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Abstract: During the past years, malicious PDF files have become a serious threat for the security of modern computer
systems. They are characterized by a complex structure and their variety is considerably high. Several so-
lutions have been academically developed to mitigate such attacks. However, they leveraged on information
that were extracted from either only the structure or the content of the PDF file. This creates problems when
trying to detect non-Javascript or targeted attacks. In this paper, we present a novel machine learning system
for the automatic detection of malicious PDF documents. It extracts information from both the structure and
the content of the PDF file, and it features an advanced parsing mechanism. In this way, it is possible to detect
a wide variety of attacks, including non-Javascript and parsing-based ones. Moreover, with a careful choice of
the learning algorithm, our approach provides a significantly higher accuracy compared to other static analysis
techniques, especially in the presence of adversarial malware manipulation.

1 INTRODUCTION

Malicious PDF files have become a well known threat
during the past years, and they still constitute a very
effective weapon for cybercriminals, as new exploits
have recently been released. This is due to the fact
that, in spite of the efforts of software vendors such
as Adobe, PDF software is often vulnerable to zero-
day attacks. In particular, such attacks exploit the in-
tegration of the PDF file format with third-party tech-
nologies (e.g., Javascript or Flash), thus making the
creation of ad-hoc patches a challenging task. More-
over, due to the architectural complexity of PDF files
and given the wide variety of code obfuscation tech-
niques employed by miscreants, it is hard for antivirus
vendors to provide protection against novel or even
known attacks (Symantec, 2014).

Attackers mainly adopt Javascript code to exploit
PDF vulnerabilities, by leveraging on well-known
techniques, such as Return Oriented Programming
and Heap Spraying (Buchanan et al., 2008; Ratana-
worabhan et al., 2009). However, there have been
cases in which ActionScript code has been employed.
For instance, CVE 2010-3654 exploits a vulnerability
in Adobe Flash Player using a “Just in Time Spray-
ing” approach (Bania, 2010). In order to evade detec-
tion, PDF attacks may also resort to advanced encryp-
tion methods for hiding malicious code or malicious

embedded files (Adobe, 2008).
Signature-based approaches adopted by current

anti-malware systems, based on heuristics or string
matching, are not able to cope with novel attacks,
and have proved to be weak against polymorphic
ones (Esparza, 2011). Aiming at addressing such
weaknesses, recent research works mainly focused on
two different directions: first, they focused on de-
tecting malicious Javascript code within PDF files,
through both static and dynamic (behavioral) anal-
ysis (Cova et al., 2010; Laskov and Šrndić, 2011;
Tzermias et al., 2011). Then, they leveraged on the
external structure of the PDF file (i.e., PDF objects)
in order to detect malicious PDF files regardless of
the attack or exploit they carried (Maiorca et al.,
2012; Smutz and Stavrou, 2012; Šrndić and Laskov,
2013). The latter approaches have proved to be gen-
erally more effective than the first ones, since they
also allowed for the detection of non-Javascript at-
tacks. However, further research showed that they
are extremely vulnerable against deliberate attacks
(Maiorca et al., 2013; Šrndic and Laskov, 2014). For
this reason, research has focused again on the detec-
tion of malicious Javascript code (Corona et al., 2014;
Liu et al., 2014) and on hardening security through the
adoption of a sandbox (Maass et al., 2014).

In this paper, we present a novel machine
learning-based approach to the detection of malicious
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PDF files that leverages on information extracted both
from the structure and the content of the PDF file.
On one hand, we represent the information about the
structure by analyzing: a) general properties of the
PDF file structure and b) structural properties of the
PDF objects in terms of keywords. On the other hand,
we analyze content-based information such as: a)
malformed objects, streams and codes, b) known vul-
nerabilities in Javascript code and c) embedded con-
tents such as other PDF files. To perform these oper-
ations, and to address parsing-related vulnerabilities
presented in previous works, we leverage on two well-
known tools for PDF analysis, namely, PeePDF1 and
Origami2. Such approach allows for an extremely ac-
curate detection of PDF malware deployed in the wild
(including non-Javascript attacks and recent vulnera-
bilities) with very low false positives. At the same
time, with a careful choice of the learning algorithm
(whose role will be discussed in detail), it provides a
significant improvement on detecting targeted attacks
in comparison to the other state of the art approaches.

