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Abstract: As the world population grows, recent climatic changes seem to bring powerful storms to populated areas. 
The impact of these storms on utility services is devastating. Hurricane Sandy is a recent example of the 
enormous damages that storms can inflict on infrastructure, society, and the economy. Quick response to 
these emergencies represents a big challenge to electric power utilities. Traditionally utilities develop 
preparedness plans for storm emergency situations based on the experience of utility experts and with 
limited use of historical data. With the advent of the Smart Grid, utilities are incorporating automation and 
sensing technologies in their grids and operation systems. This greatly increases the amount of data 
collected during normal and storm conditions. These data, when complemented with data from weather 
stations, storm forecasting systems, and online social media, can be used in analyses for enhancing storm 
preparedness for utilities. This paper presents a data analytics approach that uses real-world historical data 
to help utilities in storm damage projection. Preliminary results from the analysis are also included. 

1 INTRODUCTION 

A 2012 Edison Electric Institute reliability report 
(Wang, 2012) shows that bad weather contributed to 
67% of power outages time and that most damage 
after a big storm is in the power distribution lines 
and equipment. Hurricanes, tropical storms, and 
summer storms cause the majority of power outages. 
The report identifies that winter storms tend to have 
durations equal or greater than many of the summer 
storm events. Overhead power lines are typically the 
most vulnerable to storms. Although it seems that 
underground facilities may be less prone to major 
outage events, many underground facilities are also 
affected by major storms, since most existing 
underground facilities are supplied from overhead 
sections of the grid. Therefore, any event causing an 
overhead outage will also cause outages on sections 
of underground facilities. In the case of flooding, 
underground facilities are prone to severe damages. 

Power utilities in the US face enormous 
challenges when responding to storms. Utilities have 
storm planning procedures that address different 
stages of storm preparedness. These stages include 
cyclic storm planning, storm damage projection, in-

storm analysis, post-storm assessment, post-storm 
restoration, and grid hardening. Utilities have outage 
management personnel who often have worked for 
years in these areas. Decisions on storms are 
typically made based on experts’ heuristic 
knowledge. Although utilities are using technologies 
such as outage management systems (OMS), 
geographic information systems (GIS), supervisory 
control data acquisition (SCADA) systems, and 
automated metering reading systems, there is still a 
wealth of data generated by these systems and other 
sources that utilities can use to be more proactive in 
addressing each of the stages of storm damage 
preparedness. This paper presents two examples of 
how data analytics can be used by utilities to become 
more proactive in the storm damage projection and 
in-storm analysis stages. The examples presented 
here represent just a “foretaste” of what is possible 
to achieve in this field. Section 2 discusses some of 
the data sources available today that can be used to 
develop models for storm planning. Section 3 and 4 
present data sources and a machine learning 
approach and initial results that address the storm 
damage projection. Section 5 presents initial results 
and a machine learning approach that utilizes on-line 
social media to follow the evolution of a storm. 
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Section 6 presents conclusions and future work that 
authors are pursuing in this field. 

2 DATA ANALYSIS APPROACH 

Utilities face difficult challenges regarding how to 
use available data for storm planning. First, the 
current available data are used primarily for tracking 
purposes and not for proactive storm planning. 
Second, the sources of data and data are 
heterogeneous in nature. Third, relying on data 
collected on past storms is challenging as no two 
storms are the same. These present a challenge when 
comparing storm-restoration performance of the past 
and present (Johnson, 2004). Another major data 
challenge is that utilities do not have a standardized 
method for collecting data on storm-restoration. 

In spite of these challenges the authors believe it 
is possible to demonstrate the potential predictive 
capabilities that machine learning models can 
provide with current data sources, imperfect as they 
may be. These data originates from heterogeneous 
sources and geographically dispersed environments. 
Primary data types available can be classified as 
static structured and unstructured historical data and 
dynamic real-time structured and unstructured data. 
Static data can be used to develop machine learning 
models while dynamic data can be used by trained 
models to analyse storm situations in near real-time. 
Static structured historical data includes GIS and 
grid topology, storm data, grid damage, OMS data, 
work management systems, work flow management 
with power restoration actions, grid intelligent 
electronic device (IED) data, vegetation and terrain, 
and transmission and generation data. Static 
unstructured historical data includes on-line social 
networks historical data, historical multi-media 
storm damage data, and unstructured damage 
reports. Dynamic real-time structured data includes 
weather feeds, grid sensor feeds, real-time OMS 
data, emergency response data, SCADA data, phasor 
measurement unit data, 61850 GOOSE data, 
network management and fault data, meter data, and 
IED data. Dynamic real-time unstructured data 
includes real-time OMS data, drones or robotic 
systems data, multi-media data, and repair crew 
report. 

