 1000 1500 2000
0.975

0.98

0.985

0.99

0.995

1

1.005

Figure 1:
√

R with respect to the number of iteration steps.

sufficient for the iteration number.

4 NUMERICAL RESULTS

In this section, some numerical results are shown. To
validate and compare the efficiency with other exist-
ing methods, we refer to (Hult and Svensson, 2009).
They consider a problem of fixed sum, meaning the
number of summands is not stochastic but constant.
We first apply our method to the fixed-sum prob-
lem and show the performance, labeled as MCMC.
MC represents standard Monte Carlo, DLW repre-
sents the conditional mixture algorithm (Dupuis et al.,
2007) and SM represents the scaling mixture algo-
rithm (Hult and Svensson, 2009). All figures of MC,
DLW, and SM in (Hult and Svensson, 2009) are used
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as a reference. For each estimation, all statistics are
calculated based on 104 samples and it is repeated 100
times to calculate the mean and standard deviation of
the estimates. For the MCMC method, we set 1000
times of iteration for the burn-in period.

Table 1: Means (standard deviations). Simulating quantiles
q such that 1− p = FSn(q) where FSn(·) is a cumulative
distribution function ofSn, Sn = ∑n

i=1 Xi andP(Xi > x) =
(1+x)−2.

n 1− p MCMC SM DLW MC
10 1e-2 40.179 41.007 40.166 40.038

(0.130) (0.246) (0.459) (1.78)
1e-3 108.587 109.33 108.29 84.821

(0.197) (0.847) (1.081) (47.23)
1e-5 1008.1 1003.1 1007.5 609.42

(0.495) (18.5) (1.51) (1594)
30 1e-2 84.585 85.841 84.681 84.362

(0.324) (0.395) (1.237) (2.739)
1e-3 202.557 203.56 202.29 171.16

(0.373) (1.53) (2.40) (71.26)
1e-5 1760.3 1753.7 1759.0 114.23

(0.903) (41.12) (1.487) (443.5)

Table 2: Means (standard deviations). Simulating quantiles
q such that 1− p = FSn(q) where FSn(·) is a cumulative
distribution function ofSn, Sn = ∑n

i=1 Xi andP(Xi > x) =
(1+x)−3.

n 1− p MCMC SM DLW MC
10 1e-2 14.205 14.853 14.195 14.182

(0.069) (0.090) (0.154) (0.305)
1e-3 25.651 26.125 25.588 24.965

(0.062) (0.171) (0.412) (2.212)
1e-5 103.64 104.23 103.40 5.283

(0.091) (0.799) (0.553) (16.03)
30 1e-2 29.845 31.054 29.943 29.949

(0.297) (0.287) (0.519) (0.500)
1e-3 46.016 46.725 46.277 44.608

(0.184) (0.286) (1.041) (2.688)
1e-5 158.057 158.460 157.620 13.847

(0.152) (1.080) (0.273) (28.53)

From the table 1 and the table 2, the MCMC based
method perform well comparing with other methods.
For simulating conditional expectations in the table 3
and the table 4, we see MCMC based method can per-
form a little bit less than other methods in some pa-
rameter settings. However, when we see the extreme
tail, our proposed method works the best.

Next we consider random sums, meaning the
number of summandsN is random. For numerical
experiments, we calculate the caseN is geometrically
distributed:

P(N = n) = ρ(1−ρ)(n−1), (18)

Table 3: Means (standard deviations). Simulating con-
ditional expectationsE(Sn|Sn > an) whereP(Sn > an) =
1− p, Sn = ∑n

i=1Xi andP(Xi > x) = (1+x)−2.

n 1− p MCMC SM DLW MC
10 1e-2 71.694 73.065 71.831 72.252

(1.44) (1.06) (1.22) (8.75)
1e-3 208.67 209.37 209.30 213.42

(4.16) (3.60) (4.99) (65.8)
1e-5 2005.4 2009.8 2009.3 4787.8

(35.5) (37.1) (30.9) (23168)
30 1e-2 139.03 140.55 139.14 140.76

(3.74) (2.22) (3.09) (17.34)
1e-3 374.25 375.76 378.24 391.06

(6.45) (5.00) (11.49) (96.36)
1e-5 3496.7 3500.0 3496.9 745.7

(58.7) (65.2) (59.8) (3671)

Table 4: Means (standard deviations). Simulating con-
ditional expectationsE(Sn|Sn > an) whereP(Sn > an) =
1− p, Sn = ∑n

i=1Xi andP(Xi > x) = (1+x)−3 .