Contributions

The contributions made by this work can be summa-
rized into four points:
� We develop a novel, machine learning based ap-

proach to the detection of malicious PDF files that
leverages on information extracted from both the
structure and the content of a PDF file;

� We experimentally evaluate the performances of
our system on a dataset that contains a wide num-
ber of PDF-related vulnerabilities. We compare
such performances to the ones of the most impor-
tant, publicly available tools;

� We evaluate the robustness of our system against
automatic attacks and evasion attempts that have
proved to be extremely effective against public
available tools;

� We discuss the limits of our system and the role of
the learning algorithm in assessing its robustness.
In relation to that, we provide research guidelines
for future work.

Paper Structure

This paper is divided into six Sections beyond this
one. Section 2 provides an insight into the struc-
ture of the PDF files. Section 3 presents related
works on malicious PDF detection. Section 4 de-
scribes our methodology to the detection of malicious

1http://eternal-todo.com/tools/peepdf-pdf-analysis-tool
2http://esec-lab.sogeti.com/pages/origami

PDFs. Section 5 provides the experimental results.
Section 6 discusses the limits of our approach and
provides guidelines for future research work. Sec-
tion 7 provides conclusive remarks.

2 PDF FILE FORMAT

A PDF file is a hierarchy of objects logically con-
nected to each other. For the sake of the following
discussion, we will model the PDF file structure as
composed by four parts (Adobe, 2006):

� header: a line which gives information on the PDF
version used by the file.

� body: it is the main portion of the file, and con-
tains all the PDF objects.

� cross-reference table: it indicates the position of
every indirect3 object in memory.

� trailer: it gives relevant information about the root
object and number of revisions made to the docu-
ment.

Typically, a PDF file presents, in its body, a se-
quence of indirect objects, described by the expres-
sion ObjectNumber 0 obj. Each object consists of a
dictionary which defines, through a sequence of cou-
pled keywords (also called name objects) represented
by a /, the characteristics of the data inside the ob-
ject itself or in one of its references (e.g., in case of
an attack, the presence of malicious code through the
presence of the keyword /Javascript). Optionally,
an object might also include a stream, which contains
the object data that will be parsed by the reader and
visualized by the user (e.g., in case of an attack, the
code whose presence is signaled by the dictionary).
For more information on the PDF structure, please
check the PDF Reference (Adobe, 2006).

3 RELATED WORK

First approaches to malicious PDF detection proposed
static analysis on the raw (byte-level) document, by
means of n-gram analysis (Li et al., 2007; Shafiq
et al., 2008) and decision trees (Tabish et al., 2009).
However, these approaches were not really tailored
to PDF files, as they mainly targeted different file
formats, such as DOC, EXE, etc. Whereas such a
raw analysis may detect many malware “implemen-
tations” besides malicious PDFs, it may be quite easy

3In the PDF language, indirect means that the object can
be referenced by other objects.
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to evade it either by using modern obfuscation tech-
niques, such as AES encryption (Adobe, 2008), or
by resorting to different techniques to exploit vulner-
abilities, such as Return Oriented Programming, Heap
Spraying or JIT Spraying (Buchanan et al., 2008;
Ratanaworabhan et al., 2009; Bania, 2010).

To address the increasing complexity of PDF mal-
ware, subsequent works focused on the analysis of
embedded Javascript code. A number of solutions for
the detection of malicious Javascript code have been
proposed in the context of web security. For instance,
Jsand (Cova et al., 2010), Cujo (Rieck et al., 2010),
Zozzle (Curtsinger et al., 2011), Prophiler (Canali
et al., 2011) are well-known tools for the dynamic and
static analysis of Javascript code. These tools are of-
ten employed by systems designed to identify threats
embedded in different document formats.