3 THE DATA 

Storm damage projection refers to the use of

prediction methods to project the severity and 
locations of damages, resource needs and time for 
power restoration after a storm has hit the power 
grid. Storm damage measurements include peak 
number of customers without power, outage 
duration, peak number of line restoration personnel, 
and equipment damage. Based on the projection, 
plans are made for positioning restoration resources, 
prioritizing repairs, and minimizing disruptions. 

3.1 Data Sources 

To develop machine learning models for storm 
damage projection we looked into several data 
sources public, proprietary, structured, unstructured, 
and acquired historical data related from an 
electrical Utility in the US, referred as Public Utility 
due to proprietary constraints. The sections below 
provide some details on the data used. 

3.1.1 Weather Data 

As a big source of public data, National Weather 
Service (NWS) has a large collection of historical 
weather data that can be downloaded through its 
website. The following two weather data sets are 
used in this study. 

Severe weather event database for the United 
States from 1950 to 2011. A severe weather event is 
identified by timestamps of event type, begin date 
and time and end date time, begin and end locations 
of latitude and longitude, and a magnitude of 
severity. Typical events for the selected region 
include hail, thunderstorm wind, flash flood, and 
tornado. The database contains over 900,000 records 
with a total of 1.1 GB. This data is used to identify 
severe storms in this study. 

Hourly weather data from over 10,000 weather 
stations all over the world from 2000 to 2012. The 
hourly weather include location of observing 
weather station in latitude and longitude, observation 
time, wind direction, wind speed, air temperature, 
sea level pressure, precipitation time and 
accumulation, etc. The total amount of data is over 
220 GB. In this study we used some of the weather 
conditions as inputs to the predictive models. The 
weather stations are selected within half a degree 
from the boundaries of a Public Utility. Although the 
number of stations is increased over the years, it is 
still very small if we want to have one station every 
few square miles. In this project we relied on data 
interpolation to derive weather condition for 
locations at fine granularity. 
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3.1.2 Power Outage Data 

The Public Utility has a total of 24,000 miles of 
distribution lines, 18,000 miles of which are 
overhead. It serves 830,000 customers, 600,000 of 
which are urban. OMS data related to historical 
storms in the geographic region of the Public Utility 
is over 2 GB and contains: (1) outage events 
identified by start time and end time, location in 
latitude and longitude, and the particular asset 
caused the event; (2) asset information including 
asset location; (3) customer information and priority 
level; and (4) crew information containing the crew 
type and contact information. 

3.1.3 Social Media Data 

Social media plays an increasingly important role in 
many aspects of our society. Data generated by 
utility’s customers using social media provides more 
insights into outages and their locations faster.  We 
explored social media data as unstructured public 
data from Twitter. Sample data of 10,000 tweets was 
downloaded using the Twitter API. An important 
consideration is that over 90% of messages do not 
contain geo-location information. Hence, our 
research is focused on determining the geo-location 
based on the contents of the message. 

3.2 Data Preparation 

We use several software tools in this project for data 
processing, modelling, and visualization. These tools 
include: (a) R is chosen as the main data analytics 
tool for data pre-processing and data mining 
algorithms. Visualization is also conducted using R’s 
map and plot functions; (b) Google Earth is used for 
visualizing weather information as shown in Figure 
1; (c) Visual Studio is used to write C++ program for 
processing the weather data; (d) Oracle SQL 
Developer is used to write queries for extracting data 
from the OMS system into files. 
 

 
Figure 1: Weather station locations in Google Earth. 

 

3.3 Data Selection 

We use the tools described above to select the 
datasets for building machine learning models. Our 
selection criteria are largely based on the availability 
and quality of the data. 

The OMS dataset contains outage data from 
March 2003 to September 2010. The plot in R of all 
outages between 2003 and 2010 overlaying on the 
total equipment in the Public Utility service territory 
is shown in Figure 2. The blue points denote 
equipment and the red points denote outages. 
According to a Public Utility expert, the three 
months of June, July, and August each year are the 
summer storm season, when utilities need to be 
ready for storm restoration activities. 

 

 

Figure 2: Locations of outages from 2003 to 2010 in the 
Public Utility service territory. 

