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Abstract: In the industrial field, the artificial neural network classifiers are currently used and they are generally 
integrated of technologic systems which need efficient classifier. However, the lack of control over its 
mathematical formulation explains the instability of its classification results. In order to improve the 
prediction accuracy, most of researchers refer to the classifiers combination approach. This paper tries to 
illustrate the capability of an example of combined neural networks to improve the stability criterion of the 
single neural classifier. The stability comparison is performed by the error rate probability densities function 
estimated by a new variant of the kernel-diffeomorphism semi-bounded Plug-in algorithm.

1 INTRODUCTION 

In high dimension spaces, due to the samples limited 
size, the classification in these spaces requires 
dimension reduction in the first step. In order to 
simplify this reduction, the linear methods are the 
most commonly used ones.  

Qualified by non parametric methods, the 
Artificial Neural Networks (ANNs or NNs) can 
achieve a non-linear dimension reduction which tries 
to find a subspace in which the data are well 
presented. Thus, the ANNs have become a regular 
method to provide a solution for the non-linear 
dimension reduction and classification, where 
statistical techniques have traditionally been used. 

The traditional statistical approaches are based 
on the Bayesian decision rule, which presents the 
ideal classification technique. However, a dimension 
reduction is often required in the first step because 
of the limited samples size. The favorite linear 
technique for this purpose is the Fisher Linear 
Discriminate Analysis (LDA) which tries to find 
efficient discrimination directions. 

A recent review of various experimental 
comparison studies between neural and statistical 
approaches is presented by Paliwal and Kumar in 
(Paliwal, 2009). 

In order to compare the neural and statistical 
classifiers, most of researchers try to compare their 
prediction accuracy while forgetting the NNs 
instability criterion. In (Othman, 2013) and 

(Othman, 2014), we have proven the instability of 
network classifier results compared to the statistical 
methods.  The stability evaluation is based on 
estimating the error rate probability density function 
(pdf) of each classifier. The pdf is estimated by 
applying the Plug-in kernel algorithm, which 
optimizes its smoothing parameter. The 
misclassification error is positive value, so we 
choose to improve the pdf estimation precision by 
using a new variant of the kernel-diffeomorphism 
semi-bounded Plug-in algorithm since pdf support 
information is known. 

Many techniques proved their effectiveness in 
improving the classifiers performance. Combining 
several classifiers is becoming an active research 
area. Thus, the combination approach for the neural 
networks may improve their performance and 
stability. 

The present work will be organized as follows: 
the next section summaries the neural classifiers 
including the multilayer perceptron neural network. 
Here we deal with the combined neural network 
approach. In section 3, we lead a comparative study 
between the combined and single neural networks 
stressing their stability degree. This stability degree 
is performed by visualizing the results through 
multivariate Gaussian distributions. Then, we intend 
to test the classifiers stability and performance for 
the handwritten digits recognition problem. Finally, 
we will present our works conclusions. 

 

203Ben Othman I. and Ghorbel F..
Stability Evaluation of Combined Neural Networks.
DOI: 10.5220/0005077402030209
In Proceedings of the International Conference on Neural Computation Theory and Applications (NCTA-2014), pages 203-209
ISBN: 978-989-758-054-3
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



 

2 ARTIFICIAL NEURAL 
NETWORKS 

In pattern recognition, the extractor-classifier neural 
network is the most studied and used neural models. 
These mixed neural networks present a combination 
of the features extractors NNs and the classifiers 
NNs. Although the hidden layers are capable to 
reduce the data dimension in a non-linear way, the 
output layer makes the last decision by applying a 
non-linear separation to the extracted primitives. An 
interesting example is the feedforward Multi-Layer 
Perceptron (MLP) that uses the back-propagation 
algorithm.  
The main duty of this supervised algorithm is to 
reduce the mean squared error (MSE) between the 
ANN outputs and the known target values: 
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where tj and yj represent the target and network 
output values for the jth training sample respectively, 
and N is the training samples size. 