Wepawet4, a framework for the analysis of web-
based threats, relies on JSand to analyze Javascript
code within PDF files. Jsand (Cova et al., 2010)
adopts HtmlUnit5, a Java-based browser simulator,
and Mozilla’s Rhino6 to extract behavioral features
related to the execution of Javascript code. A statisti-
cal classifier is trained on a representative number of
samples containing benign code, and malicious code
is spotted by detecting anomalous patterns (i.e., codes
that are significantly different to the ones the system
has been trained with).

A similar approach is adopted by MalOffice (En-
gleberth et al., 2009). MalOffice uses pdftk7 to ex-
tract Javascript code, and CWSandbox (Willems et al.,
2007) to analyze the code behavior: Classification is
carried out by a set of rules (CWSandbox has also been
used to classify general malware behavior (Rieck
et al., 2008)). MDScan (Tzermias et al., 2011) fol-
lows a different approach as malicious behavior is de-
tected through Nemu, a tool able to intercept memory-
injected shellcode. A very similar idea, but with
a different implementation, has been developed in
ShellOS (Snow et al., 2011).

Dynamic detection by executing Javascript code
in a virtual environment may be time consuming and
computationally expensive, and it is prone to eva-
sion by a clever attacker that leverages on differ-
ent implementations of the JavaScript engine used
by the PDF reader and by the code analyzer (Tzer-
mias et al., 2011). To reduce computational costs,
PJScan (Laskov and Šrndić, 2011) proposed a fully
static lexical analysis of Javascript code by training a
statistical classifier on malicious files.

4http://wepawet.iseclab.org/index.php
5http://htmlunit.sourceforge.net
6http://www.mozilla.org/rhino
7http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit

In 2012 and 2013, malicious PDF detectors that
base their detection on the structure of the PDF file,
without analyzing the embedded code, have been de-
veloped. To distinguish them from the previous ap-
proaches, we call them structural systems (Maiorca
et al., 2012; Smutz and Stavrou, 2012; Šrndić and
Laskov, 2013). Among these, PDFRate8 is the only
one publicly available. It is based on 202 features
extracted from both document metadata and structure
and it uses random forests as classification algorithm.
All these systems have been motivated by the need to
detect PDF malware that also featured different con-
tents than Javascript, such as Flash. The analysis of
the PDF structure allowed for a wider detection rate in
comparison to previous systems, without having the
need of looking for embedded code or trying to de-
obfuscate it. However, recent works (Maiorca et al.,
2013; Šrndic and Laskov, 2014) showed that such sys-
tems suffer from parsing problems and might be eas-
ily attackable.

Because of the evident weaknesses of structural
systems, research focused again on detecting mali-
cious Javascript code. New approaches either resorted
to discriminant API analysis (Corona et al., 2014) or
code instrumentation (Liu et al., 2014). An approach
to harden security when opening a PDF file by lever-
aging on sandboxing has also been proposed (Maass
et al., 2014).

4 PROPOSED DETECTION
APPROACH

As stated in Section 3, the vast majority of recent
works on malicious PDF detection focused on the
analysis of either the Javascript code or the PDF file
structure (structural systems). Such information is
usually processed by a machine learning system, i.e.,
it is converted into a vector of numbers (features) and
sent to a mathematical function (classifier or learner),
whose parameters have been tuned through a process
called training. Such training is performed by using
samples whose classes (benign or malicious) were al-
ready known.

However, systems developed until now suffer
from several weaknesses: on one hand, systems fo-
cused on Javascript cannot address other vulnerabili-
ties, such as the ones based on Flash (Maiorca et al.,
2012). On the other hand, structural systems resort
to information that can be easily manipulated by an
attacker in order to deceive the classifier (Smutz and
Stavrou, 2012; Maiorca et al., 2013).

8http://pdfrate.com/
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To overcome these weaknesses, we propose a new
machine learning-based approach, which extracts in-
formation both from the structure of the PDF file and
from its content. This method is purely static, as it
does not involve any dynamic simulation performed
by a PDF rendering engine.