In the storm database, the number of weather 
events per month confirms that summer months are 
usually the time where severe weather events occur 
in the Public Utility territory. Storms include hail, 
thunderstorm wind, flash flood, flood, and tornado, 
where thunderstorms are the top event although hail 
occurs more frequently. 

3.4 Data Pre-Processing 

OMS data is processed in Oracle database using 
SQL queries and working with domain experts.  

The pre-processing of the hourly weather data 
from NWS is built from scratch. The original hourly 
weather data is formatted as flat files of records in 
ASCII characters. We parse the files to extract 
weather measurements into columns and save as 
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comma-separated values. We also collect the 
associated weather station locations in latitude and 
longitude. Then we select weather stations within at 
most 0.5 degree in latitude and longitude away from 
the boundaries of the Public Utility’s service 
territory. Only the weather measurements from those 
stations are selected for further use. There were 20-
40 weather stations from 2003 to 2012 that meet this 
criterion, varied by year. 

The bounding box of the Public Utility’s territory 
is roughly 220 by 160 square miles. We divide it 
into a grid of 1.5 by 1 mile cells which give us 160 
by 160 cells. The cell size is small enough to be 
useful for location identification of outages. We also 
need weather measurements for each cell but since 
there are more cells than weather stations, we need 
to extrapolate weather information for the cells.  

Kriging is the most widely used technique in 
geo-statistics to interpolate data and it is a very good 
interpolation method that can capture the true spatial 
variability of temperature variation (Holdaway, 
1996).  Kriging can handle the situations inherent in 
a precipitation field and produce the best results for 
interpolating precipitation (Earls and Dixon, 2007).  
Kriging is a form of linear interpolation where the 
value of a field fa in a position r0 is interpolated from 
N neighboring values f0(ri), i = 1 … N in its region 
of influence is given by 





N

i
iia rfrf

1
0 )()(   

where 
i   are a set of weights. 

To determine the weights, we use a variogram to 
write the cost function in terms of the mean square 
error. The weights used in Kriging are the ones that 
minimize the cost function under certain constraints. 
We use a library provided in R that contains Kriging 
method. In this study we are only interested in 
severe storms that cause big damages to the utility. 
To identify severe storms, we manually go through 
all the outages in the three months of summer for 
years 2005 to 2010 and identify severe storms date 
and time based on the following criteria: (1) number 
of outages in the hour; (2) number of customers lost 
electricity in the hour; (3) average number of 
customers per outage in the hour; and (4) 
accumulated number of customers in the next 24 
hours. The top 42 storms are selected. For each 
storm, we select the hour that is the peak for most of 
the criteria. 

4 DATA ANALYTICS MODEL 

Figure 3 shows the storm damage projection data

analytic model developed in this research. We use 
historical weather, outage data, and asset data as 
primary inputs to the machine learning engine. The 
outage projection model created by the machine 
learning engine takes in weather forecast and 
generates outage projections as output. In the future, 
other environmental data may be incorporated as 
inputs to the model. 

4.1 Models and Model Variables 

The target of the outage projection model is to 
predict outage locations in terms of the grid cells and 
outage scale in terms of the number of outages 
occurred in the next 24 hours for each cell. 
 

 

Figure 3: Outage forecasting framework. 

The selection of variables for the model is to find 
the subset of all the input variables to build the 
model that will perform with the best accuracy 
against the test data. The four variables used as 
inputs to the model are: (1) wind speed; (2) wind 
direction; (3) precipitation amount; and (4) air 
temperature. To model the nonlinearities in the data, 
we add the 20th, 40th, 60th, and 80th quintiles of 
measurements of wind speed, precipitation amount, 
and air temperature. For this, we use a B-spline 
function called ns in R. 

For each of the 42 severe storms selected, we 
build analytical models to predict number of outages 
for each grid cell. We use data from 2005 to 2010 to 
build the models. First, we partition the data into two 
sets, one for training, the other one for test. Data 
used for training are records from 2005 to 2009; data 
for test is the 2010 data. Test data is dedicated to test 
alone and not used in any way for fine-tuning the 
trained models. We build models using generalized 
linear models (GLM) and neural networks (NN). 
Neural network models outperform generalized 
linear models in accuracy of predicting the location 
and scale. 
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4.2 Results 

The performance and accuracy/precision of the 
GLM and NN models are presented and compared in 
this section. NN models outperform the GLM 
models in all the error metrics, but the computing 
time of the NN is greater than GLM. We use the 
following metrics to evaluate the performance. For 
the outage locations, we use the Absolute Error (AE) 
of all the cells, defined as the following. 
 

|Pr|
1

ii

n

i
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where TrueOutagei is the number of outages 
occurred in cell i, PredictedOutagei is the number of 
predicted outages in cell i, and n is the number of 
cells. 