Based on the results from (Steven, 1991) and 
(Lepage, 2003), a MLP with one hidden layer is 
generally sufficient for most problems including the 
classification. Thus, all used networks in this study 
will have a unique hidden layer. The number of 
neurons in the hidden layer could only be 
determined by experience and no rule is specified. 
However, the number of nodes in the input and 
output layers is set to match the number of input and 
target parameters of the given process, respectively.   

2.1 Neural Networks Limitations 

Although the effectiveness and significant progress 
of ANNs in several applications, and especially the 
classification process, they present several limits. 
First, the neural classifiers produce a black box 
model in terms of only crisp outputs, and hence 
cannot be mathematically interpreted as in statistical 
approaches. Second, the MLP desired outputs are 
considered as homogeneous to a posterior 
probability. Till today, no proof of the quality of this 
approximation has been presented. However, for the 
users of these networks, this approximation is 
presented as a threshold function to binaries the 
obtained outputs. Third, the NNs have a complex 
architecture that the task of designing the optimal 
model for such application is far from easy. 

Unlike the simple linear classifiers which may 
underfit the data, the architecture complexity of NNs 

tends to overfit the data and causes the model 
instability. Breiman proved, in (Breiman, 1996), the 
instability of ANNs classification results. Therefore, 
a large variance in its prediction results can be 
introduced after small changes in the training sets. 
Thus, a good model should find the equilibrium 
between the under-fitting and the over-fitting 
processes.  

Indeed, researches kept looking for suitable 
methods to solve these related problems. The cross 
validation method, mentioned in (Morgan, 1990) 
and (Weiss, 1991), presents the classical solution. 
German and al introduced, in (Geman, 1992),   the 
bias plus variance decomposition of the prediction 
error, which presents an interesting solution for the 
over-fitting problem. Intending to reduce the over-
fitting effect of NNs, a probabilistic interpretation of 
NNs learning methods has been proposed by 
Mackay, in (Mackay, 1992) and (Mackay, 1995), 
thereby using Bayesian techniques. In (Othman, 
2014), we have proved that the Bayesian NN is most 
stable and performs better than the conventional NN. 
The performance and stability classification may 
also be improved by combining several neural 
classifiers (Miller, 1998), (Zhang, 2000), (Hansen, 
1990) and (Morgan, 1990). 

2.2 Combined Neural Networks 

Many studies show that combining several 
classifiers significantly improves their performances 
with respect to each individual classifier. Several 
combined methods have proved their effectiveness 
to improve the individual classifier performance. 
Referring to the implementation order criterion, the 
classifiers combination approaches could be 
classified into sequential, parallel and hybrid. 
However, among these different combination 
architectures, the parallel architecture resulted in the 
most significant work. Its simplicity of 
implementation, its ability to exploit the combining 
classifiers taking into account (or not) the behavior 
of each classifier and  its proven efficiency in many 
classification problems show its success,  including 
in the sequential approach for which knowledge of 
the behavior of each classifier is necessary in order 
to obtain a pattern of effective cooperation. 

To implement the combined NNs, the outputs of 
the first level networks were combined to a second 
level neural network. The combined NN model used 
in the present study is shown in Figure 1. Two 
MLPs, with the same structure, and having each one 
hidden layer, were used in the first level. Their 
outputs constitute the second level network inputs. A 
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third MLP was used in the second level having also 
one hidden layer. In the first and second level, the 
back-propagation training algorithm was used. The 
number of hidden nodes in each level was 
determined considering the classification accuracies. 
In the hidden and output layers, the sigmoïd 
activation function was used.   

 

 

Figure 1: Combined neural networks topology. 