Figure 1 shows the high-level architecture of our
system. To extract information, we created a parser
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PeePDF 
Parser 

Origami 

Content 
Information 

Object 
Structure 

General 
Structure 

Malicious Benign 

Feature Vector ( [x1, x2...] ) 

Extraction of Embedded PDF 

Figure 1: High-level architecture of our system.

that leverages on PeePDF and Origami.
These tools perform an in-depth analysis of

PDF files to highlight known exploits, suspicious
objects, or functions that are known to be po-
tentially malicious (for example, see vulnerability
CVE-2008-2992). Moreover, they will extract and an-
alyze as a separate sample any embedded PDF file.
We adopted these two tools as they provide a reli-
able parsing process compared to other ones, such
as PdfID, which naively analyzes the PDF file ignor-
ing its structural properties, thus allowing attackers to
perform easy manipulations (Maiorca et al., 2013).

Each PDF document will be represented by a vec-
tor composed by: a) 8 features related to the general
structure of the file, in terms of number of objects,
streams, etc.; b) A variable number of features (typ-
ically not more than 120) related to the structure of
the PDF objects, represented by the occurrence of
the most frequent keywords in the training dataset (its
number is variable as it depends on the training data);
c) 7 features related to the content of the PDF objects.
In particular, the objects are scanned for known vul-
nerabilities, malformed objects, etc.

The remaining of this Section is organized as fol-
lows. Section 4.1 provides a detailed description of

all the features that we extract to discriminate between
benign and malicious PDF files. Section 4.2 describes
and motivates the adopted classification algorithm.

4.1 Features

General Structure

We extract 8 structural features, which contain infor-
mation about: i) The size of the file; ii) The num-
ber of versions of the file; iii) The number of indi-
rect objects; iv) The number of streams; v) The num-
ber of compressed objects; vi) The number of object
streams9; vii) The number of X-ref streams10; viii)
The number of objects containing Javascript.

While these features may be considered as weakly
discriminant when singularly used, together they pro-
vide a good overview of the whole PDF structure. For
instance, from our experience, the size of malicious
PDFs (and their number of objects/streams) is often
smaller than the one of legitimate PDFs. This is some-
what reasonable, as malicious PDFs may not contain
text, and the smaller is the file size, the smaller is the
time needed to infect new victims. Likewise, object
and X-ref streams are usually employed to conceal
malicious objects inside the file, and compressed ob-
jects can include embedded contents, such as script-
ing code or other EXE/PDF files.

Object Structure

We extract the occurrence of the most characteris-
tic keywords defined in the PDF language. With the
term characteristic, we refer to keywords that have
appeared in our training dataset D with a frequency
that is higher of a threshold t. Other works, such as
(Šrndić and Laskov, 2013), extracted a similar thresh-
old by arbitrarily deciding a reasonable value for it.
Our aim, though, is obtaining t in a more systematic
way, so that it better relates to the data in D. In order
to do so, we:

1. Split D into Dm and Dl , where the first one only
contains malicious files and the second one only
legitimate files. Obviously, D = Dm[Dl ;

2. For each of the two datasets, and for each keyword
kn of the PDF language, we define: fn = F(kn),
where fn is the number of samples of each dataset
in which kn appears at least once;

3. For each dataset, we find the frequency threshold
value t by means of a k-means clustering algo-

9Streams containing other objects.
10A new typology of cross-reference table introduced by

recent PDF specification.
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rithm (MacQueen, 1967) with k=2 clusters, com-
puted through an euclidean distance. In order to
establish with more precision the sizes of the two
clusters, the algorithm has been tested five times
with different starting points11. In this way, key-
words will be split into two groups basing on their
fn value. Thus, for each dataset, we get the set of
keywords K defined as: K = f(kn)j fn > tg There-
fore, for Dm we will obtain a set Km and for Dl a
set Kl ;