For the outage scale, we use the Root Mean 
Square Error (RMSE) for all the cells, defined as the 
following. 
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where TrueOutagei, PredictedOutagei, and n are the 
same as defined above. 

The outputs of the models are predicted number 
of outages for all the cells. We plot them in R on a 
map of the Public Utility territory. An example is 
shown in Figure 4. The color associated with each 
cell denotes the number of outages in the following 
way: Black=1, Red=2, Green=3, Blue=4, Cyan=5, 
Magenta=6, Yellow=7, and Gray=8. The showed 
results are from an NN model. 

 

 
Figure 4: Plots of true and predicted outages. 

The results of GLM and NN are shown in Tables 
1 and 2 respectively. For the NN models, the 
predicted numbers better resembled the true outages. 
The models captured the characteristics of individual 
storms better. 

The columns in the tables include: Storm Date;

Num outages (occurred in time period); Num Pred 
Outages; Num Outage Locs (the total number of 
predicted outages); Num Pred Locs (the total 
number of cells predicted to have outage > 0); Num 
Pred Locs>0.5 (the total number of cells predicted to 
have outage > 0.5); Num True|Pred Locs: (total 
number of cells that outages occurred or were 
predicted); Num True&Pred Locs (total number of 
cells that outages both occurred and were predicted); 
RMSE of True Locations (measures how the 
prediction deviates from the true); RMSE of 
True&Pred Locs (measures how the models perform 
for the cells that are predicted and happened). 

Comparison of the performance of GLM and NN 
shows that NN outperform GLM in all metrics. This 
agrees with what we have discussed previously, that 
NN tends to have better accuracy than other 
regression models. 

Table 1: Prediction results of GLM. 

Storm Date

Num 

Outages 

Num Pred 

Outages 

Num 

Outage 

Locs 

Num Pred 

Locs 

Num Pred 

Locs>0.5 

Num True|Pred 

Locs 

Num True&Pred 

Locs

RMSE of True 

Locations

RMSE of 

True&Pred Locs

06‐02‐2010_5hr 121 157.659 107 652 98 668 91 1.19482 0.4781964

06‐08‐2010_7hr 90 148.3046 77 649 94 660 66 1.341822 0.4583193

06‐12‐2010_9hr 127 162.8983 112 732 102 736 108 0.9677328 0.3775075

06‐13‐2010_23hr 262 185.5746 193 715 122 731 177 1.226589 0.6302588

06‐16‐2010_18hr 133 176.9472 114 754 113 759 109 1.092211 0.4232899

06‐18‐2010_20hr 271 168.5292 193 672 99 719 146 1.449487 0.7509803

06‐19‐2010_11hr 308 153.1811 213 680 87 721 172 1.559368 0.8475605

06‐20‐2010_23hr 145 166.6354 111 692 95 709 94 1.51938 0.6011804

06‐23‐2010_16hr 63 161.1181 59 663 94 671 51 1.34572 0.3990428

07‐11‐2010_9hr 325 166.4136 161 701 101 715 147 3.169998 1.504246

07‐14‐2010_22hr 134 164.476 104 676 101 702 78 1.469797 0.5657253

07‐16‐2010_17hr 151 160.0669 112 697 96 709 100 1.489612 0.592051

07‐20‐2010_4hr 164 183.739 129 762 108 774 117 1.181355 0.4822863

07‐24‐2010_17hr 120 149.4541 97 617 101 636 78 1.404506 0.5485054

08‐13‐2010_19hr 196 173.0979 151 707 109 729 129 1.282013 0.583468

08‐20‐2010_13hr 451 175.9459 305 776 111 817 264 1.490663 0.91079

08‐31‐2010_19hr 164 167.0613 135 661 105 689 107 1.292527 0.5721327  

Table 2: Prediction results of NN. 