3 PERFORMANCE AND 
STABILITY COMPARISON 

Some classifiers are instable, small changes in their 
training sets or in constructions may cause large 
changes in their classification results. Therefore, an 
instable model may be too dependent on the specific 
data and has a large variance. In order to analyze and 
compare the stability and performance of each 
classifier, we have to illustrate their error rate 
probability densities in the same figure. The 
classifier, whose curve is on the left, is the most 
efficient one. Also, a classifier with the largest 
density curve is the least stable one. Therefore, a 
good model should find a balanced equilibrium 
between the error rate bias and variance.   

3.1 Non-parametric Density Estimation 

The first step before comparing is to train the two 
classifiers, and then we proceed by measuring the 
error rate produced by each classifier with each one 
of N independent test sets. Let’s consider (Xi)1≤i≤N  
the N generated error rates of a given classifier 
(Bayes or ANN). These error rates (Xi)1≤i≤N are 
random variables which have the same probability 
density function (pdf), fX(x). These (Xi)1≤i≤N are 
supposed to be independent and identically 
distributed. 

We suggest to estimate the pdf of the error rates 

for each classifier using the kernel method proposed 
in (Fukunaga, 1990) and (Ghorbel, 2012), where the 
involved smoothing parameters hN  are estimated by 
optimizing an approximation of the integrated mean 
square error (IMSE). The kernel estimator of the 
probability density is defined as follows: 
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In our study, K(.) is chosen as the Gaussian kernel:  
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The choice of the optimal smoothing parameter 
*
Nh  is very important. Moreover, Researchers have 

introduced different methods that minimize the 
integrated mean square error 
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3.2 Conventional Plug-in Algorithm 

The goodness of estimation depends on choosing an 
optimal value for the smoothing parameter. 
Calculating its optimal value, with a direct 
resolution of the equation (4), seems very difficult. 
We opt for the recursive resolution:  The Plug-in 
algorithm. Actually, a fast variant of known 
conventional Plug-in algorithm has been developed 
(Ghorbel, 2012). It applies directly a double 
derivation of the kernel estimator analytical 
expression in order to approximate the function J(f).  

3.3 Kernel-diffeomorphism  
Semi-bounded Plug-in Algorithm 

The set of observed error rates (Xi)1≤i≤N of each 
classifier is a set of positive values. In this case, the 
kernel density estimation method is not that 
attractive. When estimating the probability densities, 
which are defined in a bounded or semi-bounded 
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space dU  , we will encounter convergence 
problems at the edges : the Gibbs phenomenon.  

Several authors have tried to solve this issue and 
presented some methods to estimate the probability 
densities under topological constraints on the 
support. The orthogonal functions method and the 
kernel diffeomorphism method are two interesting 
solutions (Saoudi, 1997) and (Saoudi, 1994). The 
kernel diffeomorphism method is based on a suitable 
variable change by a C1-diffeomorphism. Although, 
it is important to maximize the value of the 
smoothing parameter in order to ensure a good 
estimation quality. The optimization of the 
smoothing parameter is performed by the Plug-in 
diffeomorphism algorithm which is a generalization 
of the conventional Plug-in algorithm (Troudi, 2013) 
and (Ghorbel, 2012) 

For complexity and convergence reasons, we 
propose in this paper a new variant of the kernel-
diffeomorphism semi-bounded Plug-in algorithm. 
This algorithm version is based on the variable 
change of the positive error rates: )(XLogY  . In 

order to define new classification quality measure, a 
sequence of three steps is performed: 

 

Step 1: using the variable change )(XLogY  , 

the kernel estimator expression becomes: 
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Step 2: iterate the conventional Plug-in algorithm 
for the transformed data. 

Step 3: compute 
x

Logxf
xf Y

X
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The use of this new variant of the kernel-
diffeomorphism semi-bounded Plug-in algorithm 
tends to be a good criterion for the stability 
comparison of the different classifiers. This 
algorithm produces a sufficient precision for the 
densities estimation and the stability aspect. 