4. We will get the final set of characteristic keywords
Kt by: Kt = Km[Kl .

The number of keywords in Kt obviously depends
on the training data used and on the result of the clus-
tering. The reason why we considered characteristic
keywords, along with their occurrence, is that their
presence is often associated to specific actions per-
formed by the file. For example /Font is a charac-
teristic keyword in benign files. This is because it is
usually associated to the presence of a specific font in
the file. If this keyword occurs a lot inside a sample,
it means that the PDF renderer might display differ-
ent fonts, which is an expected behavior in legitimate
samples. Selecting the most characteristic keywords
also helps to exclude other ones that do not respect
the PDF language specifications. Including the occur-
rence of non-characteristic or extraneous keywords in
the feature set might allow an attacker to easily ma-
nipulate the PDF features without altering its func-
tionality, thus increasing the possibility of an evasion
of the detection system.

Content-based Properties

We verify if a PDF file is accepted or rejected by ei-
ther PeePDF or Origami. There are two features asso-
ciated to this information, one for PeePDF and one for
Origami. The two tools perform a non-forced scan12.
If one of these tools rejects the files, it means that
their might be suspicious elements such as the exe-
cution of code, malformed or incorrect x-ref tables,
corrupted headers, etc. It is worth noting that such
elements might as well be present in legitimate sam-
ples. Therefore, PeePDF and Origami cannot be used
as detectors of maliciousness, as they would generate
too many false positives.

There are also 5 features that represent informa-
tion about malformed a) objects (for example, when

11The seed value has been set to the de-
fault value indicated here: http://weka. source-
forge.net/doc.dev/weka/clusterers/SimpleKMeans.html.

12A scan that is stopped if it finds anomalies in the files.
This definition is valid for PeePDF; in Origami, such scan
is defined as standard mode.

scripting codes are entirely injected inside a PDF dic-
tionary), b) streams, c) actions (using keywords not
proper of the PDF language), d) code (for example,
using functions related to known vulnerabilities) and
e) compression filters (the way in which data like im-
ages or code are compressed in the file to reduce the
file size). This is done as malicious PDFs often in-
clude objects that do not strictly follow the PDF lan-
guage specifications. However, such objects are nev-
ertheless parsed by the reader, which is quite flexible
from this respect.

4.2 Classification

We adopted a supervised learning approach, i.e., both
benign and malicious documents are used for training,
and we resorted to decision trees classifiers (Quin-
lan, 1996). Decision tree are capable of natively han-
dling the heterogeneous nature of features described
in Section 4.1, and they have exhibited excellent clas-
sification performances in previous works (Maiorca
et al., 2012; Smutz and Stavrou, 2012; Corona et al.,
2014). In particular, we decided to resort to the
Adaptive Boosting (AdaBoost) algorithm (Freund and
Schapire, 1995). Such algorithm linearly combines
a set of weak learners, each of them with a specific
weight, to produce a more accurate classifier. As
weak learner, we define a low-complexity classifi-
cation algorithm that usually yields results that are
better than random guessing. The weights of each
weak learner depend, obviously, on the ones of the
training instances with which each learner is trained.
Weak learners can be, for example, decision stumps
(i.e., decision trees with only one leaf) or simple de-
cision trees (J48). Choosing an ensemble of trees
also allows for more robustness against evasion at-
tacks compared to a single tree, as an attacker has to
gather knowledge of multiple tree-models in order to
perform an optimal attack (i.e., getting to know which
features are most discriminant for each tree of the en-
semble).

5 EXPERIMENTAL EVALUATION

In this Section, we first describe the dataset employed
in our experiments, as well as the training and test
methodology for the performance evaluation. Then,
we provide two experiments. The first one compares
the general performances of our approach, in terms
of detection rate and false positives, with the ones of
the other state of the art research. In particular, we
refer to PJScan, Wepawet, and PDFRate, as they can
be considered the three most important and publicly
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available research tools for malicious PDF files de-
tection. The second experiment focuses on testing our
approach against reverse mimicry attacks (Maiorca
et al., 2013), which have proved to be tremendously
effective structural systems. In order to concretely
validate our approach, we produce a high number of
real, working attack samples, and we test them against
our approach. Finally, we also provide a performance
comparison with the other state of the art tools.