Storm Date

Num 

Outages 

Num Pred 

Outages 

Num 

Outage 

Locs 

Num Pred 

Locs 

Num Pred 

Locs>0.5 

Num True|Pred 

Locs 

Num True&Pred 

Locs

RMSE of True 

Locations

RMSE of 

True&Pred Locs

06‐02‐2010_5hr 121 136.5601 107 609 96 614 102 0.6609009 0.2758951

06‐08‐2010_7hr 90 113.75 77 633 70 636 74 0.7681333 0.267272

06‐12‐2010_9hr 127 148.5843 112 628 107 630 110 0.5620699 0.2369895

06‐13‐2010_23hr 262 285.1845 193 742 188 747 188 0.8584513 0.436349

06‐16‐2010_18hr 133 185.6865 114 640 111 642 112 1.074938 0.4529689

06‐18‐2010_20hr 271 255.0522 193 645 178 647 191 0.9646558 0.5268644

06‐19‐2010_11hr 308 206.2307 213 553 184 554 212 1.018775 0.6317031

06‐20‐2010_23hr 145 146.7086 111 621 90 630 102 1.107528 0.4648856

06‐23‐2010_16hr 63 81.94394 59 505 57 506 58 0.6240312 0.213087

07‐11‐2010_9hr 325 195.1761 161 676 152 680 157 2.853286 1.388365

07‐14‐2010_22hr 134 141.7851 104 606 86 613 97 1.055211 0.434636

07‐16‐2010_17hr 151 166.6915 112 649 109 651 110 1.160479 0.4813444

07‐20‐2010_4hr 164 155.2223 129 592 115 598 123 0.8200834 0.3808924

07‐24‐2010_17hr 120 93.92097 97 443 86 447 93 0.8842315 0.411906

08‐13‐2010_19hr 196 182.8227 151 629 137 636 144 0.873698 0.4257172

08‐20‐2010_13hr 451 279.8458 305 620 242 646 279 1.166685 0.8016547

08‐31‐2010_19hr 164 173.6378 135 657 117 668 124 0.916504 0.412015  

5 ANALYSING SOCIAL MEDIA 

This section presents preliminary results on the 
development of machine learning algorithms that 
can be used to analyse social media postings as a 
storm hits a geographic region of interest. People’s 
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perceptions about events they encounter are often 
embodied in words, terms, and phrases that form 
their spoken language as the ones found in social 
media posts. These perceptions may be influenced 
by inherent regional characteristics and they are 
further modulated by specific local features or a 
situation surrounding a person. Doran et al. (2013) 
developed a methodology, based on a probabilistic 
language model that extracts perceptions from 
online social media postings that may be relevant to 
assist utilities in near real-time identifying specific 
locations where power outages have occurred. 
Authors suggest that the analyses of these 
perceptions will be a useful add-on to physical 
sensors deployed in the smart grid and current 
analytic methods that utilities have at their 
disposition. On-the-ground perceptions from humans 
as they experience a storm can provide insights 
which may allow utilities to quickly evolve their 
response plan. New York City faced two major 
storms during our data collection period: hurricane 
force winds during a January rain storm, and a snow 
storm that piled on over a foot of heavy, wet snow. 
Both these storms caused scattered citywide power 
outages due to heavy winds (Johnson, 2004) and the 
weight of melting snow on trees and power lines 
over subsequent days. Since outage maps during 
these events are unavailable, regions with the 
perception “power outage” are identified utilizing 
the data analytics method presented in Doran et al. 
(2013) in Figure 5a. The locations of these 
perceptions reflect the scattered nature of the 
reported outages. Physical sensors in the smart grid 
can identify locations of outages, but they cannot 
explain their cause. A possible hypothesis is that 
heavy winds and wet snow led to downed trees and 
branches causing power outages. To confirm this 
hypothesis, the language models developed in Doran 
et al. (2013) were queried with the phrase “damaged 
tree”. The heat map in Figure 5b shows that people 
discuss damaged trees in sub-regions that either 
 

 

 
Figures 5a and 5b: Storm response perceptions. 

overlap or are adjacent to those where power has 
been lost. For example, the perceptions of power 
outage and damaged trees are strongly exhibited 
near SoHo and close to Sara Roosevelt Park. With 
this supplementary information at hand, a city can 
adjust its storm response to position workers and 
machines to clear branches and other debris caused 
by damaged trees. 

6 CONCLUSIONS 

As power transmission and distribution grids 
expand, a larger number of equipment and power 
lines are exposed to strong storm conditions and 
potentially to catastrophic damages. Utilities have 
limited tools to proactively address the damages that 
storms such as hurricanes and ice storms can cause 
to the grid. With the advent of the smart grid, 
predictive storm damage models can be developed 
using a rich variety and quantity of data generated 
by cheap and accurate sensing technologies, geo-
spatial databases, and on-line social media. This 
paper presents a data analytics framework and two 
experiments on how utilities can use these data to 
become more proactive in storm planning. 
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