4 SIMULATIONS 

The neural and statistical approaches were first 
compared experimentally on the multivariate 
Gaussian mixture classification problem. Three types 
of classifiers are applied to evaluate their 

performances and stability: Fisher-Bayes, single 
MLP and combined MLPs. For the combination 
approach, three MLPs were combined using the 
parallel topology discussed in the section 2.2. With 
the same train set (including 1000 samples for each 
class), we look to find the optimal transformation by 
the mean of the well known Fisher criterion which 
realizes the dimension reduction before applying the 
Bayesian rule, and then to fix the optimal NN model 
parameters for both single and combined MLPs. 

After the training phase, we generate 100 
independent supervised test sets (including 1000 
samples for each class). For each test set, the 
classifier performance is evaluated by its error rate 
calculated from the confusion matrix. In order to 
compare the stability degree, the error rate 
probability densities, retained for the statistical and 
neural approaches, are estimated using the new 
version of the kernel-diffeomorphism semi-bounded 
Plug-in algorithm discussed in the previous section.  

Figure 2 shows the estimated error rate 
probability densities generated for the different 
classifiers on a mixture of two homoscedastic and 
heteroscedastic Gaussians. It illustrates the results of 
two homoscedastic Gaussians (Fig.2.a and Fig.2.b), a 
simple case of two heteroscedastic Gaussians 
(Fig.2.c), two heteroscedastic superposed Gaussians 
(Fig.2.d and Fig.2.e) and two truncated ones 
(Fig.2.f). The stability and performance of the 
classifiers are also analyzed by presenting their error 
rate means and variances in table 1.  

By analyzing the results shown in the three first 
cases in figure 2 and table 1, the statistical classifier 
(Fisher-Bayes) admits the smallest error rate mean 
that proves its performance against the single neural 
classifiers for these simple cases. However, the error 
rate probability density functions of the neural 
models are on the left for the complex cases of the 
two heteroscedastic superposed Gaussians and the 
truncated ones. For these complex cases, the Fisher 
LDA fails to find the optimal projection subspace. 
Whereas, the neural classifiers perform well due to 
their non linear reduction dimension capability. We 
deduce then the efficiency of these models. 
Although, the single MLP remains the least stable 
classifier that presents the greatest variance and thus 
the widest curve for the most cases. However, the 
combination approach for NN improves its stability 
and performance (except the fifth case where the 
variances are too close). 
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Figure 2: Error rate probability density function of Fisher-Bayes classifier (in pink(*)), single MLP (in green(--)) and 
combined MLPs (in red(x)). 

Table 1: Comparison results of Fisher-Bayes, single MLP and combined MLPs. 

Low (mean/variance) ==> Better (performance/stability) 

Cases 
Distributions Fisher-Bayes Single MLP Combined MLPs 

Gaussian 1 Gaussian 2 Mean Variance Mean Variance Mean Variance 

a μ1=(1,..,1),∑1=I10 μ2=(2,..,2),∑2=I10 0.0577 0.0234 0.0682 0.0267 0.0630 0.0212 

b μ1=(1.5,..,1.5),∑1=I10 μ2=(2,..,2),∑2=I10 0.2142 0.0424 0.2231 0.0559 0.2217 0.0518 

c μ1=(0,..,0),∑1=I10 μ2=(2,..,2),∑2=2*I10 0.0044 0.0020 0.0138 0.0074 0.0104 0.0056 

d μ1=(1,..,1),∑1=2* I10 μ2=(1,..,1),∑2=3*I10 0.4253 0.1215 0.4093 0.1594 0.3834 0.1025 

e μ1=(0,..,0),∑1= I10 μ2=(0,..,0),∑2=2*I10 0.3730 0.0113 0.3119 0.0954 0.3015 0.0966 

f 

μ1=(0,0,0) 
∑1=[0.06 0 0  
         0 0.01 0 
         0 0 0.01 ] 

μ2=(0.1,0.1,0.1) 
∑2=[0.01 0 0  
          0 0.06 0 
          0 0 0.05 ] 