Dataset

We conducted our experiments using real and up-to-
date samples of both benign and malicious PDFs in-
the-wild. Overall, we collected 11,138 unique mali-
cious samples from Contagio 13, a well-known rep-
utable repository which provides information about
latest PDF attacks and vulnerabilities. Moreover, we
randomly collected 9,890 samples of benign PDFs,
by means of the public Yahoo search engine API
(http://search.yahoo.com). We kept a balance be-
tween malicious and benign files for the purpose of
supervised training.

For the second experiment, we created 500 at-
tack samples variants for each of the three attacks de-
scribed in our previous work (Maiorca et al., 2013)
Javascript Injection, EXE Embedding and PDF Em-
bedding. Hence, in total we generated 1500 real at-
tack samples.

Training and Test Methodology

For the first experiment, in order to thoroughly eval-
uate the generalization capability of our tool, we ran-
domly split our data into two disjunct datasets:

� A training set composed by 11,944 files, sub-
divided into 5,993 malicious and 5,951 benign
files. This set is used to train the classifier.

� A test set composed by 9,084 files, subdivided
into 5,145 malicious and 3,939 benign files. This
set is used to evaluate the accuracy of the classi-
fier.

This process is repeated three times: we compute the
mean and the standard deviation of the True Positives
(TP) and False Positives (FP), over such three repli-
cas. As a unique measure of the classification quality
we also employ the so-called Matthews Correlation
Coefficient (MCC) (Baldi et al., 2000), defined as:

MCC =
T P �T N�FP �FNp

(T P+FP)(T P+FN)(T N +FP)(T N +FN)

13http://contagiodump.blogspot.it

where T N and FN refer to the number of true and
false negatives, respectively.

In our experiments, we trained an AdaBoost en-
semble of J48 trees, whose parameters have been op-
timized with a 10-fold cross validation (Freund and
Schapire, 1995). We chose this kind of classifier en-
semble as it showed the best accuracy compared to
single classifiers (we experimented with random for-
est and SVM) or other ensemble techniques on our
dataset. For the second experiment, we adopted the
same training sets of the first experiment to train the
system but, as a test set, we adopted the 1500 attack
samples described before.

5.1 Experiment 1: General
Performances

This Section provides a comparison between our ap-
proach and three recent research tools for the de-
tection of malicious PDFs: Wepawet, PJScan and
PDFRate (see Section 3).

Since PJScan adopts a One Class SVM, no be-
nign samples have been used for training the system.
We trained PJScan with the same malicious samples
used to train our system. PDFRate is trained with
a balanced dataset of 5000 benign and 5000 mali-
cious samples, the latter collected from Contagio. It
is worth noting that PDFRate is available with three
different instances of the same classifier (random-
forests), that only differ for the dataset on which they
have been trained. For the sake of providing a fair
comparison with our system, we considered only the
one trained on the Contagio dataset, as Contagio is
the same source from which we collected malware
samples. The training size of Wepawet is unfortu-
nately unknown14. We want to stress that we tried to
make the fairest comparison possible, given the fact
that it was not possible to train PDFRate and Wepawet,
being them online services, and that the training set of
the latter is unknown. Even though a perfect compar-
ison would require the same exact training set for all
the systems, we believe that, in this situation, this is
the best possible compromise to provide useful infor-
mation about their performances.

Table 1 shows the results of a direct comparison
between our approach and the other tools. For each
system, we show the average percentage of true pos-
itives (TP), false positives (FP), the related standard
deviation within parentheses, and the MCC coeffi-
cient computed on mean values for TP and FP. It must
be observed that Wepawet was not able to analyze all

14Being Wepawet and PDFRate online services, we could
not train such systems with our own samples.
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Table 1: Experimental comparison between our approach
and other academic tools.