n 1− p MCMC SM DLW MC
10 1e-2 19.206 20.044 19.257 19.495

(0.218) (0.167) (0.395) (0.905)
1e-3 36.321 36.911 36.463 41.032

(0.282) (0.327) (0.776) (5.53)
1e-5 153.50 154.39 153.83 132.74

(0.901) (1.326) (2.705) (491.7)
30 1e-2 36.922 38.603 37.200 37.744

(0.930) (0.902) (1.169) (1.581)
1e-3 61.125 62.013 62.066 69.369

(0.728) (0.416) (1.814) (7.973)
1e-5 230.22 230.27 230.00 225.14

(1.40) (1.92) (1.47) (932)

with some different parameter settings. This time we
simulate 5000 number of iteration and 1000 number
of burn-in period with 25 batches to calculate each
means and standard deviations of estimates. ES (ex-
pected shortfall) represents the conditional expecta-
tion. Note that we calculate relative errors instead of
standard deviations in order to see how the accuracy
changes. Table 7 shows that, when calculating quan-
tiles, the more high quantiles we estimate, the more
estimates become accurate. For expected short falls,
relative errors do not change remarkably but the es-
timates are sufficiently accurate. For other settings,
meaningXi’s follow Weibull and Log-normal distri-
butions, see the Appendix.
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Table 5: Means and relative errors. Simulating quantiles and expected shortfalls ofSN = ∑N
i=1 Xi whereP(Xi > x) = (1+x)−β

, P(N = n) = ρ(1−ρ)(n−1).

β = 3,ρ = 0.2
Pareto/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated quantile 6.87441 9.33847 15.3579 25.8747 42.9086 84.0273
Relative error 0.01508 0.01176 0.01354 0.01151 0.004778 0.002684

β = 2,ρ = 0.2

Pareto/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated quantile 13.61134 19.1129 35.4151 82.1348 233.466 715.999
Relative error 0.01223 0.01233 0.01058 0.006867 0.002183 0.0008949

β = 1.5,ρ = 0.2
Estimated quantile 24.3839 36.6780 82.9503 311.665 1375.97 6317.46
Relative error 0.01163 0.0096183 0.007067 0.002843 0.001107 0.0007270

β = 2,ρ = 0.05

Estimated quantile 48.8967 65.5929 109.858 202.007 490.835 1454.22
Relative error 0.01356 0.01625 0.01592 0.009312 0.0021054 0.001494

β = 1.5,ρ = 0.05
Estimated quantile 93.962 132.302 258.466 821.700 3500.29 15948.4
Relative error 0.01541 0.01283 0.01099 0.003944 0.001679 0.00050244

β = 3,ρ = 0.2
Pareto/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated ES 10.3295 12.9366 19.8514 33.6573 60.7505 123.348
Relative error 0.01183 0.01346 0.01430 0.01447 0.01332 0.009787

β = 2,ρ = 0.2
Pareto/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated ES 23.2326 31.1116 57.5991 150.307 457.184 1419.47
Relative error 0.02130 0.03127 0.03323 0.01582 0.02033 0.01836

β = 1.5,ρ = 0.2
Estimated ES 54.8321 83.7899 203.878 892.355 4006.29 18232.4
Relative error 0.06381 0.2062 0.07136 0.06701 0.06100 0.04304

β = 2,ρ = 0.05

Estimated ES 75.8177 95.6647 153.790 334.255 938.896 2867.00
Relative error 0.02580 0.03028 0.05590 0.02852 0.04177 0.02154

β = 1.5,ρ = 0.05
Estimated ES 179.384 249.374 572.885 2286.532 10194.5 46380.5
Relative error 0.05329 0.09100 0.1432 0.05691 0.07483 0.03651

5 CONCLUSIONS

The MCMC-based method for estimating tail-based
statistics, such as quantiles and conditional expecta-
tions, was shown. Comparing with other methods,
our method outperformed when estimating quantiles
in the parameter settings.

Our proposed method to estimate quantiles has
two distinctive features. First, the estimates are accu-
rate. The level of quantile becomes higher, the relative
errors becomes smaller. This property is significant
because other methods such as standard Monte Carlo
have the opposite property. Second, the ease of use,
the algorithm does not require complicated analytical
calculations. We also calculated the caseXi’s follow
Weibull and Log-normal distributions that results are

shown in the Appendix. Relative errors do not change
remarkably, or perform better for heavy and extreme
tails.
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Table 6: Means and relative errors. Simulating quantiles and expected shortfalls ofSN = ∑N
i=1 Xi whereP(Xi > x) = exp(x−β)

, P(N = n) = ρ(1−ρ)(n−1).