0.2347 0.0578 0.1630 0.0657 0.1623 0.0661 

5 APPLICATION TO 
HANDWRITTEN DIGIT 
RECOGNITION 

In this section, we study the handwritten digit 
recognition problem, which is still one of the most 
important topics in the automatic sorting of postal 
mails and checks’ registration. The database used to 
train and test the different classifiers described in 
this paper was selected from the MNIST database 
made of about 60.000 training samples and 10.000 
test ones. The images resolution is 28x28 pixels.  
     For  the   training  and   test   sets,   we  select 

randomly, from the MNIST training and test sets 
respectively, single digit images (the both sets 
contain 1000 images for the 10 digit classes). 
Random sampling images are shown in Fig.3. 
 

 

Figure 3: Random sample images of MNIST database. 
(wordpress). 

(a) (b) (c) 

(d) (e) (f) 
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The most difficult step in handwritten digit 
recognition is to choose the suitable features.  The 
chosen features must necessarily verify a non-
exhaustive set of criteria such as stability, 
completeness, fast computation, powerful 
discrimination and invariance under the geometrical 
transformations. The invariant descriptors family 
proposed by Ghorbel in (Ghorbel, 1998) satisfies 
the various criteria cited above. Thus, each image 
will be described by this type of descriptor. We 
select a high descriptors size (D = 14).  

The principal goal of the train set is to fix the 
parameters of the optimal NN model for both 
single and combined multilayer perceptron. Thus, 
we have used two single MLPs with three layers 
having, respectively, 14, 12 and 10 neurons. We 
intend to compare the classifiers stability by 
evaluating their respective performances for 100 
times using the k-folds cross validation algorithm 
(k=10 in our study). We use this algorithm from the 
MNIST test set to select the test sets (N=1000 
images for each class).  

With these sets, we calculate the misclassification 
rate (MCR) of each classifier. 

Figure 4 shows the classifiers error rate 
probability densities estimated using the kernel-
diffeomorphism semi-bounded Plug-in algorithm 
for Ghorbel descriptors. In table 3, we summarize 
the MCR means and variances obtained for the two 
types of descriptors using the two single classifiers 
and the combined one. The results show the 
performance and stability of the combined MLP 
against the two single classifiers. Thus, we can 
approve that the stability and performance of the 
MLP increases with the parallel combination 
approach.  

6 CONCLUSIONS 

This paper provided a novel approach to comparing 
single and combined neural networks. This new 
criterion is performed by using a new variant of the 
kernel-diffeomorphism semi-bounded Plug-in 
algorithm. 

 

Figure 4:  Error rate probability density function of single MLP1 (in blue(-.)), single MLP2 (in green(--)) and combined 
MLPs (in red(x)) for Ghorbel descriptors. 

Table 2: Comparison results of the single and combined MLPs on the MNIST database for Ghorbel descriptors 

Low (mean/variance) ==> Better (performance/stability) 

Digit classes 
MLP1 MLP2 Combined MLPs 

Mean Variance Mean Variance Mean Variance
a (2 and 5) 0.1470 0.5779 0.1415 0.5197 0.1185 0.4741 
b (4 and 7) 0.0470 0.2007 0.0480 0.2170 0.0345 0.1466 
c (6 and 9) 0.1240 0.4437 0.1195 0.4740 0.1030 0.4005 
d (0,1,2 and 3) 0.0567 0.1116 0.0560 0.1098 0.0470 0.0914 
e (4,5,6 and 7) 0.1495 0.2996 0.1493 0.3095 0.1375 0.2758 
f (0..9) 0.2880 0.1983 0.2824 0.2029 0.2655 0.1884 

(a) (b)

(d) 

(c) 

(e) (f) 
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The comparative study demonstrated that the 
statistical classifier is more stable than the neural 
networks. However, the combination approach of 
NN showed improvements in its performance and 
stability. 

Future works will be directed towards the 
stability evaluation of other classifiers such as 
support vector machine and CART decision trees. 
Another interesting point would be also to test other 
classifiers combination strategies. 
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