System TP(%) FP(%) MCC

Ours 99.805 (�:089) .068 (�:054) .997
PDFRate 99.380 (�:085) .071 (�:056) .992
Wepawet 88.921 (�:331) .032 (�:012) .881
PJScan 80.165 (�1:979) .013 (�:012) .798

the samples. In particular, it analyzed 5,091 mali-
cious files and 3,883 benign files. This is due to
some parsing problems that undermine the system, as
it does not fully implement all the Adobe specifica-
tions and only simulates the execution of embedded
Javascript code and executables. We also point out
that PJScan considered as benign all the samples for
which it could not find evidence of Javascript code
usable for the analysis.

Results show that our system definitely outper-
forms Wepawet and PJScan. PJScan shows the
smallest false positive rate, but provides a much lower
detection rate compared to the remaining solutions.
Wepawet performs slightly better than our approach in
terms of FP rate, but it exhibits a lower TP detection
rate. Our approach performs better than PDFRate. In
fact, results are better both in terms of TP and FP
rate, with an higher MCC coefficient. Moreover, it is
worth noting that our approach is superior to PDFRate
while adopting a significantly lower number of fea-
tures. In fact, PDFRate resorts to 202 features (Smutz
and Stavrou, 2012) to perform its analysis, whilst our
system has never gone beyond 135 (considering the
variable number of object-related features).

5.2 Experiment 2: Evasion Attacks

Differently from current state of the art approaches,
the features of our system, as well as its parsing
mechanism, have been designed to consider the pos-
sibilities of deliberate attacks. In particular, an at-
tacker can perform what has been presented as re-
verse mimicry, i.e., embedding malicious content in-
side PDFs that have been recognized as benign by the
targeted system. This is done by only slightly chang-
ing the overall structure of the file, thus making the
attack extremely effective against pure structural sys-
tems (Maiorca et al., 2013).

In our experiments, we implemented all the at-
tacks described in our previous work, using the simi-
lar vulnerabilities15: a) Javascript (JS) Injection (in-

15For EXE Embedding we exploited the CVE-2010-1240
vulnerability and for PDF Embedding and Javascript Injec-
tion we exploited the CVE-2009-0927.

jecting a Javascript object that exploits a vulnerabil-
ity), b) EXE Embedding (injecting an executable that
is automatically opened at runtime) and c) PDF Em-
bedding (injecting a malicious PDF file that is opened
after the main file). We then produced, for each at-
tack, 500 attack variants for a total of 1500 samples.
We observe that the samples produced in our previous
work were only few compared to the ones we have
created for this experiment. This was done to better
assess the efficiency of the created attacks against the
various systems.

Table 2 shows the performances, in terms of true
positives (TP), of the systems tested during the pre-
vious experiment (training with the same data, with
the same splits as before). We notice that Wepawet
performs really well on EXE Embedding and JS In-
jection. That was expected since reverse mimicry ad-
dresses static systems. Interestingly, though, Wepawet
was not able to scan PDF Embedding attacks due to
parsing problems. We speculate that this might be
related to the fact that Wepawet does not fully im-
plement the PDF specifications, and therefore is not
able to analyze some elements of the file. Such pars-
ing problems also appeared with PJScan, that was not
able to analyze any of the samples we provided. This
is mainly due to the fact that this system is not able to
analyze embedded files, i.e., PDFs or other files such
as executables, and only focuses on Javascript anal-
ysis (which also failed, in this case). PDFRate per-
formed really poorly, as also shown by our previous
work (Maiorca et al., 2013).

As for our approach, the first thing we notice is
that our system is able to detect all PDF Embedding
attacks, thanks to its advanced parsing mechanism.
In particular, the system automatically searches for
objects that contain, in their dictionary, the keyword
/EmbeddedFiles. If such object is found, the rela-
tive object stream is decompressed, saved as a sepa-
rate PDF and then analyzed. If this file is found to
be malicious, then the container of the original object
stream will be considered malicious as well. For the
other two attacks, a key role is played by the learning
algorithm parameters that we chose to train our sys-
tem. In fact, Table 2 shows that robustness is strongly
dependent on two aspects:

� The weight threshold (W ) parameter of the
AdaBoost algorithm (Freund and Schapire, 1995)
(expressed, in our case, as a percentage). Such
value allows to select the samples that will be
used, for each iteration of the AdaBoost algo-
rithm, to train the weak classifiers and tune their
weights. In particular, for each iteration, the sam-
ples are chosen as follows:

1. The training set samples are ordered by their
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Table 2: Comparison, in terms of true positives (TP), be-
tween our approach and research tools with respect to eva-
sion attacks (%).