β = 0.8,ρ = 0.2

Weibull/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated quantile 15.5716 20.1657 31.2012 46.3961 62.3213 75.3965
Relative error 0.01313 0.01381 0.01707 0.02813 0.06063 0.08026

β = 0.6,ρ = 0.2
Weibull/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated quantile 21.6363 29.11683 46.9427 73.2428 99.7388 125.817
Relative error 0.009764 0.01169 0.01553 0.02094 0.01930 0.03121

β = 0.4,ρ = 0.2

Weibull/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated quantile 49.2906 73.5994 140.271 264.780 437.100 670.432
Relative error 0.009739 0.009350 0.01088 0.005121 0.003460 0.003296

β = 0.2,ρ = 0.2
Weibull/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated quantile 1022.07 2344.92 9999.33 46018.6 149669.9 390358.1
Relative error 0.01131 0.007263 0.004710 0.001813 0.001379 0.0006157

β = 0.8,ρ = 0.2
Weibull/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated ES 21.7579 26.4005 37.2303 52.4836 67.0727 77.8810
Relative error 0.01005 0.01249 0.01726 0.02707 0.05173 0.07376

β = 0.6,ρ = 0.2

Weibull/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated ES 31.9828 39.4908 57.4457 83.9030 110.503 136.550
Relative error 0.008739 0.008870 0.01721 0.02071 0.01772 0.02988

β = 0.4,ρ = 0.2
Weibull/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated ES 88.0119 116.721 193.811 338.062 536.740 802.705
Relative error 0.008471 0.01070 0.01110 0.0060 0.004726 0.003834

β = 0.2,ρ = 0.2

Weibull/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated ES 5193.00 8860.84 25693.4 90051.7 252252.9 595906.0
Relative error 0.03858 0.02782 0.01659 0.01266 0.007925 0.007637
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Table 7: Means and relative errors. Simulating quantiles and expected shortfalls ofSN = ∑N
i=1 Xi whereP(Xi > x) =∫ x

0
1

zσ
√

2π
exp(− (lnz)2

2σ2 )dz , P(N = n) = ρ(1−ρ)(n−1).

σ = 1.5,ρ = 0.2
Log-normal/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated quantile 43.0787 61.9818 116.712 244.512 511.005 1043.09
Relative error 0.01081 0.01143 0.01144 0.003841 0.003958 0.001575

σ = 2.0,ρ = 0.2
Log-normal/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated quantile 94.6375 153.475 389.479 1271.15 3775.13 10203.1
Relative error 0.01229 0.007735 0.007387 0.003748 0.001743 0.0007950

σ = 2.5,ρ = 0.2

Log-normal/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated quantile 225.102 426.242 1495.87 7191.37 29060.8 101773.9
Relative error 0.01195 0.006451 0.005317 0.002870 0.001553 0.00064034

σ = 3.0,ρ = 0.2
Log-normal/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated quantile 563.363 1250.45 6032.53 41582.1 225487.2 1019519.9
Relative error 0.008669 0.008767 0.005775 0.002417 0.0008147 0.0004598

σ = 1.5,ρ = 0.2

Log-normal/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated ES 75.0995 99.0854 172.281 357.807 736.980 1469.82
Relative error 0.01496 0.01084 0.01375 0.009311 0.006701 0.007204

σ = 2.0,ρ = 0.2
Log-normal/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated ES 234.143 341.323 780.272 2344.29 6563.31 16763.9
Relative error 0.07241 0.02705 0.01559 0.01516 0.009385 0.01131

σ = 2.5,ρ = 0.2
Log-normal/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated ES 889.343 1428.11 4176.62 17149.0 62259.2 197743.9
Relative error 0.08343 0.05737 0.02405 0.01527 0.02784 0.02122

σ = 3.0,ρ = 0.2

Log-normal/Geometric 90%-quantile 95%-quantile 99%-quantile 99.9%-quantile 99.99%-quantile 99.999%-quantile
Estimated ES 3928.26 7097.71 25372.2 131697.1 611342.3 2391876.4
Relative error 0.1106 0.07361 0.1296 0.06921 0.043466 0.02005
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