System PDF E. EXE E. JS INJ.

Ours (Opt.) 100 (�0) 62.4 (�12:6) 69.1 (�16:9)
Ours 100 (�0) 32.26 (�9:18) 37.9 (�10:65)
PDFRate 0.8 0.6 5.2
Wepawet 0 99.6 100
PJScan 0 0 0

normalized weights (the lowest weight first).
Samples that have been incorrectly classified at
the previous iteration get higher weights. The
normalized weights sum Sw is set to zero.

2. Starting from the first sample, Sw = Sw +ws is
computed, where ws is the normalized weight
of the sample. If Sw < W 16, then the sample
will be used for the training. If not, the algo-
rithm stops.

� The shape of the decision function. Since these
attacks directly address the shape of the classifier
decision function (Maiorca et al., 2013) (which
obviously depends on the weights of each weak
classifier), sometimes it is necessary to correct
it by using resampling, i.e., generating artificial
training data from the samples set obtained given
a specific weight threshold W . Such data will be
then used to tune the weights of the samples that
will train each weak learner, and therefore of the
weak classifiers in the final linear combination.
However, such correction might compromise an
already robust function, so it must only be used on
vulnerable shapes. We call this correction func-
tion optimization.

Using the default weight threshold, namely, W = 100
(the one adopted in experiment 1) with no optimiza-
tion, performances are already better than PDFRate
but still not fully satisfactory. With W = 1 and an op-
timized decision function, instead, performances are
almost two times better, completely outperforming all
the other static approaches. Using W = 1 on the test
data of experiment 1, we also notice that false posi-
tives increase up to 0.2%. We interpret this result with
the fact that, by reducing the value of W , we force
the algorithm to ignore some samples that might have
been incorrectly classified in the previous iterations.
This makes the decision boundary less subjected to
changes due to samples that might be difficult to be
correctly classified. It is a small trade off we have to
pay for a higher robustness. The standard deviation
values will be discussed in the next section.

16If W is in its percentage form, it must be divided by 100
first.

6 DISCUSSION

Results attained in the second experiment show that
the features we have chosen allow for a significantly
higher robustness when compared to the state of the
art. However, the high standard deviation attained in
Experiment 2 also shows some limits in our approach:
in fact, we did not design a robust decision function
from the beginning, as we mainly focused on defining
significant features. As a consequence, our approach
is extremely sensitive to the training data used, and
in order to improve robustness we were forced to in-
troduce some optimizations to correct the function pa-
rameters. For future work, it will be essential to de-
sign a decision function that, regardless of the quality
of the training data, is able to reliably detect targeted
and optimal attacks. This aspect has been often over-
looked, especially in computer security applications
and has been pointed out, for example, by Biggio et
al. (Biggio et al., 2014b; Biggio et al., 2014a; Big-
gio et al., 2013a; Biggio et al., 2012; Biggio et al.,
2010). Moreover, recent works have shown that clus-
tering algorithms can also be vulnerable against eva-
sion and poisoning attacks (Biggio et al., 2014c; Big-
gio et al., 2013b). Since our method resorts on a clus-
tering phase, possible future works might also address
its resilience against such attacks.

7 CONCLUSIONS

Malicious PDF files have become a well-known threat
in the past years. PDF documents constitute a very
effective attack vector for cyber-criminals. In spite of
the efforts of software vendors such as Adobe, PDF
software is often vulnerable to zero-day attacks. In
this work, we presented a new approach that lever-
aged on both structural and content-based information
to provide a very accurate detection of PDF malware.
We also showed that our approach, with a careful
choice of the learning algorithm, is also able to cope
with evasion attacks. Finally, our work also clearly
pointed out the need of secure learning techniques for
malware detection, in order to cope with deliberate,
adversarial attacks.
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